AICTE MANDATORY DISCLOUSRE

Mandatory Disclosure : Updated on 31.01.2025

AICTE Permanent ID. : 1-4254404

1. Name of the Institution : KLS Gogte Institute of Technology

. Address : 'Jnana Ganga', Udyambag, Belagavi –08.

. **Telephone No.** : +91-831-2498500, 2405506

Fax No. : +91-831-2441909email : principal@git.eduwebsite : www.git.edu

2. Name and address of the Society : Karnatak Law Society

. Address : Tilakwadi, Belagavi – 590 008.

Telephone No.
 Fax No.
 +91-831-2405524
 +91-831- 2485353
 email
 klsbelgaum@gmail.com

. Brief back ground of the Board Members:

https://klsb of elagavi.org/office-bearers/

3. Name and Address of the Principal : Dr. Maharudra S Patil

. Address : 'Jnana Ganga', Udyambag, Belagavi –08.

. **Telephone No.** : +91-831-2498500, 2405506

Fax No.
email
website
+91-831-2441909
principal@git.edu
www.git.edu

4. Name of the affiliating University

. Address : 'JnanaSangama', Belagavi – 590 018.

. Telephone No. : +91-831-2498100 . Fax No. : +91-831-2405467 . website : www.vtu.ac.in

5. Governance

Organizational Chart:

https://git.edu/organization-structure/

Grievance Redressal mechanism for Faculty, staff and students

• The management of the college follows an open system of administration and grievances from staff and students are given the utmost attention.

: Visvesvaraya Technological University

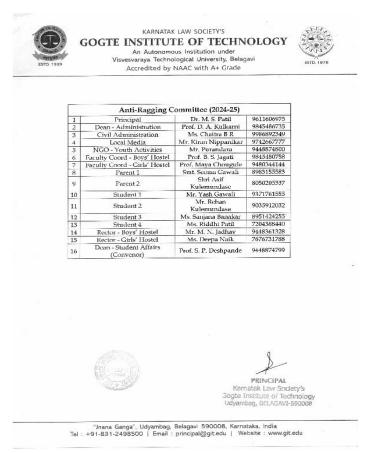
- Complaints and suggestion boxes are kept at a number of places in the campus and also in the hostels.
- The suggestions and complaints are carefully looked into and remedial measures undertaken. Responses are also publicized through notice boards.
- In case of indiscipline, a committee appointed by the principal enquires into the matter by calling witnesses and recommendations are made about the action to be taken by the management.
- Grievances regarding the staff in terms of salary, promotions etc., are carefully looked into by the HR department in consultation with the Principal and remedial measures taken.
- Class Committee meetings are held in which grievances of students are taken note of and remedial measures taken.

The Dean Students Affair looks into the welfare of the students and advises the management for necessary action.

. Nature and Extent of involvement of Faculty and students in academic affairs/ improvements

- Faculty members are involved in the syllabus preparation, process, ongoing FDP
- Students are involved in the Board of Studies, provide feedback on the teaching learning process

. Mechanism/Norms and procedure for democratic/ good governance


The institute has well set hierarchical governance and administrative set up. The Governing body comprising of well qualified professionals who possess a great vision. The Karnatak Law Society, the umbrella organisation under which our institute operates, has a standing of 80 plus years. The processes are well defined and continuously improved according to the changing situation. It is believed that excellence is a journey and not a goal. Principal with the help of Deans, HoDs, Section Heads takes ideas to the Governing Body. The Governing Body, of which Principal is a member, makes progressive decisions for the continuous improvement of the institute. The decisions of the Governing Body are implemented by the faculty, staff under the guidance of the Principal. The administration believes in using technology for the fast and fair implementation of policies. The budgeting, accounting and auditing are rigorous exercises at the institute for maintaining transparency.

It is believed that human resource is the greatest asset of the organisation. Importance is given to the wellbeing of staff in all its decisions. This is evident from the fact that many employees superannuated from the institute after serving for long durations of 25 plus years. Many direct and indirect benefits are extended to the employees. Merit is the main criteria for the appointment and promotions. Ample opportunity is provided to faculty and supporting staff to improve their knowledge and skills.

Student Feedback on Institutional Governance / Faculty performance

A student feedback mechanism is available in the Institution. Once in a semester, the students provide the feedback of staff in the prescribed format. It is collective online mode through LMS (DHI)

Establishment of Anti Ragging Committee

Establishment of Online Grievance Redressal Mechanism

https://docs.google.com/forms/d/e/1FAIpQLSdbeFAboTKRQIPphjyn8kmDhLi4E1ku70tzpsxgR OZiAwwsrw/viewform?pli=1

Establishment of Online Grievance Redressal Mechanism

• Establishment of Internal Complaint Committee (ICC)

• Internal Quality Assurance Cell https://web.archive.org/web/20210217220747/https://www.git.edu/iqac/

6. Programmes

https://git.edu/programmes-offered/

. Name of Programmes Accredited by NBA

Sl. No.	Program Name	Validity Up to
1	B.E. (COMPUTER SCIENCE & ENGINEERING)	2025
2	B.E. (MECHANICAL ENGINEERING)	2025
3	B.E. (ELECTRONICS & COMMUNICATION ENGINERING)	2025
4	MCA	2025

• Programme details

Name of the Programme	Number of Seats	Duration of the Programme	Fee	Cut off Marks / Rank of Admission		ς of
				2022-23	2023-24	2024-25
B.E. – Civil	120	4 Years		173542	305337	148900
B.E Mechanical	180	4 Years		152361	201001	87805
B.E Electrical & Electronics	60	4 Years		35485	38226	42070
B.E Electronics & Communication	180	4 Years	As per sanctioned	17799	25176	21793
B.E Computer Science &Engg	180	4 Years	by Fee Regulatory	9839	11324	11610
B.E Information Science &Engg	60	4 Years	Committee	12654	15910	22654
B.E Aeronautical	60	4 Years		54661	62158	47661
B.E- Computer Science and Engineering AI-ML	60	4 Years		NA	NA	20673
M. Tech– Structural Engg	18	2 Years		2557	3486	1740
M. Tech–Digital Communication & Networking	24	2 Years		3674G55	5675	-
M. Tech- Computer Science	24	2 Years		4247	5402	2754
M. Tech- Machine Design	18	2 Years		1303	5747	-
Master of Business Administration	120	2 Years		06	264	737
Master of Computer Applications	90	2 Years		1326/244	1479/169	1856/245

Placement Facilities

Campus placement in last years with minimum salary, maximum salary and average salary.

Year	Total Offers	Minimum Salary	Maximum Salary	Average Salary
2023-24	462	2.16 LPA	45.00 LPA	5.71 LPA

7. Faculty

• Course/Branch wise list Faculty members

Aeronautical Engineering:

https://git.edu/department-of-aeronautical-engineering/aeronautical-engineering-staff/

Civil Engineering:

https://git.edu/department-of-civil-engineering/civil-engineering-staff/

Computer Science and Engineering:

https://git.edu/cs-staff/

Electrical and Electronics Engineering:

https://git.edu/department-of-electrical-and-electronics-engineering/staff-eee/

Electronics and Communication Engineering:

https://git.edu/department-of-electronics-communication-engineering/electronics-communication-staff/

Information Science and Engineering:

https://git.edu/ise-staff/

Mechanical Engineering

https://git.edu/departments/mechanical-department/

Bsc (Hon)

https://git.edu/bachelor-of-science/bsc-staff/

MBA

https://git.edu/department-of-master-of-business-administration/mba-staff/

MCA

https://git.edu/department-of-master-of-computer-application/mca-staff/

Permanent Faculty https://docs.google.com/spreadsheets/d/1eVYAF_ENzXrgZ8dSED95LJ020Y8QRm7UjTQkk1w-mLo/edit?usp=sharing

• Adjunct Faculty

Branch	Name	0	Experi-			
		Qualific- ation	ence in years	Area of Specialization	Organization Currently working in:	Current Designation
CSE	Mr. Sandeep Tengale	M.Tech	11	Programming	VISA, Bangalore	Software Engineer
CSE	Dr. Shridhar Domnal	M.Tech, Ph.D	8	Cloud Computing	Accenture, Bengaluru	Enterprise Cloud Architect
ECE	Mr. Renjith C.V.	ME in VLSI	21	DSP, FGPA, ASIC, Micro Controller	Philips India Ltd, Pune	Digital Lead at Philips
ECE	Dr. Vishnupant Misale	Ph.D	41	Microwave and Antenna Design	Former Scientist and Group Director at LPSC ISRO Bangalore	Honorary Professor & an Expert to ISRO Team
МВА	Dr. Rajendra Nargundkar	B. Tech, MBA from IIMB, Ph.D. (USA)	38	Marketing and Strategic Management	Prestige University, Indore	Vice Chancellor
МВА	Ms. Madhumita Mankar	BBM, MBA	21	Finance and Project Management	EY LLP Bangalore	Executive Director
ME	Mr. Krishna Bhojkar	Industrial and Production	25+	Manufacturing	Partner at Bhojkar Consulting	Partner
MCA	Mr. Mallanagouda Patil	BE in Computer Science MS in Computer Science	20	Big Data & Programming	NETSKOPE SOFTWARE INDIA PRIVATE LIMITED, Bengaluru, Karnataka, India	Data Architect & Senior Staff Engineer
ıs	Dr. Pramod Sunagar	B.E, M.Tech, Ph.D	11+	Azure DevOps, Azure Development, Azure Al, Gen Al, Goud Computing, Machine learning, Python & Java programming.	CloudThat, Bengaluru	Subject Matter Expert
ıs	Dr. Shreekant Jere	B.E, M.Tech, M.B.A, Ph.D	12	Machine Learning, Data Analytics, Natural Language Processing and Sentiment Analysis, Generative Al.	Accenture Al, Bengaluru.	I&F Decision Science Practitioner Associate Manager
cv	Dr. B K Purandara	Ph. D	37	Groundwater Hydrology, Environmental Hydrology and Agriculture Hydrology and Irrigation Management.	Prakruti Vikopagala Nirvahana Adhyayana Samsthe Hagu Kaushalya Abhivrudhi Kendra	Founder President and Consultant in Visvesvaraya technological University.
EE	Mr Shailesh Deshpande	B.E. (E&E)	26	Power systems planning, fault diagnostics and solutions, Power system simulation and diagnostics using ETAP	Squian Consultants	Proprietor

• Permanent Faculty: Student ratio

8. Profile of Vice Chancellor/Director/Principal/Faculty

1	Name	Dr. Maharudra S Patil
2	Date of Birth	30/10/1969
3	Unique ID	1-458421567
4	Education Qualifications	M.Tech Machine Design
5	Work Experience	
6	Teaching	29 years
7	Research	10 years
8	Industry	4 years
9	Others	
10	Area of Specialization	Machine Design
11	Courses taught (UG/PG)	Engg. Drawing, Machine Design, Tribology, Experimental Stress Analysis, Theory of Machines, Composites Materials
12	Research guidance (Number of Students)	07
13	No. of papers published in National/International	26
	Journals/Conferences	
14	Master	Completed
15	Ph.D.	Completed
16	Projects carried out	15
17	Patents	
18	Technology Transfer	
	Research Publications	04
	1.No. of papers published in national Journals	
19	2.International Journals	20
	3.Conferences	04
	No. of Books published with details	01
20	Name of the Book	Elements of Machine Design
	Publisher	I K International Publishing House Pvt Ltd.
	Year of Publication	2019

9. Fee

No. of Fee waivers granted with amount and name of students

Sl.No	Name	USN	Amount
1	Vinay Rajendra Kolkar	2GI22BA115	55,000.00
2	Janhavi Rajesh Walvekar	2GI22BA036	27,500.00

No. of scholarship offered by the Institution, duration and amount: NIL

10. Admission

Number of seats sanctioned with the year of approval:

Name of the Programme	Number of Seats 2022-23	Year of Approval	Number of Seats 2023-24	Year of Approval	Number of Seats 2024-25	Year of Approval
B.E	120		120		120	
Civil						
B.E	120		120		120	
Mechanical						
B.E Electrical & Electronics	60		60		60	
B.E Electronics & Communication	180		180		180	
B.E Computer Science & Engg	180		180		180	
B.E Information Science & Engg	60		120		120	
B.E - Aeronautical	60		60		60	
B. Architecture	80		80		80	
B.E. (Lateral) - Civil	41		64		23	
B.E. (Lateral) - Mechanical	93		50		13	
B.E. (Lateral) - Electrical & Electronics	18	2022-23	6	2023-24	6	2024-25
B.E. (Lateral) - Electronics & Communication	18		18		19	
B.E. (Lateral) - Computer Science & Engg	18		18		18	
B.E. (Lateral) - Information Science & Engg	6		6		14	
B.E (Lateral) - Aeronautical	22		14		6	
M. Tech – Structural Engg	18		18		18	
M. Tech–Digital Communication & Networking	24		18		18	
M. Tech– Computer Science	24		18		18	
M. Tech– Machine Design	18		18		18	
MBA	120		120		120	
MCA	120		120		120	

• Number of Students admitted under various categories each year in the last three years

U.G. <u>2022-23</u>

Sl.No	Course	Admission through KEA	Admission through COMED-K	Admission through Management	Admission through AICTE (PMSS)	Total Admission
1	Civil Engineering	58+6	1	9	0	68+6
2	Mechanical Engineering	62+6	0	20	0	82+6
3	Electrical & Electronics Engineering	39+3	1	20	0	60+1
4	Electronics and Communication Engineering	85+9	48	47	0	180+9
5	Computer Science & Engineering	80+9	54	46	2	182+9
6	Information Science & Engineering	26+3	17	17	0	60+3
7	Aeronautical Engineering	32+2	0	20	1	53+2
8	B. Architecture	26	2	17	0	45
	TOTAL	408+38	123	196	3	730+38

P.G. 2022-23

Sl.No	Course	Admission through KEA	Admission through Management	Total Admission
1	M. Tech - Structural Engineering	13	5	18
2	M. Tech-Digital Communication & Networking	3	0	3
3	M. Tech- Computer Science & Engineering	2	3	5
4	M. Tech- Machine Design	3	0	3
5	Master of Business Administration	57	63	120
6	Master of Computer Applications	55	65	120
	TOTAL	133	136	269

U.G. 2023-24

Sl.No	Course	Admission through KEA	Admission through COMED- K	Admission through Management	Admission through AICTE (PMSS)	Total Admission
1	Civil Engineering	73+6	4	17	0	94+6
2	Mechanical Engineering	82+3	1	37	0	120+6
3	Electrical & Electronics Engineering	41+3	3	16	0	60+3
4	Electronics and Communication Engineering	81+9	51	47	0	179+9
5	Computer Science & Engineering	80+9	52	48	4	184+9
6	Information Science & Engineering	54+6	34	31	2	121+6
7	Aeronautical Engineering	39+3	2	19	2	62+3
8	B. Architecture	10	2	23	0	35
	TOTAL	460+42	149	238	8	855+42

P.G. 2023-24

Sl.No	Course	Admission through KEA	Admission through Management	Total Admission
1	M. Tech – Structural Engineering	12	6	18
2	M. Tech–Digital Communication & Networking	3	3	6
3	M. Tech– Computer Science & Engineering	8	2	10
4	M. Tech- Machine Design	2	6	8
5	Master of Business Administration	57	63	120
6	Master of Computer Applications	59	61	120
	TOTAL	141	141	282

U.G. <u>2024-25</u>

Sl.No	Course	Admission through KEA	Admission through COMED- K	Admission through Management	Admission through AICTE (PMSS)	Total Admission
1	Civil Engineering	75+6	0	18	0	93+6
2	Mechanical Engineering	83+6	0	36	0	119+6
3	Electrical & Electronics Engineering	39+3	2	19	0	60+3
4	Electronics and Communication Engineering	80+9	41	58	0	179+9
5	Computer Science & Engineering	27+3	18	15	0	60+3
6	Information Science & Engineering	54+6	35	25	1	115+6
7	Aeronautical Engineering	36+3	3	19	0	58+3
8	B. Architecture	33	0	17	0	50
	TOTAL	508+45	152	251	5	916+45

P.G. 2<u>023-24</u>

Sl.No	Course	Admission through KEA	Admission through Management	Total Admission
1	M. Tech – Structural Engineering	15	3	18
3	M. Tech–Digital Communication & Networking	0	4	4
4	M. Tech-Computer Science & Engineering	6	6	12
5	M. Tech– Machine Design	0	4	4
8	Master of Business Administration	55	65	120
9	Master of Computer Applications	57	63	120
	TOTAL	133	145	278

• Number of applications received during last two years for admission under Management Quota and number admitted

Year	Programs	Applications received	Number Admitted
2023-24	BE	238	238
	MCA	571	60
	MBA	540	63
2024-25	BE	238	238
	MCA	450	60
	MBA	434	65

11. Admission Procedure, Criteria and Weightages for Admission

Mode of admission: Admissions to all the programmes generally begin in April every year. Admissions are done through three modes 1. Through CET exam conducted by Karnataka Examinations Authority, 2. Through COMEDK exam conducted by Consortium of Medical, Engineering and Dental Colleges of Karnataka" (COMEDK) and 3. Through Direct Admissions under Management quota.

Admission notification along with important dates will be uploaded on respective official websites. Candidates need to meet the respective eligibility criteria to apply for any of the programmes.

Admission test being followed with name and address of the Test Agency/State Admission are as follows

Tonows	1) 45% of total intake is admitted through CET exam conducted by						
	Karnataka Examinations Authority,						
	Sampige Road, 18th Cross,						
	Malleshwaram, Bangalore - 560012.						
	Phone No: 080 - 23460460						
	Website: http://kea.kar.nic.in						
	E Mail: keauthority-ka@nic.in						
B.E.	2) 30 % of total intake is admitted through COMEDK exam						
	conducted by						
	Consortium of Medical, Engineering and Dental Colleges of Karnataka"						
	# 132, Second Floor,11th Main, 17th Cross,						
	Malleswaram, Bangalore-560 055						
	Phone No: 080 - 7259466698						
	Website: http://comedk.org						
	E Mail: studenthelpdesk@comedk.org						
	3) 25 % of total intake is admitted through Direct Admission under						
	Management quota with the consideration of any one entrance exam like						
	KCET, COMEDK, JEE, NATA, Institution entrance exam etc.,						
	1) 10% of total intake is admitted through DCET exam conducted						
	by						
B.E. (Lateral)							
	Karnataka Examinations Authority,						
	Sampige Road, 18th Cross,						
	Malleshwaram, Bangalore - 560012.						
	Phone No: 080 - 23460460						
	Website: http://kea.kar.nic.in						
	E Mail: keauthority-ka@nic.in						

	1) 80% of total intake is admitted through PGCET exam conducted
	by Karnataka Examinations Authority,
	Sampige Road, 18th Cross,
	Malleshwaram, Bangalore - 560012.
M. Task	Phone No: 080 - 23460460
M. Tech	Website: http://kea.kar.nic.in
	E Mail: <u>keauthority-ka@nic.in</u>
	2) 20 % of total intake is admitted through Direct Admission under
	Management quota with the consideration of any one entrance exam
	like PGCET & GATE
	50% of total intake is admitted through PGCET exam conducted by
	Karnataka Examinations Authority,
	Sampige Road, 18th Cross,
N. D. A. O.	Malleshwaram, Bangalore - 560012.
M.B.A. &	Phone No: 080 - 23460460
<u>M.C.A.</u>	Website: http://kea.kar.nic.in
	E Mail: keauthority-ka@nic.in
	2) 50 % of total intake is admitted through Direct Admission under
	Management quota with the consideration of any one entrance exam l
	PGCET, KMAT/CMAT

Admission Eligibility for UG and PG is given below

Admission Eligibility	Passed with minimum 45% in 2 nd PUC / 12 th Standard examination
for BE regular:	with English as one of the Languages, Physics and Mathematics as
	compulsory subjects along with Chemistry / Bio Technology / Biology
	/Electronics / Computer Science. Passed with minimum 40% in case of
	SC/ST/OBC candidates of Karnataka Students
Admission Eligibility	Passed in 2 nd PUC / 12 th Standard / 10+2 scheme of examination with
for Architecture	Physics, Chemistry and Mathematics subjects or passed 10+3 Diploma
	Examination with Mathematics as compulsory subject. The norms
	prescribed in NATA Admission Rules, relevant Government orders are
	also applicable.
Admission Eligibility	Passed 10+3 Diploma course wise with Mathematics as Compulsory
for BE (Lateral)	subject.
Admission Eligibility	Valid GATE score or passed qualifying examination or equivalent
for M. Tech	examination as prescribed by the Competent Authority and obtained an
	aggregate minimum of 50% marks taken together in all the subjects of all
	the years / semesters. (45% of marks in Q. E. in case of SC, ST and
	Category-I of Karnataka candidates).
Admission Eligibility	Passed recognized Bachelor's Degree of minimum of 3 years duration
for M. B.A.	examination or equivalent examination and obtained an aggregate
	minimum of 50% marks taken together in all the subjects including
	languages in all the years of the Degree Examination. (45% of marks in
	Q.E. in case of SC. ST and Category I of Karnataka candidates)
Admission Eligibility	Passed recognized BCA / Bachelor Degree in Computer Science
for M. C. A	Engineering or equivalent Degree or Passed B.Sc./ B. Com / B.A. with
	Mathematics at 10+2 level or at Graduation level (with additional bridge
	courses as per the norms of the University) and obtained an aggregate

minimum of 50% marks taken together in all the subjects in all the years
of the (45% of marks in Q.E. in case of SC. ST and Category I of
Karnataka candidates)

Calendar of admission for Management seats

Sl.	Particulars	Date
No.		
1.	Date of Admission notification	11.04.2024
2.	Last date of request for applications	15.05.2024
3.	Last date of submission of applications	15.05.2024
4.	Dates for announcing final results	28.05.2024
5.	Release of admission list	28.05.2024
6.	Date for acceptance by the candidate	23.10.2024
7.	Last date for closing of admission	23.10.2024
8.	Starting of the Academic session	18.09.2024
9.	The policy of refund of the Fee, in case of withdrawal, shall be clearly notified	As per AICTE rule 8.13 mentioned in Approval Process Handbook 2020-21

12. Criteria and weightages of Admission

The admission to UG and PG programmes are done as per the Government of Karnataka norms.

13. List of Applicants:

List of applicants 2024-25

14. Results of Admission under Management seats / Vacant Seats

Admission under management quota is carried out on the first come first allotment bases. Candidates with minimum eligibility as per Government of Karnataka regulations are entertained to take admission. We will close the admission once seats are full. If any seat gets vacated later, it will be filled by the candidates who approached them after within the last date of admission.

15. Information of Infrastructure and other Resources available

Programme	Level	Room Type	Room Id/Name	Area of Room in sqm	Building Name	Building Number
Engg	UG	Other	AF 16	80	Main Building	Block A
Engg	UG	Other	AF 17	80	Main Building	Block A
Engg	UG	Other	AF 18	70	Main Building	Block A
Engg	UG	Laboratory	AF 24	132	Main Building	Block A
Engg	UG	Other	AF 25	80	Main Building	Block A
Engg	UG	Other	AF 26	80	Main Building	Block A
Engg	UG	Other	AF 29	80	Main Building	Block A
Engg	UG	Other	AF 32	80	Main Building	Block A
Engg	UG	Other	AF 33	80	Main Building	Block A
Engg	UG	Other	AF 35	80	Main Building	Block A
Engg	UG	Other	AF 7	80	Main Building	Block A
Engg	UG	Classroom	AF 15	60	Main	Block A
Engg	UG	Classroom	AF1	64	Main	Block A
Engg	UG	Classroom	AF11	135	Main	Block-A
Engg	UG	Laboratory	AF13-1	160	Main	Block-A
Engg	PG	Tutorial Room	AF14-1	87	Main	Block-A
Engg	UG	Classroom	AF19	80	Main	Block-A
Engg	PG	Classroom	AF2	64	Main	Block-A
Engg	UG	Classroom	AF20	80	Main	Block-A
Engg	UG	Classroom	AF21	80	Main	Block-A
Engg	UG	Laboratory	AF22	119	Main	Block-A
Engg	UG	Tutorial Room	AF23	80	Main	Block-A
Engg	UG	Laboratory	AF24-1	120	Main	Block-A
Engg	PG	Tutorial Room	AF24-2	40	Main	Block-A
Engg	UG	Laboratory	AF27	40	Main	Block-A
Engg	UG	Laboratory	AF28	96	Main	Block-A
Engg	UG	Classroom	AF3	70	Main	Block-A
Engg	UG	Classroom	AF30	96	Main	Block-A
Engg	UG	Seminar Hall	AF31	135	Main	Block-A
Engg	UG	Classroom	AF34	96	Main	Block-A
Engg	UG	Classroom	AF36	70	Main	Block-A
Engg	UG	Classroom	AF37	64	Main	Block-A
Engg	UG	Classroom	AF38	64	Main	Block-A
Engg	UG	Classroom	AF39	80	Main	Block-A
Engg	PG	Research Laboratory	AF4	64	Main	Block-A
Engg	UG	Classroom	AF40	80	Main	Block-A
Engg	UG	Other	AG 15	80	Main Building	Block A
Engg	UG	Other	AG 16	80	Main Building	Block A
Engg	UG	Other	AG 18	80	Main Building	Block A
Engg	UG	Other	AG 19	80	Main Building	Block A
Engg	UG	Other	AG 20	80	Main Building	Block A

Engg	UG	Seminar Hall	AG1	258	Main	Block-A
Engg	UG	Laboratory	AG10	163	Main	Block-A
Engg	UG	Laboratory	AG11	96	Main	Block-A
Engg	UG	Tutorial Room	AG12	31	Main	Block-A
Engg	UG	Laboratory	AG13	128	Main	Block-A
Engg	UG	Seminar Hall	AG14	135	Main	Block-A
Engg	UG	Laboratory	AG17	128	Main	Block-A
Engg	UG	Seminar Hall	AG2	135	Main	Block-A
Engg	UG	Laboratory	AG3-1	174	Main	Block-A
ARCH	UG	Resource Centre	AG3-2 SURVEY LAB	80	Main	Block-A
Engg	UG	Laboratory	AG4	101	Main	Block-A
Engg	UG	Laboratory	AG5	78	Main	Block-A
Engg	UG	Laboratory	AG6	158	Main	Block-A
Engg	UG	Laboratory	AG7	158	Main	Block-A
Engg	PG	Classroom	AG8	80	Main	Block-A
Engg	UG	Laboratory	AG9	126	Main	Block-A
Engg	UG	Laboratory	AIRCRAFT PROPOLSION LAB	152	Ind Tunnel Lab	Е
ARCH	UG	Art Court	ART COURT	147	Basic Workshop	Block-E
Engg	UG	Other	AS 23	80	Main Building	Block A
Engg	UG	Other	AS 24	80	Main Building	Block A
Engg	UG	Other	AS 28	80	Main Building	Block A
Engg	UG	Other	AS 29	80	Main Building	Block A
Engg	UG	Other	AS 6	80	Infotech Block	Block D
Engg	UG	Other	AS 8	70	Main Building	Block A
Engg	UG	Other	AS 35	80	Main Building	Block A
Engg	UG	Classroom	AS1	72	Main	Block-A
Engg	UG	Laboratory	AS10	160	Main	Block-A
Engg	UG	Classroom	AS11	135	Main	Block-A
Engg	UG	Classroom	AS13	80	Main	Block-A
Engg	UG	Classroom	AS14	80	Main	Block-A
Engg	UG	Classroom	AS15	80	Main	Block-A
Engg	UG	Classroom	AS16	120	Main	Block-A
Engg	UG	Classroom	AS17	120	Main	Block-A
Engg	UG	Classroom	AS18	120	Main	Block-A
Engg	UG	Classroom	AS19	120	Main	Block-A
Engg	UG	Tutorial Room	AS2	72	Main	Block-A
Engg	PG	Tutorial Room	AS20	40	Main	Block-A
Engg	UG	Classroom	AS21	120	Main	Block-A
Engg	UG	Laboratory	AS25	112	Main	Block-A
Engg	UG	Laboratory	AS26	112	Main	Block-A
Engg	UG	Seminar Hall	AS27	135	Main	Block-A
Engg	PG	Tutorial Room	AS3	34	Main	Block-A
Engg	UG	Laboratory	AS30	216	Main	Block-A

Engg	UG	Laboratory	AS31	108	Main	Block-A
Engg	UG	Classroom	AS32	108	Main	Block-A
Engg	UG	Classroom	AS33	108	Main	Block-A
Engg	UG	Tutorial	AS34	34	Main	Block-A
		Room				
Engg	UG	Classroom	AS4	72	Main	Block-A
Engg	UG	Classroom	AS5	116	Main	Block-A
Engg	UG	Laboratory	AS-7	17	Main	Block - A
Engg	UG	Laboratory	AS9	64	Main	Block-A
Engg	UG	Classroom	AT 20	80	Main Building	Block A
Engg	UG	Other	AT 29	158	Main	A
Engg	UG	Classroom	AT 34	63	Main Building	A
Engg	UG	Classroom	AT 36	160	Mechanical Building	В
Engg	UG	Classroom	AT1	70	Main	Block-A
Engg	PG	Tutorial Room	AT10	41	Main	Block-A
Engg	UG	Classroom	AT11	70	Main	Block-A
Engg	UG	Classroom	AT12	70	Main	Block-A
Engg	UG	Classroom	AT13	70	Main	Block-A
Engg	UG	Laboratory	AT14	46	Main	Block-A
Engg	UG	Laboratory	AT15	120	Main	Block-A
Engg	UG	Laboratory	AT16	90	Main	Block-A
Engg	UG	Classroom	AT17	135	Main	Block-A
Engg	UG	Laboratory	AT18	160	Main	Block-A
Engg	PG	Tutorial Room	AT19	40	Main	Block-A
Engg	UG	Classroom	AT2	70	Main	Block-A
Engg	UG	Classroom	AT21	78	Main	Block-A
Engg	PG	Tutorial Room	AT22	40	Main	Block-A
ARCH	UG	Classroom	AT23	77	Main	Block-A
ARCH	UG	Classroom	AT24	77	Main	Block-a
ARCH	UG	Classroom	AT25	77	Main	Block-A
ARCH	UG	Classroom	AT26	77	Main	Block-A
ARCH	UG	Classroom	AT27	77	Main	Block-A
MCA	PG	Classroom	AT28	77	Main	Block-A
Engg	UG	Classroom	AT3	70	Main	Block-A
MCA	PG	Classroom	AT30	77	Main	Block-A
MCA	PG	Seminar Hall	AT31	160	Main	Block-A
MCA	PG	Tutorial Room	AT33	63	Main	Block-A
MCA	PG	Classroom	AT35	135	Main	Block-A
Engg	UG	Classroom	AT4	70	Main	Block-A
Engg	UG	Classroom	AT5	70	Main	Block-A
Engg	UG	Classroom	AT6	70	Main	Block-A
Engg	UG	Classroom	AT7	70	Main	Block-A
Engg	UG	Classroom	AT8	70	Main	Block-A
Engg	PG	Tutorial Room	AT9	70	Main	Block-A
Engg	UG	Other	B 10	130	Mechanical Building	В

Engg	UG	Other	BF 1	70	Mechanical Building	В
Engg	UG	Other	BF 11	80	Mechanical Building	В
Engg	UG	Other	BF 2	70	Mechanical Building	В
Engg	UG	Laboratory	BF 20	132	Mechanical Building	Block B
Engg	UG	Laboratory	BF 22	132	Mechanical Building	В
Engg	UG	Other	BF 3	70	Mechanical Building	В
Engg	UG	Other	BF 4	70	Mechanical Building	Block B
Engg	UG	Other	BF 5	70	Mechanical Building	В
Engg	UG	Laboratory	BF 20	132	Mechanical Building	В
Engg	UG	Classroom	BF12	90	Mech	Block-B
Engg	UG	Classroom	BF13	40	Mech	Block-B
Engg	PG	Tutorial Room	BF14	29	Mech	Block-B
Engg	UG	Classroom	BF15	58	Mech	Block-B
Engg	UG	Tutorial Room	BF16	58	Mech	Block-B
Engg	UG	Classroom	BF17	58	Mech	Block-B
Engg	PG	Tutorial Room	BF18	29	Mech	Block-B
Engg	UG	Laboratory	BF19	96	Mech	Block-B
Engg	UG	Laboratory	BF21	78	Mech	Block-B
Engg	PG	Seminar Hall	BF22	62	Mech	Block-B
Engg	UG	Tutorial Room	BF23	25	Mech	Block-B
Engg	PG	Classroom	BF6	60	Mech	Block-B
Engg	UG	Classroom	BF7	60	Mech	Block-B
Engg	UG	Classroom	BF8	60	Mech	Block-B
Engg	PG	Tutorial Room	BF9	60	Mech	Block-B
Engg	UG	Laboratory	BG 3	132	Mechanical Building	Block B
Engg	UG	Laboratory	BG 5	132	Mechanical Building	Block B
Engg	UG	Laboratory	BG1	424	Mech	Block-B
Engg	UG	Laboratory	BG10	58	Mech	Block-B
Engg	UG	Laboratory	BG11	175	Mech	Block-B
Engg	UG	Laboratory	BG2	178	Mech	Block-B
Engg	UG	Laboratory	BG3-1	100	Mech	Block-B
Engg	PG	Laboratory	BG3-2	66	Mech	Block-B
Engg	UG	Laboratory	BG4	166	Mech	Block-B
Engg	UG	Additional Workshop	BG6	715	Mech	Block-B
Engg	UG	Additional Workshop	BG7	60	Mech	Block-B

Engg	UG	Additional Workshop	BG8	116	Mech	Block-B
Engg	UG	Additional Workshop	BG9	70	Mech	Block-B
Engg	UG	Classroom	BS 16	60	Mechanical Building	Block B
Engg	UG	Other	BS 18	60	Mechanical Building	Block B
Engg	UG	Classroom	BS 4	80	Mechanical Building	В
Engg	UG	Classroom	BS 14	80	Mechanical Building	В
Engg	UG	Other	BS 16	80	Mechanical Building	Block B
Engg	UG	Classroom	BS 17	60	Mechanical Building	В
Engg	UG	Classroom	BS10	98	Mech	Block-B
Engg	UG	Classroom	BS11	65	Mech	Block-B
Engg	UG	Drawing Hall	BS12	166	Mech Bldg	Block-B
Engg	UG	Classroom	BS2	61	Mech	Block-B
Engg	UG	Classroom	BS3	64	Mech	Block-B
Engg	UG	Classroom	BS5	81	Mech	Block-B
Engg	UG	Laboratory	BS6	98	Mech	Block-B
Engg	UG	Classroom	BS7	98	Mech	Block-B
Engg	UG	Laboratory	BS8	75	Mech	Block-B
Engg	UG	Classroom	BS9	31	Mech	Block-B
Engg	UG	Classroom	BT1	94	Mech	Block-B
Engg	UG	Tutorial Room	BT2	94	Mech	Block-B
Engg	UG	Classroom	BT3	94	Mech	Block-B
Engg	UG	Workshop	BWS-1	215	Basic Workshop	Block-E
MANAGEMENT	PG	Classroom	C 1	80	Library Building	С
MANAGEMENT	PG	Classroom	C 2	80	Library Building	С
MANAGEMENT	PG	Classroom	C 3	80	Library Building	С
ARCH	UG	Classroom	C 4	120	Library Building	С
ARCH	UG	Classroom	C 5	120	Library Building	С
ARCH	UG	Classroom	C 7	120	Library Building	С
ARCH	UG	Classroom	C 8	120	Library Building	С
MANAGEMENT	PG	Classroom	C 4	80	Library Building	С
ARCH	UG	Classroom	C 6	120	Library Building	С
ARCH	UG	Laboratory	C LAB 1	120	Library Building	С
Engg	UG	Laboratory	CAD3	63	IIP CELL Building	Block-E
Engg	UG	Drawing Hall	CB3	165	Arch/MBA/Library building	Block-C
MANAGEMENT	PG	Computer Laboratory	CC 8	132	Library Building	С
Engg	UG	Laboratory	CC LAB	90	CCB floor 2	Block-D
Engg	PG	Laboratory	CE2	23	IIP CELL	Block-E

ARCH	UG	Resource Centre	CLIMATOLOG Y	35	Arch/MBA/Library building	Block-C
MANAGEMENT	PG	Computer Laboratory	COMP AND LAN LAB	148	Arch/MBA/Library building	Block-C
ARCH	UG	Resource Centre	CONSTRUCTI ON YARD	157	Arch/MBA/Library building	Block-C
MANAGEMENT	PG	Tutorial Room	CS1	53	Arch/MBA/Library building	Block-C
MANAGEMENT	PG	Classroom	CS12	86	Arch/MBA/Library building	Block-C
MANAGEMENT	PG	Seminar Hall	CS2	180	Arch/MBA/Library building	Block-C
MANAGEMENT	PG	Seminar Hall	CSE2	132	Arch/MBA/Library building	Block-C
Engg	UG	Laboratory	CW LAB	60	CCB	Block-D
Engg	UG	Other	DF 1	134	Infotech Block	D
Engg	UG	Other	DF 3	31	Infotech Block	D
MCA	PG	Computer Laboratory	DF1	96	ССВ	Block-D
Engg	UG	Laboratory	DF2	96	CCB	Block-D
Engg	UG	Laboratory	DF3	128	ССВ	Block-D
Engg	UG	Laboratory	DF4	96	ССВ	Block-D
ARCH	UG	Computer Laboratory	DF5	80	ССВ	Block-D
ARCH	UG	Computer Laboratory	DF6	66	ССВ	Block-D
Engg	UG	Laboratory	DG1	112	ССВ	Block-D
Engg	UG	Laboratory	DG2	128	ССВ	Block-D
Engg	UG	Classroom	DS 6	70	Infotech Block	Block D
Engg	UG	Classroom	DS 1	91	Infotech Block	Block-D
Engg	UG	Classroom	DS 11	131	Infotech Block	Block-D
Engg	UG	Classroom	DS 12	65	Infotech Block	Block-D
Engg	UG	Classroom	DS 2	65	Infotech Block	Block-D
Engg	UG	Classroom	DS 4	65	Infotech Block	Block-D
Engg	UG	Classroom	DS 6	132	Infotech Block	D
Engg	UG	Classroom	DS 7	127	Infotech Block	Block-D
Engg	UG	Classroom	DS 8	63	Infotech Block	Block-D
Engg	UG	Other	DT 1	80	Infotech Block	Block D
Engg	UG	Classroom	DT 10	70	Infotech Block	Block D
Engg	UG	Classroom	DT 11	63	Infotech Block	D
Engg	UG	Classroom	DT 2	101	Infotech Block	Block-D
MCA	PG	Tutorial Room	DT 4	31	Infotech Block	D
Engg	UG	Laboratory	DT 5/6	227	Infotech Block	D
MCA	PG	Seminar Hall	DT 9	98	Infotech Block	Block-D
Engg	UG	Laboratory	F2	62	IIPC Cell	Block-F
Engg	UG	Laboratory	F3	88	IIPC Cell	Block-F
Engg	UG	Laboratory	F4	103	IIPC Cell	Block-F
Engg	PG	Classroom	FF 1	80	Mechanical Building	В
Engg	PG	Classroom	FF 2	80	Mechanical Building	В

Engg	UG	Laboratory	FL3	107	Basic Workshop Building	Block-E
Engg	PG	Laboratory	FMS4	88	IIP CELL	Block-E
Engg	PG	Laboratory	FP1	32	IIP CELL	Block-F
Engg	UG	Laboratory	FS2	146	Smithy & Foundry Lab	Block - B
Engg	PG	Laboratory	HPR5	103	IIP CELL	Block-F
Engg	UG	Laboratory	IOT LAB	91	Infotech Block	Block-D
MANAGEMENT	PG	Classroom	L1	179	Arch/MBA/Library building	Block-C
MANAGEMENT	PG	Classroom	L2	133	Arch/MBA/Library building	Block-C
MANAGEMENT	PG	Classroom	L3	150	Arch/MBA/Library building	Block-C
Engg	UG	Laboratory	LAB 1	199	Infotech Block	Block-D
Engg	UG	Laboratory	LAB 3	134	Infotech Block	Block-D
Engg	UG	Laboratory	LAB 4	99	Infotech Block	Block-D
Engg	UG	Laboratory	LAB 5	199	Infotech Block	Block-D
Engg	UG	Laboratory	LAB 7	96	Infotech Lab	Block-D
Engg	UG	Laboratory	LAB2	136	Infotech Block	Block-D
MANAGEMENT	PG	Laboratory	LANGUAGE LAB 1	120	Library Building	С
ARCH	UG	Drawing Hall	LR 1	120	Library Building	С
MANAGEMENT	PG	Drawing Hall	LR 6	140	Library Building	С
ARCH	UG	Art Court	M 1	120	Library Building	С
ARCH	UG	Resource Centre	MATERIAL MUSEUM	32	Arch/MBA/Lib Building	Block-C
MANAGEMENT	PG	Other	OFFICE 14	80	Library Building	C
Engg	UG	Laboratory	PC1	42	Basic Workshop Building	Block-E
ARCH	UG	Other	S 1	80	Library Building	С
ARCH	UG	Other	S 2	80	Library Building	C
ARCH	UG	Other	S 3	80	Library Building	C
Engg	UG	Laboratory	S 1	125	Smithy & Foundry Lab	Block-B
ARCH	UG	Seminar Hall	SEMINAR HALL	132	Arch/MBA/Library Building	Block-C
ARCH	UG	Seminar Hall	SH 1	120	Library Building	С
MANAGEMENT	PG	Seminar Hall	SH 7	132	Library Building	С
Engg	UG	Laboratory	SL2	42	Basic Workshop Building	Block-E
Engg	UG	Laboratory	ST LAB	557	Mech New	Block-B
ARCH	UG	Studio	ST-1	165	Arch/MBA/Library Building	Block-C
ARCH	UG	Studio	ST-2	181	Arch/MBA/Library building	Block-C
ARCH	UG	Studio	ST-3	120	Arch/MBA/Library building	Block-C

ARCH	UG	Studio	ST-4	132	Arch/MBA/Library building	Block-C
ARCH	UG	Studio	ST-5	173	ARCH/MBA/Librar y building	Block-C
ARCH	UG	Studio	ST-6	120	Arch/MBA/Library building	Block-C
ARCH	UG	Multi- Purpose Hall	ST-7	215	Arch/MBA/Library building	Block-C
MANAGEMENT	PG	Other	STAFF 11	80	Library Building	С
MANAGEMENT	PG	Other	STAFF 9	80	Library Building	С
MANAGEMENT	PG	Other	STAFF 10	80	Library Building	С
MANAGEMENT	PG	Other	STAFF 12	80	Library Building	С
MANAGEMENT	PG	Other	STAFF 13	80	Library Building	С
Engg	UG	Laboratory	STR 3	22	Structural Engg Lab Building	Block-G
Engg	UG	Classroom	STR 4	63	Structural Engg Lab Building	Block-G
Engg	UG	Laboratory	STR-1	136	Structural Engg Lab Bldg.	Block-G
Engg	UG	Laboratory	STR2	22	Structural Engg Lab Building	Block-g
Engg	PG	Laboratory	STRUC. LAB	160	Mech Building	Block B
MANAGEMENT	PG	Tutorial Room	Т 5	80	Library Building	С
Engg	UG	Laboratory	W-3	47	Smithy & Foundry Lab	Block-B
Engg	UG	Laboratory	WL1	107	Basic Workshop Building	Block - B
ARCH	UG	Workshop	WORKSHOP	140	Arch/MBA/Library building	Block-B
Engg	UG	Workshop	WS-3	210	Workshop	Block-E

No. of Computer Centres with capacity of each

Department	Level	Name of the Laboratory	Lab / Major Equipment's
CS	UG	1 (PROGRAMMING LAB 2)	61 HP i5 Systems, 8GB RAM, 1 TB HDD, Laser Printer, LCD Projector, 40 KVA UPS Shared
CS	UG	1 B	40 HP i5 Systems, 8GB RAM, 1 TB HDD, Laser Printer, LCD Projector, 40 KVA UPS Shared
ME	UG	2 (LINUX LAB.)	60 HP i5 Systems, 8GB RAM, 1 TB HDD, Laser Printer, LCD Projector, 20 KVA UPS

EE, AE	UG	3 (DOS BASED APPLICATIONS LAB.)	40 C2D Systems,2-4GB RAM, 80-500 GB HDD, Hardware Kits, Laser Printer, LCD Projector, 15 KVA UPS
IS, MCA	PG	4 (VLSI DESIGN LAB.)	48 HP i5 Systems, 8GB RAM, 1 TB HDD, Laser Printer, LCD Projector, 15 KVA UPS
SCST MCA Research	PG	5 (NETOWORK APPLICATIONS LAB.)	31 (27 HP + 4 Lenovo) i3 Systems, 4GB RAM, 1 TB HDD, Laser Printer, Short Throw Epson LCD Projector, 20 KVA UPS Shared
AR	UG	6 (PROG. & APPLICATIONS LAB.)	60 HP i5 Systems, 8GB RAM, 1 TB HDD, Laser Printer, LCD Projector, 20 KVA UPS Shared
ME	UG	7 (CAD Lab)	44 HP i5 Systems, 8GB RAM, 1 TB HDD, Laser Printer, LCD Projector, 15 KVA UPS
CV	UG	8 (DATABASE APPLICATIONS LAB.)	60 HP i5 Systems, 8GB RAM, 1 TB HDD, Laser Printer, LCD Projector, 20 KVA UPS
PG	PG	9 Computer Hardware Lab	16 C2D Systems, 1-2GB RAM, 80-200GB HDD, LCD Projector, Network Components, 7.5 KVA UPS
FY, MCA	PG	10	60 HP Thin Clients, 2 GB Flash Memory, LCD Projectors, Network Comp., 20 KVA UPS shared
FY	UG	11	60 HP Thin Clients, 2 GB Flash Memory, LCD Projectors, Network Comp., 20 KVA UPS shared
FY	UG	12	60 HP Thin Clients, 2 GB Flash Memory, Laser Printers, LCD Projectors, Network Comp., 10 KVA UPS
EC	UG	13 Texas Instruments Innovation Lab	40 i3 Systems, 4 GB RAM, 1TB HDD, LCD Projector, Network Comp., 20KVA UPS
EC	UG	14 BROWSING AND E LEARNING CENTRE	60 i3 Systems, 4 GB RAM, 500GB -1TB HDD, Laser Printer, LCD Projector, Network Comp., 15 KVA UPS
MBA	PG	MBA LAB.	60 C2D Systems, 1-2GB RAM, 80-250GB HDD, LCD Projector, Network Components, 10 KVA UPS
Name of the Laboratory	No of PCs	Building Name	Lab Area in Square Meter
1	61		118.97
1 B	40		82.94
2	60		115.57
3	40		115.57
4	48	Information Technology	87.14
5	31	Block	67.45
7	60		131.09
1 '	44		86 12
8	44 60		86.12 144.28

10	60		91.90
11	60		92.39
12	60		98.00
13 VLSI Lab	40		97.44
14 BROWSING CENTRE	60	Main Building	214.12
MBA LAB.	60	MBA Block	148.41

Licensed Software Details

Sr. No	Application Software	No. of License	Date of Purchase	Lab No	Department	License Type	Valid up to	Renewal made by
1	ETNL Language Software V4.0	1 Teacher & 30 Student Console	14.05.2020	5	First Year & Higher Sem	Perpetual	Life Long	v
2	MATLAB Full Suite 2019	Campus vide License	18.09.2019	Various Labs	First Year & Higher Sem	Device	18.09.20 22	CC
3	Adobe Photoshop CC 2018	40	Nov. 21	6	ARCH	Device	Nov. 22	ARCH
4	Sketch up Pro 2018	40	Nov. 21	6	ARCH	Device	Nov. 22	ARCH
5	Lumion Pro 8.0	40	Nov. 20	6	ARCH	Device	Life Long	
6	Capitaline Software Program		04.07.2019	MBA	MBA		30.06.20 20	MBA
7	SOLIDCast and FLOWCast	Site license	20.05.2019	7	Mech	Site license	22.05.20 20	Mech
8	University Motion Bundle	50	30.03.2019	2	Mech	Perpetual	Life Long	
9	Cadence University UG Bundle	30	30.06.2017	14	E&C		30.06.20	E&C
10	Catia 5 - R27 (ALTEM Technologies)	30	31.03.2017	8	Mech	Academic	Life Long	
11	Kaspersky Business Space Security	500	Feb. 20		ll Departments 500 license		Feb. 23	CC
12	NX- Academic CAD[NXACAD 100]+NX CAE+CAM[NXA CAD1]	3	20.03.2017	IIP Cell (CADE M)	Mech	Perpetual	Life Long	
13	AutoCAD 2017	1250	2017	1,2,7,8	Mech, EE, Civil, Arch	Education al Version	Free	
14	Mat Lab 2016	25	22.12.2016	5,7,14	First Year & Higher Sem	Perpetual	Life Long	
15	E Survey Titanium	1	26.08.2016	6,7	Civil		Life Long	
16	Ansys 17	50	31.03.2016	6,7,8	Mech & IPE		Life Long	

17	Mechanical +CFD Training +CFD		31.03.2016	6	Mech		Life Long	
	Research (Static Analysis Dynamic Fluid,							
	Thermal & Electro Magnetic Analysis)							
18	ETABS 2015	10	02.01.2016	6	Civil	Education	Life Long	
19	SAP 2000	10	28.01.2016	6	Civil	Education	Life Long	
20	Bentley Civil Suit Software & MX Road V8i	5+200 student Licenses	12.01.2016	6	Civil	Perpetual	Life Long	
21	Mi-Power Software Power System Simulation & Analysis Software	5	2008 upgraded in 2015	E&E Faculty PC	E&E	Education	Life Long	
22	Academic VM Ware	4	10.06.2013	Serv	ver Room	Academic	Life long	
23	LearnS OFT English Language Software	Teacher & 30 Student	27.12.2012	English	Lab (MBA)	Web version	Lifelong	
		Console			-			
24	PRO-Engineer (Creo)	10	09.02.2012	7	Mech	Education	Life Long	
25	ABB make 3 phase Overcurrent / Earthfault Numerical Relay Software	1	2012	E&E Faculty PC	E&E	Education	Life Long	
26	Auto-CAD Electrical Software	1	2011	E&E Faculty PC	E&E	Education	Life Long	
27	IBM Rational Rose	30	10.12.2010	4,5	MCA		Life Long	
28	Orcad –Pspice Circuit Simulation Software	10	2010	E&E Faculty PC	E&E	Education	Life Long	
29	Oracle Enterprise Edition Advance CS Bundle	150	09.07.2008	4,5	MCA, CS & IS	Oracle academy	Life Long	
30	Unigraphics NX V5 (9 modules)	1	08.03.2008	7	Mech		Life Long	
31	Auto Desk Educational Solution	10	10.01.2006	4,7,8	E&E,Civil,	Education	Life Long	

Sr.	System Software	No. of	Date of	Licence	Valid	Renewal
No ·	Microsoft Campus License	License	Purchase	Туре	upto	made by
1	O365ProPlusOpenFaculty ShrdSvr ALNG SubsVL OLV E 1Mth Acdmc AP 200	150				
2	IntuneOpen ShrdSvr ALNG SubsVL OLV E 1Mth Acdmc AP Felty	150			Mar-22	CC
3	WINEDU ALNG UpgrdSAPk OLV E 1Y Acdmc Ent	150	Mar-21	Paper licence		
4	WinSvrCAL ALNG LicSAPk OLV E 1Y Acdmc Ent UsrCAL	150	Iviar-21	Taper needee		
5	SQLSvrStd ALNG LicSAPk OLV E 1Y Acdmc AP	1				
6	WinSvrStdCore ALNG LicSAPk OLV E 2Lic E 1Y Acdmc AP CoreLic	40				
7	VSProwMSDN ALNG LicSAPk OLV E 1Y Acdmc AP	10				
8	Cent OS 6.5		Open S	ource		

Central Examination Facility, Number of Rooms and capacity of each

Room No	Block	Capacity	Priority	Seating Type	Rows Count	Columns Count
AT18	MAIN_BUILDING	24	1	Single Seater	6	4
AT21	MAIN_BUILDING	24	2	Single Seater	6	4
AT23	MAIN_BUILDING	24	3	Single Seater	6	4
AT24	MAIN_BUILDING	24	4	Single Seater	6	4
AT25	MAIN_BUILDING	24	5	Single Seater	6	4
AT26	MAIN_BUILDING	24	6	Single Seater	6	4
AT27	MAIN_BUILDING	24	7	Single Seater	6	4
AT28	MAIN_BUILDING	24	8	Single Seater	6	4
AT30A	MAIN_BUILDING	24	9	Single Seater	6	4
AT30B	MAIN_BUILDING	24	10	Single Seater	6	4
AT32	MAIN_BUILDING	24	11	Single Seater	6	4
AS1	MAIN_BUILDING	24	12	Single Seater	6	4
AS2	MAIN_BUILDING	24	13	Single Seater	6	4
AS4	MAIN_BUILDING	24	14	Single Seater	6	4
AS11A	MAIN_BUILDING	24	15	Single Seater	6	4
AS11B	MAIN_BUILDING	24	16	Single Seater	6	4
AS13	MAIN_BUILDING	24	17	Single Seater	6	4

AS14	MAIN_BUILDING	24	18	Single Seater	6	4
AS15	MAIN_BUILDING	24	19	Single Seater	6	4
AS16A	MAIN_BUILDING	24	20	Single Seater	6	4
AS16B	MAIN_BUILDING	24	21	Single Seater	6	4
AS17A	MAIN_BUILDING	24	22	Single Seater	6	4
AS17B	MAIN_BUILDING	24	23	Single Seater	6	4
AS18A	MAIN_BUILDING	24	24	Single Seater	6	4
AS18B	MAIN_BUILDING	24	25	Single Seater	6	4
AS19A	MAIN_BUILDING	24	26	Single Seater	6	4
AS19B	MAIN_BUILDING	24	27	Single Seater	6	4
AS21	MAIN_BUILDING	24	28	Single Seater	6	4
AS27A	MAIN_BUILDING	24	29	Single Seater	6	4
AS27B	MAIN_BUILDING	24	30	Single Seater	6	4
AS32A	MAIN_BUILDING	24	31	Single Seater	6	4
AS32B	MAIN_BUILDING	24	32	Single Seater	6	4
AF3	MAIN_BUILDING	24	33	Single Seater	6	4
AF14A	MAIN_BUILDING	24	34	Single Seater	6	4
AF14B	MAIN_BUILDING	24	35	Single Seater	6	4
AF19	MAIN_BUILDING	24	36	Single Seater	6	4
AF20	MAIN_BUILDING	24	37	Single Seater	6	4
AF21A	MAIN_BUILDING	24	38	Single Seater	6	4
AF21B	MAIN_BUILDING	24	39	Single Seater	6	4
AF30A	MAIN_BUILDING	24	40	Single Seater	6	4
AF30B	MAIN_BUILDING	24	41	Single Seater	6	4
AF31A	MAIN_BUILDING	24	42	Single Seater	6	4
AF31B	MAIN_BUILDING	24	43	Single Seater	6	4
AF34A	MAIN_BUILDING	24	44	Single Seater	6	4
AF34B	MAIN_BUILDING	24	45	Single Seater	6	4
AF36	MAIN_BUILDING	24	46	Single Seater	6	4
AF37	MAIN_BUILDING	24	47	Single Seater	6	4
AF38	MAIN_BUILDING	24	48	Single Seater	6	4

AG2B	MAIN_BUILDING	24	49	Single Seater	6	4
AGZD	MAIN_BUILDING	24	50	Single Seater	6	4
AG6	MAIN BUILDING	24	51	Single Seater	6	4
AG13	MAIN_BUILDING	24	52	Single Seater	6	4
BT1	MECHANICAL_BUILDING	24	53	Single Seater	6	4
BT2	MECHANICAL_BUILDING	24	54	Single Seater	6	4
BT3	MECHANICAL_BUILDING	24	55	Single Seater	6	4
BS2	MECHANICAL_BUILDING	24	56	Single Seater	6	4
BS3	MECHANICAL_BUILDING	24	57	Single Seater	6	4
BS4	MECHANICAL_BUILDING	24	1	Single Seater	6	4
BS17	MECHANICAL_BUILDING	24	2	Single Seater	6	4
BF6	MECHANICAL_BUILDING	24	3	Single Seater	6	4
BF7	MECHANICAL_BUILDING	24	4	Single Seater	6	4
BF8	MECHANICAL_BUILDING	24	5	Single Seater	6	4
BF9	MECHANICAL_BUILDING	24	6	Single Seater	6	4
BF12	MECHANICAL_BUILDING	24	7	Single Seater	6	4
BF15	MECHANICAL_BUILDING	24	8	Single Seater	6	4
DT-2	COMP.SCI. DEPT.	24	1	Single Seater		
DT-9	COMP.SCI. DEPT.	26	2	Single Seater		
DS-7	COMP.SCI. DEPT.	26	3	Single Seater		
DS-8	COMP.SCI. DEPT.	26	4	Two Seater		
LH-1	MBA DEPT	60	1	Two Seater		
LH-2	MBA DEPT	60	2	Two Seater		
LH-3	MBA DEPT	60	3	Two Seater		
LH-4	MBA DEPT	35	4	Two Seater		
LH-5	MBA DEPT	60	5	Two Seater		
DS-2	MCA DEPT	72	1	Two Seater		
DS-3	MCA DEPT	72	2	Two Seater		
DS-4	MCA DEPT	72	3	Two Seater		
DS-12	MCA DEPT	54	4	Two Seater		
DS-13	MCA DEPT	72	5	Two Seater		
Studio-1	Architecture Dept	40	1	Two Seater		
Studio-2	Architecture Dept	40	2	Two Seater		
Studio-3	Architecture Dept	40	3	Two Seater		
Studio-4	Architecture Dept	40	4	Two Seater		
Studio-5	Architecture Dept	40	5	Two Seater		
Studio-6	Architecture Dept	40	6	Two Seater		
Studio-7	Architecture Dept	40	7	Two Seater		
Studio-8	Architecture Dept	40	8	Two Seater		
Studio-9 Studio-10	Architecture Dept Architecture Dept	40	9	Two Seater Two Seater		

Barrier Free Built Environment for disabled and elderly persons

KARNATAK LAW SOCIETY'S GOGTE INSTITUTE OF TECHNOLOGY

"Jnana Ganga", Udyambag, Belagavi - 590 008, Karnataka, India

Approved by All India Council for Technical Education (AICTE), New Delhi and UGC section 2(f) & 12(B). Permanently Affiliated and Autonomous Institution under Visvesvaraya Technological University, Belagavi. "Accredited by National Board of Accreditation (NBA), New Delhi. Accredited by National Assessment and Accreditation Council (NAAC) with A+ Grade

Tel: +91-831-2498500, 2405506, Fax.: +91-831-2441909, E-mail: principal@git.edu, Visit us @ www.git.edu

UNDERTAKING

I, Dr. M. S. Patil, Principal of KLS Gogte Institute of Technology, Belagavi, Kamataka, declare that Barrier free built environment for the disabled/elderly persons is available in all the buildings. Ramps and lifts are present in all the buildings.

Lift Ramp Ramp

> Dr. M. S. Patil PRINCIPAL

^{*} Programmes accredited by NBA: BE in E&C Engg, Mech Engg and Computer Science Engg. | M. Tech. in Structural Engg. , M. Tech. in Machine Design & MCA

• Fire and Safety Certificate

Hos of the Director General f Police & Director General mataka State Fire & Emergency Services and State Disaster Response Force fo. 1, Annaswamy Mudaliar Road

Bengaluru-560 042

Phone: 25570733 22971501 Fax: 22971512

No.GBC(1)159/2017 Docket No. KSFES/NOC/289/2017 22 -02-2018

To,
The Commissioner,
Belgaum City Corporation,
Subhash Nagar,
Belgaum.

Str,

Sub: Issue of No Objection Certificate for the constructed High Rise Educational Building at Sy. No. 328,337, 327/1 & 327/1A/1, 336/1, Majgaon Village, Udyambag, Belagavi, Belagavi District -Reg..

Ref: Letter dated 23-05-2017 of "KLS's Gogte Institute of Technology" "Inana Ganga" Udyambag, Belagavi-560008.

With reference to the letter of "KLS's Gogte Institute of Technology"_cited above the Regional Fire Officer, Hubli Range, Hubli of this department has inspected the site of proposed High Rise Educational Building by "KLS's Gogte Institute of Technology, comprising of ground & 3 upper floors at Sy. No. 328,337, 327/1 & 327/1A/1, 336/1, Majgaon Village, Udyambag, Belagavi, Belagavi District on 21-06-2017with reference to the drawings, submitted by the applicant and has furnished the details as follows:-

Part-	A: General Building requirements.	DIGAMBAR ANANT KULKARNI	
SI no.	Details	:	Observation
1.	Address of the Premises.	:	"KLS's Gogte Institute of Technology
			Sy. No. 328,337, 327/1 & 327/1A/1, 336/1, Majgaon Village, Udyambag, Belagavi, Belagavi District.
2.	Number of Buildings.	:	One Building.
3.	Number of floors.		Ground & 3 upper floors

Gogte Institute of Technology

• Occupancy Certificate

Completion of the City of Belgavi COMPLETION CERTIFICATE

Subject: Issue of Completion Certificate in respect of The Chairman Karanataka Law Society, R.S.No. 705 & 706, Udaymbag, Belagavi

- ef:- 1) Applicant of The Chairman Karanataka Law Society, Dtd:13-04-2018.
 - This office approved of Building permission letter No.CCB/PWD/BLD/ SR-20/2010-11/S. Dt:24-05-2010
 - This Office approved of Building permission letter No.CCB/BLD/CR-96/ 2014-15/S. Dt:02-12-2014.

PREAMBLE:-

The Chairman, Karanataka Law Society the owner R.S.No. 705 & 706, Udaymbag, Belagavi, has given an application to the Commissioner, Corporation of the City of Belagavi on 13-04-2018 requesting to issue of Completion Certificate. The building was inspected by JE on 29-06-2018 Corporation of the City of Belagavi & submitted a report stating that the building has been completed in all respects in accordance with the plan approved by the Corporation and has recommended that there is no objection for issue of building Completion Certificate. Hence the following order.

ORDER

I hereby certify that the erection or alteration in building of R.S.No. 705 & 706, Udaymbag, Belagavi. Completed under the supervision of Shri. Pratap P Patil licensed Architect/ Engineer has been got inspected and I declare that the building confirms in all respects to the requirements of the bye-Laws in respect of use Group. Structural Safety of the building is certified by the licensed Architecture/Engineer, Fire safely, hygienic & sanitary conditions inside and in the surrounding and is fit for occupation for GF,FF,SF,TF Computer Center & Architectural Block purpose only.

Commissioner 1770

Commissioner Corporation of the City of Bela

No.CCB/BLD/CR-96/2014-15/S Datedd | -07-2018

Copy in duplicate forwarded to Revenue Officer, for Assessment of the building and report. He should send back the duplicate copy to the City Engineer after noting thereon the date of entering the building for the House Tax purpose and amount assessed.

Karnatak Law Society's Gogte Institute of Technology Udvambag, RELAGAVI - 350 mm

CHARRAM
GOVERNING COUNCE
Karnatal: Law Society's
Sogge Institute of Techniques

Hostel Facilities

- 1. Boys hostel total capacity <u>421</u> students
- 2. Girls hostel total capacity 395 students

• Library Collection Information

1. Print Collections		
	a. Total number of Books	1,14,433
	b. Total Titles	32,673
	c. Total Print Journals	00
2. Online Resources		
	a. e-Journals International	7529
	b. e-Journals National	7529
	Total	7529
3. Digital Library		
4. National Digital Library	Reg. No. INKANC4CFX6TSZR	-

	TOTAL COLLECTIONS				
Sl. No	Course	No of Volumes	No of Title		
1	BE+M.Tech	91632	22915		
2	MBA	8499	4069		
3	MCA	10252	2369		
4	Govt. Book Bank	3021	2613		
5	Others	1051	716		
	Total	114455	32682		

Department-wise Volumes and Titles				
Sl. No	Branch	No of Volumes	No of Title	
1	CIVIL	12153	2806	
2	MECHANICAL	15102	36	
3	ELECTRICAL	9494	1783	
4	ELECTRONICS	12283	2643	
5	COMPUTER SCIENCE	12790	3053	
6	I.S.E.	10465	2271	
7	PHYSICS	1293	497	
8	AERONAUTICAL	1693	325	
9	ARCHITECTURE	3885	3110	
10	B.Sc Hon	10	4	
11	Science & Humanities	6027	729	
12	GENERAL	6437	2056	

• National Digital Library (NDL) subscription details

Subscription ID: INKANC4CFX6TSZR

Laboratory and Workshop details

Department of Aeronautical Engineering.

SL. No.	UG/PG	Name of the Laboratory	List of Major Equipment's/Facilities	List of Experiments setup in each lab
			1. Singe/double rotor system setup	Determination of natural frequency, logarithmic decrement, damping ratio and damping coefficient in a single degree of freedom vibrating systems (longitudinal)
			2. Damped Torsional Setup	Determination of natural frequency in a single degree of freedom undamped vibrating systems (longitudinal)
	UG	Theory of Machines Laboratory	3. Universal Governor Apparatus setup	Determination of natural frequency, logarithmic decrement, damping ratio and damping coefficient in a single degree of freedom vibrating systems (torsional)
1			4. Motorized gyroscope apparatus setup	Experimentation on Balancing of rotating masses setup for static balancing at a plane.
			5. Dynamic Balancing apparatus	Determination of equilibrium speed, sensitiveness, power and effort of Porter Governor.
			6. Whirling of shaft	Determination of equilibrium speed, sensitiveness, power and effort of Hartnel Governor.
			7. Vibration setup	Determine gyroscopic couple on Motorized Gyroscope.
			8. Singe/double rotor system setup	Determine critical speed or whirling speed of a rotating shaft and to verify the value theoretically
			9. Damped Torsional Setup	
		Advanced Flight Simulator and Control Lab	GFRP Cockpit Shell	Effect of speed on glide performance
			Flight Simulator Input Devices	Calculations of C L and C D using the Power Method
2			Workstations	Effect of velocity on climb rate
			Flight Simulator Software	Effect of altitude on range & Effect of altitude on range amp; endurance of the aircraft Maneuver performance

				Effect of flaps and weight on takeoff performance Effect of flaps and weight on landing performance Longitudinal stability modes
			BEAM SET UP	Lateral stability modes Deflection Test: Stress and deflections of beams for various end conditions, verification of Maxwell's theorem
			COLUMN SET UP	Deflection Test: Stress and deflections of beams for various end conditions, verification of principle of superposition
			VIBRATION SETUP	Wagner beam test: Investigate the behavior of semi tension field
		AIRCRAFT STRUCTURE LAB	WAGNER BEAM SETUP	Deflection Test: Stress and deflections of beams for various end conditions, verification of Castigliano's theorem
3				Young's Modulus Test: Conducting deflection test on hinged supported beam and find the Young's modulus
				Free Vibration Test: To verify the free longitudinal vibration
				Forced Vibration Test: To verify the damped and undamped forced vibration setup
				Buckling Test: Compression tests on short columns, Crippling loads.
				Buckling Test: Compression tests on Long columns, Crippling loads with Hinged-hinged condition.
				Buckling Test: Buckling tests on Long columns, Crippling loads with Hinged-Fixed condition
4		AERODYNAMICS LAB	WIND TUNNEL	Calibration of a subsonic wind tunnel by inclined manometer
4			INSTRUMENTS	Smoke flow visualization studies on a two-dimensional circular cylinder at low speeds.

			Smoke flow visualization studies on a two-dimensional symmetrical air foil at different angles of incidence at low speeds Smoke flow visualization studies on a two-dimensional camber air foil at different angles of incidence at low speeds Study of flow over aircraft & car by Smoke flow visualization (Small Models) Tuft flow visualization on a flat plate model at different angles of incidence at low speeds: identify zones of attached and separated flows. Surface pressure distributions on a two-dimensional circular cylinder at low speeds and calculation of pressure drag. Surface pressure distributions on a two-dimensional symmetric air foil at zero incidences at low speeds. Surface pressure distributions on a two-dimensional cambered air foil at different angles of incidence and calculation of
		LOW SPEED CASCADE WIND TUNNEL	Study of the flame lift off and blow off phenomenon for various air/fuel ratio premixed flame.
		PROPELLER TEST RIG	Performance characteristics of diesel engine working on mechanical loading
5	AIRCRAFT PROPULSION LAB	MEASUREMENT OF BURNING VELOCITY	Performance characteristics and Heat Balance sheet on twin engine.
		FREE AND WALL JET SET UP	Calculation of calorific value of solid and liquid fuel using digital bomb calorimeter
		MEASUREMENT OF NOZZLE FLOW SET UP	Determination of Viscosity of a lubricating oil using Redwoods Viscometers

			STUDY OF NATURAL CONVECTIVE HEAT TRANSFER OVER AN AEROFOIL STUDY OF FORCED CONVECTIVE HEAT TRANSFER OVER A FLAT PLATE 2- STAGE AXIAL FLOW FAN TEST RIG	Determination of Viscosity of a lubricating oil using Say bolts Viscometers Flash and fire point using different apparatus cleave land and pensky martin apparatus Study of simplex type of fuel injection characteristics Determine the free
			TWO-DIMENSIONAL DIFFUSER FLOW	convection heat transfer coefficient from the surface of the aerofoil in both vertical and horizontal position Determine the convective
			BOMB CALORIMETER	heat transfer coefficient in forced convection on a flat plate
			Kaplan Turbine Test Rig	To Determine Overall Efficiency of Kaplan Turbine Test Rig.
	UG	FLUID MECHANICS & MACHINERY LAB	Francis Turbine Test Ri	To Determine Brake Power and Overall Efficiency of Francis Turbine Test Rig.
			Pelton Wheel Turbine Test Rig	To Determine Brake Power and Overall Efficiency of Pelton Wheel Turbine Test Rig
			Centrifugal Pump Test Rig	To Determine Water Power and Overall Efficiency of Centrifugal Pump Test Rig.
			Two Stage Reciprocating Air Compressor	To Determine Volumetric Efficiency of Two Stage Reciprocating Air Compressor.
6			Reynolds Apparatus	Reynolds apparatus Test Setup
			Venturimeter Apparatus	To Determine the co efficient of discharge of Venturimeter.
			Orifice meter Apparatus	To determine the co efficient of discharge of Orifice meter.
			Losses In Pipe Friction Apparatus	To Determine Frictional Losses in Pipe Flow.
			Losses In Pipe Fitting	To Determine Minor Losses
			Apparatus Metacentric Height Apparatus	in Pipe Flow. To Determine The Metacentric Height of a Floating Body.
			Centrifugal Blower Test Rig	To Determine Overall Efficiency of Centrifugal Blower Test Rig.

Department of Civil Engineering

SL. No.	UG/PG	Name of the Laboratory	List of Major Equipment's/Facilities	List of Experiments setup in each lab
			1. pH meter.	Determination of Chlorides
			2. Double Distillation.	Determination of Alkalinity (alkalinity due to carbonates, bicarbonates and hydroxyls)
			3. UV Double Beam Spectrophotometer.	Determination of acidity (acidity due to carbon dioxide and mineral acids)
			4. Muffle furnace.	Determination of Calcium, Magnesium and Total Hardness
	UG	Environmental Laboratory	5.BOD incubator	Determination of Dissolved oxygen and Determination of BOD
1				Determination of COD Determination of Percentage of available chlorine in bleaching powder. Determination of Chlorine
				Demand.
				Determination of Dissolved
				solids and Electrical conductivity.
				Determination of optimum
				dosage of Alum by Jar test.
				Determination of Iron
				(Phenanthroline method)
				Determination of Fluorides
				(SPANDS method)
				Determination of pH
				Determination Nitrates by spectrophotometer
				Determination of Oil and Grease
			1) Universal Testing	Cicuse
	Machine (UTM) (Computerized) - 1000kN capacity		Machine (UTM) (Computerized) -	Tension test on Mild steel/ HYSD bar
			Machine	Bend-Rebend test on Mild steel
		Machine	Torsion test on Mild steel	
2	UG	Strength of Materials	4) Torsion Testing Machine	Shear test on Mild steel/ Aluminium
_	OG	Laboratory	5) Tile Abrasion Testing Machine	Impact Test on Mild steel
			6) Tile Flexural Strength Testing Machine	Hardness test on Mild steel/ Aluminium
			7) Strain Gauges/ Strain Indicators	Bending test on Timber under two-point loading
			maiouors	Test on Flooring/ Roof
				Tiles

				Test on Bricks/Blocks
				Dimensionality Test
				Compression Test
				Water Absorption / Initial
				rate of absorption
				Test on Pavers
				Compression Test
				Tests on Coarse
				Aggregates
				Specific gravity, water
				absorption and bulk density
				Tests on Fine Aggregates
				Specific gravity, water absorption and bulk density
			1. Compression	
			strength testing machine;	Tests on Cement
			2. Flexural strength testing machine;	Normal Consistency and setting times (Initial and Final) Specific Gravity of Cement Fineness of cement by Blaine's air permeability test and sieve test
			3. Compaction testing machine;	Specific Gravity of Cement
			4. Concrete mixer;	Final) Specific Gravity of Cement Fineness of cement by Blaine's air permeability
			5. Vicat apparatus	
			6. Vee-Bee	Tests on Aggregates
			Consistometer	resus on riggregates
			7. Permeability Equipment	Aggregate Impact Test
			7. Permeability	
3	UG	Concrete Laboratory and Highway Laboratory	7. Permeability Equipment 8. Skid resistance	Aggregate Impact Test
3	UG	Concrete Laboratory and Highway Laboratory	7. PermeabilityEquipment8. Skid resistancetester9. Film stripping	Aggregate Impact Test Los Angeles Abrasion Test Aggregate Crushing Value
3	UG		7. Permeability Equipment 8. Skid resistance tester 9. Film stripping device 10. Benkelman Beam	Aggregate Impact Test Los Angeles Abrasion Test Aggregate Crushing Value Test Specific Gravity and Water
3	UG		7. Permeability Equipment 8. Skid resistance tester 9. Film stripping device 10. Benkelman Beam with Digital dial gauge 11. Marshall	Aggregate Impact Test Los Angeles Abrasion Test Aggregate Crushing Value Test Specific Gravity and Water Absorption Test Shape Tests Tests on Fresh concrete
3	UG		7. Permeability Equipment 8. Skid resistance tester 9. Film stripping device 10. Benkelman Beam with Digital dial gauge 11. Marshall Apparatus 12. Asphalt Mixer	Aggregate Impact Test Los Angeles Abrasion Test Aggregate Crushing Value Test Specific Gravity and Water Absorption Test Shape Tests Tests on Fresh concrete Workability tests: Slump
3	UG		7. Permeability Equipment 8. Skid resistance tester 9. Film stripping device 10. Benkelman Beam with Digital dial gauge 11. Marshall Apparatus 12. Asphalt Mixer 13.Modified roughness	Aggregate Impact Test Los Angeles Abrasion Test Aggregate Crushing Value Test Specific Gravity and Water Absorption Test Shape Tests Tests on Fresh concrete Workability tests: Slump cone, Compaction factor,
3	UG		7. Permeability Equipment 8. Skid resistance tester 9. Film stripping device 10. Benkelman Beam with Digital dial gauge 11. Marshall Apparatus 12. Asphalt Mixer 13.Modified roughness indicator	Aggregate Impact Test Los Angeles Abrasion Test Aggregate Crushing Value Test Specific Gravity and Water Absorption Test Shape Tests Tests on Fresh concrete Workability tests: Slump cone, Compaction factor, Vee–Bee, Consistometer
3	UG		7. Permeability Equipment 8. Skid resistance tester 9. Film stripping device 10. Benkelman Beam with Digital dial gauge 11. Marshall Apparatus 12. Asphalt Mixer 13.Modified roughness	Aggregate Impact Test Los Angeles Abrasion Test Aggregate Crushing Value Test Specific Gravity and Water Absorption Test Shape Tests Tests on Fresh concrete Workability tests: Slump cone, Compaction factor, Vee—Bee, Consistometer and Flow table tests.
3	UG		7. Permeability Equipment 8. Skid resistance tester 9. Film stripping device 10. Benkelman Beam with Digital dial gauge 11. Marshall Apparatus 12. Asphalt Mixer 13.Modified roughness indicator	Aggregate Impact Test Los Angeles Abrasion Test Aggregate Crushing Value Test Specific Gravity and Water Absorption Test Shape Tests Tests on Fresh concrete Workability tests: Slump cone, Compaction factor, Vee—Bee, Consistometer and Flow table tests. Tests on Hardened
3	UG		7. Permeability Equipment 8. Skid resistance tester 9. Film stripping device 10. Benkelman Beam with Digital dial gauge 11. Marshall Apparatus 12. Asphalt Mixer 13.Modified roughness indicator	Aggregate Impact Test Los Angeles Abrasion Test Aggregate Crushing Value Test Specific Gravity and Water Absorption Test Shape Tests Tests on Fresh concrete Workability tests: Slump cone, Compaction factor, Vee—Bee, Consistometer and Flow table tests. Tests on Hardened concrete
3	UG		7. Permeability Equipment 8. Skid resistance tester 9. Film stripping device 10. Benkelman Beam with Digital dial gauge 11. Marshall Apparatus 12. Asphalt Mixer 13.Modified roughness indicator	Aggregate Impact Test Los Angeles Abrasion Test Aggregate Crushing Value Test Specific Gravity and Water Absorption Test Shape Tests Tests on Fresh concrete Workability tests: Slump cone, Compaction factor, Vee—Bee, Consistometer and Flow table tests. Tests on Hardened
3	UG		7. Permeability Equipment 8. Skid resistance tester 9. Film stripping device 10. Benkelman Beam with Digital dial gauge 11. Marshall Apparatus 12. Asphalt Mixer 13.Modified roughness indicator	Aggregate Impact Test Los Angeles Abrasion Test Aggregate Crushing Value Test Specific Gravity and Water Absorption Test Shape Tests Tests on Fresh concrete Workability tests: Slump cone, Compaction factor, Vee—Bee, Consistometer and Flow table tests. Tests on Hardened concrete Concrete mix design using IS Code (10262-2019) Compression test on
3	UG		7. Permeability Equipment 8. Skid resistance tester 9. Film stripping device 10. Benkelman Beam with Digital dial gauge 11. Marshall Apparatus 12. Asphalt Mixer 13.Modified roughness indicator	Aggregate Impact Test Los Angeles Abrasion Test Aggregate Crushing Value Test Specific Gravity and Water Absorption Test Shape Tests Tests on Fresh concrete Workability tests: Slump cone, Compaction factor, Vee—Bee, Consistometer and Flow table tests. Tests on Hardened concrete Concrete mix design using IS Code (10262-2019) Compression test on Concrete Cube
3	UG		7. Permeability Equipment 8. Skid resistance tester 9. Film stripping device 10. Benkelman Beam with Digital dial gauge 11. Marshall Apparatus 12. Asphalt Mixer 13.Modified roughness indicator	Aggregate Impact Test Los Angeles Abrasion Test Aggregate Crushing Value Test Specific Gravity and Water Absorption Test Shape Tests Tests on Fresh concrete Workability tests: Slump cone, Compaction factor, Vee—Bee, Consistometer and Flow table tests. Tests on Hardened concrete Concrete mix design using IS Code (10262-2019) Compression test on Concrete Cube Split tensile strength test on
3	UG		7. Permeability Equipment 8. Skid resistance tester 9. Film stripping device 10. Benkelman Beam with Digital dial gauge 11. Marshall Apparatus 12. Asphalt Mixer 13.Modified roughness indicator	Aggregate Impact Test Los Angeles Abrasion Test Aggregate Crushing Value Test Specific Gravity and Water Absorption Test Shape Tests Tests on Fresh concrete Workability tests: Slump cone, Compaction factor, Vee—Bee, Consistometer and Flow table tests. Tests on Hardened concrete Concrete mix design using IS Code (10262-2019) Compression test on Concrete Cube Split tensile strength test on Concrete Cylinder
3	UG		7. Permeability Equipment 8. Skid resistance tester 9. Film stripping device 10. Benkelman Beam with Digital dial gauge 11. Marshall Apparatus 12. Asphalt Mixer 13.Modified roughness indicator	Aggregate Impact Test Los Angeles Abrasion Test Aggregate Crushing Value Test Specific Gravity and Water Absorption Test Shape Tests Tests on Fresh concrete Workability tests: Slump cone, Compaction factor, Vee—Bee, Consistometer and Flow table tests. Tests on Hardened concrete Concrete mix design using IS Code (10262-2019) Compression test on Concrete Cube Split tensile strength test on

				Tests on Bituminous Materials
				Penetration Test
				Ductility Test
				Softening Point Test
				Specific Gravity of Bitumen
			1. Dumpy level;	1. Linear Measurements:
			2. Compass;	a) To measure distance between two points using direct ranging.
			3. Theodolite	b) To set out perpendiculars at various points on given line using cross staff, optical square, Chain and tape
			4. Total stations	2. Compass surveying:
			5. DGPS	a) To determine the distance between two inaccessible points using chain/tape & compass
			6. Planimeter	3. Levelling:
				a) To determine
			7. Weather Station	difference in elevation between two points using Fly levelling, conduct fly back levelling and Booking of levels using HI and Rise and Fall method.
4	UG	Surveying Laboratory		b) To conduct profile levelling for water supply /sewage line and to draw the longitudinal section and to determine the depth of cut and depth of filling for a given formation level
				4. Theodolite survey:
				a) Measurement of horizontal and vertical angles
				b) To determine the elevation of an object using single plane method (Base is accessible)
				5. Setting out of curve
				a) To set out Compound curve using Rankine's
				deflection angles method
				6. Setting out:
				To set out the centre line of a simple rectangular rooms (Framed Structure) using
				double baseline method

				1. Introduction to Total Station: Components, Temporary adjustments, Basic functions, working principle, Coordinate system, measurement of distance, direction and elevation, File manager. 2. Total station Data processing and plotting 3. To plot the boundary of given field and determine
				area using total station survey 4. To carryout Contour Survey using total station, plot contours and determine area and volume of contours 5. Setting out of building
				using total station 6. To determine the global coordinates and elevation of a given point using DGPS 7. Delineation of catchment on given topo
				sheet and measurement of area using digital planimeter 8. Introduction to Bhuvan, Google earth and QGIS 9. To create map with
				information system using QGIS Demonstration of E-
			Triaxial Shear Test Apparatus;	Determination of Water content (Oven drying method) and Specific gravity (for coarse and fine grained soils)
5	UG	Geotechnical Engineering Laboratory	2. Consolidation Apparatus, Three Gang New Bench type Model, Electronic with AIMIL Data Acquisition System & GeoStar;	Determination of Grain size distribution of soil by Sieve analysis.
			3. Direct Shear Apparatus, Microprocessor based load frame 2 kN Capacity with proving ring and dial gauges;	Determination of in situ density by core cutter and sand replacement method

1	I			Determination of
			4. Automatic	Determination of Consistency Limits – Liquid
			Compactor for Proctors	Limit (Casagrande Method),
			test;	plastic limit and shrinkage
			test,	limit.
				Determination of
				Compaction properties of
				soil by Standard Proctor
			5. Standard Penetration	Compaction Test (Light
			Test equipment	Weight).
				Determination of
				Coefficient of permeability
				by constant head and
				variable head methods.
				Determination of Shear
				parameters by-
				a. Unconfined
				Compression Test
				b. Direct Shear
				Test for cohesive and
				cohesion less soils
				c. Laboratory
				vane shear test
				Demonstrations
				a. Demonstration of
				miscellaneous equipment
				such as Augers, Samplers,
				Rapid Moisture meter,
				Proctor's needle,
				Hydrometer, Relative
				density.
				b. Demonstration of Free
				swell and Differential free swell tests
				c. Demonstration of One-
				Dimensional Consolidation
				Test
				d. Demonstration of Triaxial
				Compression Test
				(undrained)
				Mini Project
				Index and Engineering
				properties
				Determination of safe
				bearing capacity of a given
				soil.
				Comparison of in-situ and
				lab permeability values of a
				given soil
				Compaction characteristics
				of a given soil
				Evaluation of shear
				properties of compacted soil
		HYDRAULICS AND	1 D 1 1 1 1	1. Calibration of Notches
6	UG	HYDRAULIC	1. Pelton wheel turbine	and weirs
		MACHINERY	0 W 1 1 1 T 1	2. Calibration of collecting
		LABORATORY	2. Kaplon wheel Turbine	tank (gravimetric method)

3. Reynold's Number gauge (dead weight method) 4. Verification of 4. Head loss Bernoulli's equation 5. Calibration of Venturi flume 6. Rectangular notch 6. Rectangular notch 7. Determination of Darcy's friction factor for a straight pipe 8. Minor loses 9. Determination of Hydraulic coefficients of a vertical orifice and mouth piece 10. Determination of vane coefficients for vanes 11. Performance characteristics of a single stage centrifugal pump 12. Performance characteristics of a Pelton wheel 13. Performance characteristics of a Kaplan turbine 14. Performance characteristics of a Francis turbine 15. Demonstration of hydraulic jump 1. AutoCAD 2017 2. E Survey Titanium 2. E Survey Titanium 3. ETABS 2015 3. ETABS 2015 4. Verification of Venturi meter and Orifice meter 7. Determination of Venturi meter and Orifice meter 7. Determination of vane coefficients for vanes 11. Performance characteristics of a single stage centrifugal pump 12. Performance characteristics of a Francis turbine 14. Performance 15. Demonstration of hydraulic jump 15. Demonstration of hydraulic jump 16. AutoCAD 2017 17. AutoCAD 2017 18. AutoCAD 2017 29. AutoCAD 2017 20. E Survey Titanium 20. E Survey Titanium 21. AutoCAD 2017 22. E Survey Titanium 23. ETABS 2015 24. Survey Titanium and verification of results of- 25. Survey Titanium carrying UDL and point loads					3. Calibration of pressure
4. Head loss Bernoulli's equation 5. Calibration of Venturi flume 6. Rectangular notch 6. Rectangular notch 7. Determination of Darcy's friction factor for a straight pipe 8. Minor loses 9. Determination of Hydraulic coefficients of a vertical orifice and mouth piece 10. Determination of vane coefficients for vanes 11. Performance characteristics of a single stage centrical pump 12. Performance characteristics of a Pelton wheel 13. Performance characteristics of a Kaplan turbine 14. Performance characteristics of a Francis turbine 15. Demonstration of hydraulic jump 1. AutoCAD 2017 2. E Survey Titanium 2. E Survey Titanium 3. ETABS 2015 3. ETABS 2015 4. SAP 2000 4. SAP 2000 5. Cantilever beam carrying UDL and point loads 4. SAP 2000 5. Determination of Venturi meter and Orifice meter 7. Determination of Pydraulic jump 12. Performance characteristics of a Francis turbine 14. Performance characteristics of a Francis turbine 15. Demonstration of hydraulic jump 2. E Survey Titanium 3. ETABS 2015 4. SAP 2000 5. Cantilever beam carrying UDL and point loads 4. SAP 2000 5. Cantilever beam carrying UDL and point loads 5. Capture Titules and Survey				3. Reynold's Number	
4. Head loss 5. Calibration of Venturi flume 6. Calibration of Venturi muser and Orifice meter 7. Determination of Darcy's friction factor for a straight pipe 8. Minor loses 9. Determination of Hydraulic coefficients of a vertical orifice and mouth piece 10. Determination of vane coefficients for vanes 11. Performance characteristics of a single stage centrifugal pump 12. Performance characteristics of a Pelton wheel 13. Performance characteristics of a Kaplan turbine 14.Performance characteristics of a Francis turbine 15.Demonstration of hydraulic jump 1. AutoCAD 2017 Part-A [STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					<u> </u>
5. V-Notch 5. V-Notch 6. Rectangular notch 6. Rectangular notch 7. Determination of Venturi meter and Orifice meter 7. Determination of Darcy's friction factor for a straight pipe 8. Minor loses 9. Determination of Hydraulic coefficients of a vertical orifice and mouth piece 10. Determination of vane coefficients for vanes 11. Performance characteristics of a single stage centrifugal pump 12. Performance characteristics of a Pelton wheel 13. Performance characteristics of a Kaplan turbine 14.Performance characteristics of a Francis turbine 15.Demonstration of hydraulic jump 1. AutoCAD 2017 2. E Survey Titanium 2. E Survey Titanium 3. ETABS 2015 3. Simply supported beam carrying UDL and point loads 4. SAP 2000 4. SAP 2000 5. Calibration of Venturi meter and Orifice meter 7. Determination of Venturi meter and Orifice meter 7. Determination of vane coefficients of a vertical orification of a vertical orification of results of a Simply supported beam carrying UDL and point loads 4. SAP 2000 5. Calibration of Venturi meter and Orifice meter or ventural analysis and verification of results of a simply supported beam carrying UDL and point loads 4. SAP 2000 5. Cartiever beam carrying				4. Head loss	
5. V-Notch 6. Rectangular notch 6. Calibration of Venturi meter and Orifice meter 7. Determination of Darcy's friction factor for a straight pipe 8. Minor loses 9. Determination of Hydraulic coefficients of a vertical orifice and mouth piece 10. Determination of vane coefficients for vanes 11. Performance characteristics of a single stage centrifugal pump 12. Performance characteristics of a Pelton wheel 13. Performance characteristics of a Pelton wheel 14. Performance characteristics of a Francis turbine 14. Performance 15. Demonstration of hydraulic jump 1 - AutoCAD 2017 Part-A [STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					
6. Rectangular notch 7. Determination of Darcy's friction factor for a straight pipe 8. Minor loses 9. Determination of Hydraulic coefficients of a vertical orifice and mouth piece 10. Determination of vane coefficients for vanes 11. Performance characteristics of a single stage centrifugal pump 12. Performance characteristics of a Pelton wheel 13. Performance characteristics of a Kaplan turbine 14. Performance characteristics of a Francis turbine 15. Demonstration of hydraulic jump Part-A [STAAD.Pro software] Use of STAAD.Pro software] Use of STAAD.Pro software] 2. E Survey Titanium 3. ETABS 2015 a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying				5. V-Notch	
7. Determination of Darcy's friction factor for a straight pipe 8. Minor loses 9. Determination of Hydraulic coefficients of a vertical orifice and mouth piece 10. Determination of vane coefficients for vanes 11. Performance characteristics of a single stage centrifugal pump 12. Performance characteristics of a Pelton wheel 13. Performance characteristics of a Raplan turbine 14.Performance characteristics of a Francis turbine 14.Performance characteristics of a Francis turbine 15.Demonstration of hydraulic jump Part-A [STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					6. Calibration of Venturi
7. Determination of Darcy's friction factor for a straight pipe 8. Minor loses 9. Determination of Hydraulic coefficients of a verticant of the Hydraulic coefficients for vanes 11. Performance characteristics of a single stage centrifugal pump 12. Performance characteristics of a Pelton wheel 13. Performance characteristics of a Kaplan turbine 14.Performance characteristics of a Francis turbine 15.Demonstration of hydraulic jump Part-A [STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying				6. Rectangular notch	meter and Orifice meter
straight pipe 8. Minor loses 9. Determination of Hydraulic coefficients of a vertical orifice and mouth piece 10. Determination of vane coefficients for vanes 11. Performance characteristics of a single stage centrifugal pump 12. Performance characteristics of a Pelton wheel 13. Performance characteristics of a Kaplan turbine 14.Performance characteristics of a Francis turbine 15.Demonstration of hydraulic jump Part-A [STAAD.Pro software] Use of STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					7. Determination of
straight pipe 8. Minor loses 9. Determination of Hydraulic coefficients of a vertical orifice and mouth piece 10. Determination of vane coefficients for vanes 11. Performance characteristics of a single stage centrifugal pump 12. Performance characteristics of a Pelton wheel 13. Performance characteristics of a Kaplan turbine 14.Performance characteristics of a Francis turbine 15.Demonstration of hydraulic jump Part-A [STAAD.Pro software] Use of STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					Darcy's friction factor for a
9. Determination of Hydraulic coefficients of a vertical orifice and mouth piece 10. Determination of vane coefficients for vanes 11. Performance characteristics of a single stage centrifugal pump 12. Performance characteristics of a Pelton wheel 13. Performance characteristics of a Kaplan turbine 14. Performance characteristics of a Francis turbine 15. Demonstration of hydraulic jump 1. AutoCAD 2017 Part-A [STAAD.Pro software] Use of STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					
Hydraulic coefficients of a vertical orifice and mouth piece 10. Determination of vane coefficients for vanes 11. Performance characteristics of a single stage centrifugal pump 12. Performance characteristics of a Pelton wheel 13. Performance characteristics of a Kaplan turbine 14.Performance characteristics of a Francis turbine 15.Demonstration of hydraulic jump 1. AutoCAD 2017 Part-A [STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					8. Minor loses
vertical orifice and mouth piece 10. Determination of vane coefficients for vanes 11. Performance characteristics of a single stage centrifugal pump 12. Performance characteristics of a Pelton wheel 13. Performance characteristics of a Kaplan turbine 14.Performance characteristics of a Francis turbine 15.Demonstration of hydraulic jump Part-A [STAAD.Pro software] Use of STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					9. Determination of
vertical orifice and mouth piece 10. Determination of vane coefficients for vanes 11. Performance characteristics of a single stage centrifugal pump 12. Performance characteristics of a Pelton wheel 13. Performance characteristics of a Kaplan turbine 14.Performance characteristics of a Francis turbine 15.Demonstration of hydraulic jump Part-A [STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- 3. ETABS 2015 a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					Hydraulic coefficients of a
10. Determination of vane coefficients for vanes 11. Performance characteristics of a single stage centrifugal pump 12. Performance characteristics of a Pelton wheel 13. Performance characteristics of a Kaplan turbine 14.Performance characteristics of a Kaplan turbine 15.Demonstration of hydraulic jump 1 AutoCAD 2017 Part-A [STAAD.Pro software] Use of STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of-a) Simply supported beam carrying UDL and point loads 3. ETABS 2015 b) Cantilever beam carrying					
coefficients for vanes 11. Performance characteristics of a single stage centrifugal pump 12. Performance characteristics of a Pelton wheel 13. Performance characteristics of a Kaplan turbine 14.Performance characteristics of a Francis turbine 15.Demonstration of hydraulic jump Part-A [STAAD.Pro software] Use of STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					piece
11. Performance characteristics of a single stage centrifugal pump 12. Performance characteristics of a Pelton wheel 13. Performance characteristics of a Kaplan turbine 14.Performance characteristics of a Francis turbine 15.Demonstration of hydraulic jump Part-A [STAAD.Pro software] Use of STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					10. Determination of vane
characteristics of a single stage centrifugal pump 12. Performance characteristics of a Pelton wheel 13. Performance characteristics of a Kaplan turbine 14.Performance characteristics of a Francis turbine 15.Demonstration of hydraulic jump 1. AutoCAD 2017 Part-A [STAAD.Pro software] Use of STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					coefficients for vanes
stage centrifugal pump 12. Performance characteristics of a Pelton wheel 13. Performance characteristics of a Kaplan turbine 14.Performance characteristics of a Francis turbine 15.Demonstration of hydraulic jump Part-A [STAAD.Pro software] Use of STAAD.Pro software Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4 SAP 2000 b) Cantilever beam carrying					11. Performance
12. Performance characteristics of a Pelton wheel 13. Performance characteristics of a Kaplan turbine 14.Performance characteristics of a Francis turbine 15.Demonstration of hydraulic jump Part-A [STAAD.Pro software] Use of STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					characteristics of a single
characteristics of a Pelton wheel 13. Performance characteristics of a Kaplan turbine 14.Performance characteristics of a Francis turbine 15.Demonstration of hydraulic jump Part-A [STAAD.Pro software] Use of STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					
wheel 13. Performance characteristics of a Kaplan turbine 14.Performance characteristics of a Francis turbine 15.Demonstration of hydraulic jump 1. AutoCAD 2017 Part-A [STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					12. Performance
13. Performance characteristics of a Kaplan turbine 14.Performance characteristics of a Francis turbine 15.Demonstration of hydraulic jump 1. AutoCAD 2017 Part-A [STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					characteristics of a Pelton
characteristics of a Kaplan turbine 14.Performance characteristics of a Francis turbine 15.Demonstration of hydraulic jump Part-A [STAAD.Pro software] 2. E Survey Titanium 2. E Survey Titanium 3. ETABS 2015 a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					wheel
turbine 14.Performance characteristics of a Francis turbine 15.Demonstration of hydraulic jump 1. AutoCAD 2017 Part-A [STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 1 SAP 2000 b) Cantilever beam carrying					13. Performance
14.Performance characteristics of a Francis turbine 15.Demonstration of hydraulic jump 1. AutoCAD 2017 Part-A [STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 1. SAP 2000 Discrete the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads b) Cantilever beam carrying					characteristics of a Kaplan
characteristics of a Francis turbine 15.Demonstration of hydraulic jump 1. AutoCAD 2017 Part-A [STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					
turbine 15.Demonstration of hydraulic jump 1. AutoCAD 2017 Part-A [STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					
15.Demonstration of hydraulic jump 1. AutoCAD 2017 Part-A [STAAD.Pro software] 2. E Survey Titanium Software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					
hydraulic jump 1. AutoCAD 2017 Part-A [STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads b) Cantilever beam carrying					
1. AutoCAD 2017 Part-A [STAAD.Pro software] Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					
2. E Survey Titanium 2. E Survey Titanium 3. ETABS 2015 Software Use of STAAD.Pro software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads b) Cantilever beam carrying					ÿ 1
2. E Survey Titanium 2. E Survey Titanium 2. E Survey Titanium 3. ETABS 2015 3. ETABS 2015 4. SAP 2000 Software for the structural analysis and verification of results of-a) Simply supported beam carrying UDL and point loads b) Cantilever beam carrying				1. AutoCAD 2017	_
2. E Survey Titanium software for the structural analysis and verification of results of- a) Simply supported beam carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying					-
3. ETABS 2015 carrying UDL and point loads 4. SAP 2000 b) Cantilever beam carrying				2. E Survey Titanium	software for the structural analysis and verification of
				3. ETABS 2015	a) Simply supported beam carrying UDL and point loads
				4. SAP 2000	b) Cantilever beam carrying UDL and point loads
	7	HG			,
Laboratory Software & MX Road carrying UDL and point	'		Laboratory		carrying UDL and point
V8i loads				V8i	
					software for the Modelling,
					Analysis and Design of RC
Educational Solution structures				Educational Solution	
sheets]					sheets]
software for the Modelling,					Use of STAAD. Pro software for the Modelling, Analysis and Design of Steel
					structures

1	I	I		Design using MS Engel
				[Design using MS-Excel
				sheets]
				Part-B [MS-Excel
				software]- DESIGN
				STUDIO
				Use of MS-Excel sheets for
				the design of slabs
				Use of MS-Excel sheets for
				the design of beams
				Use of MS-Excel sheets for
				the design of columns and
				footings
				Use of MS-Excel sheets for
				the design of truss elements
			1) Loading Frame	1. Matrix Methods of
			1) Loading I fame	Structural Analysis
				1. Introduction to software;
				nodes and elements; local
			2) Dynamic Loading	and global coordinate
			frame	system for frame elements;
				Generation of equivalent
				joint loads from software.
			3) Horizontal Shake	2. Modelling of structures
			table	using software
				3. Analysis of continuous
			4) Setups to	beams; Analysis of rigid
			demonstrate vibration of	jointed plane frames;
			beams and vibration	Analysis of three-
			absorption	dimensional building
				frames.
			5) C Frame	
				4. Analysis of pin-jointed
				plane frames; Solution of
				simultaneous equations.
8	PG	Structural Engineering		
0	ru	Laboratory		2. Structural Dynamics
				1. Response of Single-
				degree-of-freedom systems
				and solve using MATLAB
				program to find the natural
				frequency.
				2. Computation of natural
				frequency of multi-degree-
				of-freedom systems using
				MATLAB.
				3. Dynamics of a three
				storied building frame
				model subjected to
				harmonic base excitation. 2.
				Dynamics of a three/four
				storied building model with
				and without an open ground
				floor
				4. Dynamics of one- and
				two-span beams

	ı	3. FEM with
		Application
		1. Modelling of one
		dimensional, two
		dimensional, three
		dimensional structural
		elements [Geometry,
		boundary condition,
		meshing]
		2. Modelling of one
		dimensional, two
		dimensional, three
		dimensional structural
		elements [Geometry,
		boundary condition,
		meshing].
		3. Static analysis of beams
		with different boundary
		conditions and loading.
		4. Static analysis of
		frames/pin jointed truss
		with different boundary
		conditions and loading.
		5. Static analysis and
		modelling of shell structures
		[Silos/ Chimneys/cooling
		towers].
		6. Modal analysis of beam
		and shell structure and
		comparison of natural
		frequencies and
		mode shapes with
		theoretical calculations.

Department of Computer Science Engineering

SL. No.	UG/PG	Name of the Laboratory	List of Major Equipments/Facilities	List of Experiments setup in each lab
1		7		40 HP i5 Systems, 8GB RAM, 1 TB HDD, Laser Printer, LCD Projector, 15 KVA UPS
2		8		60 HP i5 Systems, 8GB RAM, 1 TB HDD, Laser Printer, LCD Projector, Samsung Interactive Pannel, 20 KVA UPS

Department of Electrical & Electronics Engineering

SL. No.	UG/PG	Name of the Laboratory	List of Major Equipments/Facilities	List of Experiments setup in each lab
1		ANALOG ELECTRONICS LAB	Analog Oscilloscopes, Function Generators, DC Regulated Power Supplies, Dimmerstarts, Bread Boards, Digital Multimeters, Portable meters, Electronic Components, etc.	1. Design & Testing of clipper using diodes 2 Design & TESTING Clamper circuits 3. Design of DC Voltage Regulator 4. Determination of Bipolar Junction Transistor 5. Design & Testing of RC Coupled single stage BJT Amplifier 6.Design & Testing of BJT Darlington 7. Design & Testing of R-C Phase shift oscillator 8. Demonstration of characteristics of JFET
2	UG	DIGITAL ELECTRONICS LAB	Logic Trainer Experiment Boards, Wide range of Discrete digital Ics, & Electronic Component, Portable Measuring meters, Analog Oscilloscopes, etc.	1. Logic gates/universal gates 2. Realization of parallel Adder/Subtractors 3.Realization of Binary to gray code conversion & vice versa 4.Multiplexer & Demultiplexer 5.Realization of one.two bit comparator 6.Use of decoder chip 7.Realization of 3bit counters 8.Shift left 9.Ring counter design 10.Open end experiment
3		MICROPROCONTROLLER & Emb System Lab conducting in cc lab	Microcontroller Trainer Kits with Power Supplies, Different types of Interfacing units, Eprom Eraser, Programmer, Oscilloscopes	1.Data Transfer- Block move, Exchange, Sorting 2. Arithmetic Instructions 3. Counters, Boolean & Logical Instructions 4.Using Cortex M-3, LPC 5.Controlling LED Buzzer 6.use ARM CORTEX m-3 7.Seven Segment LED Display 8.Arm cortex M-3 32BIT 9.LCD Display

		Oscilloscope, Power SCRs, Power Diodes, Power IGBT, MOSFETs, Inductors, Resistive	1.Static Characteristics of scr 2.static characteristics of MOSFET/IGBT 3.SCR Turn on circuits
4	POWER ELECTRONICS	Loads, Transformers, Triggering circuits, Motors, Portable measuring meters, Isolation transformers,	4. single phase fully controlled semi converter 5. A.C. Voltage controller 6. speed controlled of a separately excited dc motor. 7 MOSFET/IGBT BASED SINGLE PHASE FULL BRIDGE INVERTER
5	MACHINES LAB	Rectifier Unit, Motor Generator Sets, Alternator, Three phase & Single Phase Induction Motors, Transformers, Portable measuring meters,	1Load test on DC Shunt motor 2. Speed control of dc motor 3. Estimate the effincy & Regulation of transformer 4. Estimate the effincy of 3-phase induction motor 5. predetermination of performance of induction moror 6. formance of synchronous generator 7. V & Inverted V Curve 8. Voltage Regulation of alternator
6	ELEC.MEASUREMENTS & CIRCUIT SIMULATION LAB	Different types of DC AC Bridges, Standard Cells, Potentiometers, Galvanometers, Current Transformers & Potential Transformers, Portable measuring meters,	1.Measurement of Low Resistance 2. Measurement of capacitance 3. Determination of % 4. Measurement of power factor 5.To design & Simulate & op-amp 6. To Design & Simulate R- C Phase 7.To design & simulate diode 8. To design & simulate Inverting & non inverting
7	Power System Simulation & RELAYS & HIGH VOLTAGE LAB	Different types of Electromechanical, Static, Microprocessor Based, and Numerical Relays, Relay Test kits, Portable measuring meters,	Y-Bus Formation by inspection method 2. Load flow analysis for a 4-bus 3. Optimal generator scheduling for thermal power 4.Short circuit analysis for power system 5.Measurement of HVAC & HVDC 6.IDMT Characteristics of over voltage 7.Operating characteristics of microprocessor 8.backup protection of over current relay

8	RESEARCH CENTER	Computers with LCD Monitors, Laser Printer, Mi-Power Power System Simulation software (05 user Licie		
---	-----------------	--	--	--

Department of Mechanical Engineering

		List of Evneriments	List of Major
UG/PG	Name of the Laboratory	_	Equipments/Facilities
			1. Welding Machine Single
		1. Bench Vice (30)	phase
		2. Welding Machine 3	2. Welding Machine 2
		phase (3)	phase
		3. Welding Machine 2	3. Welding Machine 3
	WORKSHOR	phase	phase
		4. Welding Machine	
		Single phase	
		` '	
		8. Pipe Vice (8)	
		1 0 11 1 0 0 1	
			1 Major Loss Equipment
			1. Major Loss Equipment
		_	2. Minor Loss Equipment
		*	2. Willor Loss Equipment
	FLUID MECHANICS LAB		3. Triangular Notch &
HC			Rectangular Notch
UG			Treetangular 1 (oten
		(V-Notch & R-Notch)	
		5. Major Loss (Losses in	
		pipe friction)	
		6. Minor Loss (Losses in	
		pipe fittings)	
		1. Wear Testing	1. Torsion Testing Machine
		Apparatus	(Digital)
			2. Computerized Universal
			Testing Machine
			2 Estima Tastina Mashis
			3. Fatigue Testing Machine
	MECHANICS OF		4. Vickers Hardness Testing Machine
			Wacinne
	MATERIALS LAD		5. Impact testing machine
			(Charpy/Izod)
			(Simpji 1200)
		detector	
		8. Dye Penetrometer	
	UG/PG	WORKSHOP MANUFACTURING PRACTICES LAB	WORKSHOP MANUFACTURING PRACTICES LAB FLUID MECHANICS LAB FLUID Machine Sheate 4. Welding Machine 5. Vernier Height gauge 5. Vernier Height gauge 5. Vernier Height gauge 6. Verloer Height gauge 6. Verloer Height gauge 7. Magnetic Crack detector FLUID Machine Sheate FLUID Machine Sheate FLUID Machine Sheate 1. Calibration of Venturi meter and Orifice Meter 2. Metacentric Height 6. Verloer Are well and Brinell hardness Tester 3. Fatigue Testing Machine 6. Vickers Hardness Testing Machine 7. Magnetic crack detector

			9. Digital Ultrasonic	
			crack detector	
			10. Impact testing machine (Charpy/Izod)	
			11. Fabrication &	
			assembly of bending	
			movement testing	
			machine	
			1. Permeability Meter	1. Single mold Cutting
				2. Single & Split Pieace
			2. Furnace (Coal fired)	pattern Modelling
			3. Sieve shaker	3. Double Mold Cutting
				4. Welding and comparison
			4. Permeability Tester	of properties of material
			5. Rapid Moisture Meter	
			6. Core Drawing oven	
			7. Sand Muller	
			8. Sand heater	
			9. Standard Rammer	
			10. Sieve Shaker	
			Motorized	
		METAL CASTING AND JOINING LAB	11. Sieve Brass	
			12. Hardness tester	
			13. Digital Weighing	
			Balance	
			14. Sand Strength	
			Testing Machine	
			15. Calibration Kit	
			16. Clay Washer	
			17. Weighing Machine	
			18. Induction Furnace	
			19. Single mold Cutting	
			20. Single & Split Pieace	
			pattern Modeling	
			21. Double Mold Cutting	
			22. Welding and	
			comparison of properties	
-			of material	1 Lothe Marthur (01
			1. Lathe Machine(21nos)	1. Lathe Machines (21 nos)
			2. Drilling machine(1nos)	2 Drilling machine(1nos)
			3. Milling Machine	2. Drilling machine(1nos)
			(5nos)	3. Milling Machine(5nos)
			4. portable Grinder(1nos)	4. portable Grinder(1nos)
			5. Shaping	portuoto orinidor(inos)
		MA CHIPTE CITES THE	Machine(3nos)	5. Shaping Machine(3nos)
4		MACHINE SHOP LAB	6. Hydraulic Training	1 0 ()
			system	6. CNC Machine
			7. Lathe Tool	
			Dynamometer	7. Power hacksaw machine
			8. Polishing	
			Machine(1nos)	
			9. Power hacksaw	
1			machine	

		10. EDM Machine 11.Hand level shearing machine 12. Milling dynamometer (2nos) 13.Wooden Lathe 14.Bench Grinding 15.CNC Machine 16.Slotting Machine 1. Optical Microscope with Image Analyzer (1) 2.Macroscope (2)	1. Optical Microscope with Image Analyzer (1) 2.Macroscope (2)
5	METALLURGY LAB	3.Muffle Furnace (2) 4.Cloth Polishing Machine (Single disc) 5.Jominy End Quench Test setup (JEQT)	3.Muffle Furnace (2)
6	MECHANICAL MEASUREMENTS AND METROLOGY LAB	1. Pressure measurement setup 2. Displacement measurement linear variable differential transformer 3. Temperature measurement setup. 4. Measuring young's modulus strain measurement in cantilever beam 5. force measurement 6. Vernier caliper 7. Micrometer 8. Dial indicator 9.Gear tooth Vernier caliper 10. Gear measurement 11.Thread measurement 12. Angel measurement 13. Surface roughness measurement	Angel measurement Thread measurement Gear measurement Pressure measurement setup
7	DYNAMICS OF MACHINES LAB	1. Porter governor 2. Hartnell Governor 3. Gyroscope (2) 4. Balancing of Masses Static & Dynamic 5. Vibration Set up 1 6. Vibration Set up 2 7. Adams Software	Balancing of Masses Static & Dynamic Hartnell Governor Adams Software Porter governor Gyroscope
8	APPLED THRMODYNAMICS LAB	1. 4 Stroke Diesel Engine (with bulb loading arrangement)	1. 4 Stroke Diesel Engine (with bulb loading arrangement)

1	1	1	1
		2. Variable Compression Engine Test Rig With Eddy Current Loading Arrangement (V.C.R. Engine) 3. 4 stroke 4 Cylinder Petrol Engine with Eddy Current Dynamometer (MORSE TEST) 4. 4 Cylinder 4 Stroke Water Cooled Diesel Engine (hydraulic	2. Variable Compression Engine Test Rig With Eddy Current Loading Arrangement (V.C.R. Engine) 3. 4 stroke 4 Cylinder Petrol Engine with Eddy Current Dynamometer (MORSE TEST) 4. 4 Cylinder 4 Stroke Water Cooled Diesel
		loading) 5. Twin cylinder 4 stroke diesel engine with resistance loading	Engine (hydraulic loading) 5. Twin cylinder 4 stroke diesel engine with resistance loading
		6. Single cylinder 4 stroke water cooled diesel engine with mechanical loading arrangement.	6. Single cylinder 4 stroke water cooled diesel engine with mechanical loading arrangement.
		7. Refrigeration tutor 8. Air conditioning tutor 9.Red Wood viscometer (2)	
		10. Saybolt Viscometer11. Planimeter (6)12. Close cup flash point	
		apparatus 13. Open cup flash and fire point apparatus 14. Tar viscometer	
		15. Junkers Calorimeter	
		Emissivity Apparatus Apparatus Apparatus	Pin Fin Apparatus Heat transfer in forced convection
		3. Pin Fin Apparatus	3. Transient Conduction apparatus (unsteady state)
		4. Transfer of heat through Lagged pipe 5. Refrigeration Tutor 6. Thermal Conductivity	4. Heat Exchangers 5.Rectangular fin apparatus
9	HEAT TRANSFER LAB	of insulating Powder 7. Thermal conductivity of metal bar	
		8. Heat transfer in forced convection 9. Stefan Boltzmann	
		Apparatus 10. Composite Wall apparatus	
		11. Transient Conduction apparatus (unsteady state)	

			12. Heat transfer from pin fin	
			13. Fin metal attachment with pin fin apparatus 14. Heat Exchangers 15.Rectangular fin	
			apparatus	
			ANSYS Software	1.ANSYS Software
10		COMPUTER AIDED MODELING AND ANALYSIS LAB	60HP i5 System, 8GB RAM, 1TB HDD,LASER PRINTER,LCD PROJECTOR,20KVA UPS	
			1. Master Cam Software.	1. Master Cam Software.
			2. Fanuc Software	2.Fanuc Software
11		CIM AND AUTOMATION LAB	3. 40 HP i5 Systems, 8GB RAM, 1 TB HDD, Laser Printer, LCD Projector, 15 KVA UPS	
			1. Pelton Turbine	1. Pelton Turbine
		FLUID MACHINERY LAB	2. Francis Turbine	2. Francis Turbine
			3. Kaplan Turbine	3. Kaplan Turbine
			4. 2 Stage centrifugal	
12			pump	4. Air Compressor
12			5. Single stage	
			reciprocating pump	
			6. Air blower test	
			7. Air Compressor	
			8. Impact type jet	
			1. ANSYS R17	1. ANSYS R17
1	PG	Vibration simulation Lab	2. MATLAB	2. MATLAB
			1. MSC ADAMS	2. WIATLAD
2	PG	Dynamics and Composite Materials Lab	software(49+1=50 licenses)	1. MSC ADAMS
			2. Hand layup	
2	DC	Einite Element Anal I 1	1. ANSYS R17	1. ANSYS R17
3	PG	Finite Element Analysis Lab	2. MATLAB	2. MATLAB
		Tribology and Multibody	1. Journal bearing set up	1. Journal bearing set up
4	PG	dynamics Lab	2. MSC ADAMS software	2. MSC ADAMS software
5	PG	Industrial Engineering Lab	Camera for motion study	Camera for motion study
			Tread mill	Tread mill
6	PG	Software Application Lab	WINQSB	WINQSB
7	PG	Statistics Lab	MINITAB	MINITAB
8	PG	Ergonomics Lab	Ergometer	Ergometer

Department of Physics

SL. No.	UG/PG	Name of the Laboratory	List of Major Equipments/Facilities	List of Experiments setup in each lab
1	UG	APPLIED PHYSICS LAB	B-H, Curve Tracer, Travelling Microscopes, Fermil Energy Kit, Four-Probe Setup, Function Generator, .Photo diode characteristics kit, Ultrasonic Interferometer, Numerical Aperature Setup, Optical bench, Torsional pendulum set up.	Newton's rings, LCR resonance, Photodiode characteristics, Fermi energy of a metal, Numerical aperature, Diffraction grating, Torsional pendulum, Ultrasonic interferometer
2	PG	NIL	NIL	NIL

Department of Chemistry

SL. No.	UG/PG	Name of the Laboratory	List of Major Equipments/Facilities	List of Experiments setup in each lab
			1. Photocatalytic reactor	Instrumental Experiments 1. Potentiometric estimation of FAS using standard
			2. UV-Visible	K2Cr2O7 solution.
			Spectrophometer	2. Colorimetric estimation
				of Copper.
			3. Plating Thickness	3. Conductometric
			Tester	estimation of acid mixture using standard NaOH
			4. Coating Micron Guage	solution. 4. Determination of
			5. Salt Spray Test	molecular weight of a
			Machine	polymer by using
				Ostawald's Viscometer.
			6. Hull Cell Rectifier	5. Flame photometric
1	UG	Applied Chemistry Lab		estimation of Sodium and
1	UU	Applied Chemistry Lao	7. Ultrasonic	potassium.
			Homogenizer (Probe	6. Estimation of critical
			Sonicator)	micelle concentration (cmc)
			0.01:.101.1	of surfactant by
			8. Orbital Shaker	conductometric measurements.
			9. pH/ISE meter	measarements.
			r	Volumetric Experiments
			10. Rota evaporator	1. Determination of
			_	hardness of water before
			11. Vacuum pump	and after Ion exchange
				process.
			12. Heating mantles	2. Determination of chloride
				content and total alkalinity
			13. Magnetic stirrers	of water.
			with hot plate	3. Determination of

1 1	I	I	l
		14. UV cabinet	percentage of Copper in
		14. U v cabinet	Brass using standard Na2S2O3 solution.
		15 Water both in substan	
		15. Water bath incubator	4. Determination of
		shaker	percentage of Iron in the
		16 61: 1	given steel sample.
		16. Clinical centrifuge	5. Study of adsorption of oxalic / acetic acid on
		17. Muffle furnace	activated charcoal to prove
		18. Portable digital pH	the validity of Freundlich
		meter	adsorption isotherm.
		19. Portable digital	
		Conductivity meter	
		20. Portable digital	
		Turbidity meter	
		21. Portable digital TDS	
		meter	
		22. Portable digital D.O.	
		meter	
		23. Portable Digital	
		colorimeters	
		24. Analytical weighing	
		balance	
		25. Spin coater	
		26. Sonicator	
		27. Ultracentrifuge	
		28. Autoclave	
		29. Flame photometer	
		30. Water distillation	
		unit	

Department of Architecture

SL. No.	UG/PG	Name of the Laboratory	List of Major Equipment/Facilities	List of Experiments setup in each lab
1	UG	Climatology Lab	Testo 540 - Light Meter Testo 511 - Pressure Meter Calibration Certificate - Pressure Testo 410-1 Air Velocity And Temp. Meas. Instrument Calibration Certificate - Velocity Testo 625 Thermo- Hygrometer Calibration Certificate - For Testo 625 Humidity Hygrometers Testo 925 - Thermometer Robust Air Probe, T/C Type K Calibration Certificate - Temperature Meters	NA

			Surface Probe Type K
			Calibration Certificate -
			Temperature Meters
			Testo 175-T3
			Temperature Data logger
			Magnetic Probe - 10n
			Calibration Certificate -
			Temperature Meters
			Calibration Certificate -
			Velocity
			Testo 625 Thermo-
			Hygrometer
			Calibration Certificate -
			For Testo 625 Humidity
			Hygrometers
			Testo 925 -
			Thermometer
			Robust Air Probe, T/C
			Type K
			Calibration Certificate -
			Temperature Meters
			Surface Probe Type K
			Calibration Certificate -
			Temperature Meters
			Testo 175-T3
			Temperature Data logger
			Magnetic Probe - 10n
			Calibration Certificate -
			Temperature Meters
			Measuring tape
			Metallic tape
			Ranging road 2 meters
		Survey Lab	Optic square
2	UG	Survey Euc	Plain table
			Auto level
			Aluminium staves
			Theodolite
-			Cross Staff
	UG	Model Making Lah	Cutting Mat
	UG	Model Making Lab	Cutting stool box Cutter
			Auto Cad
	UG	Computer Lab	Lumion
		Computer Lau	Photoshop
			THOROUTOP

Department of Master of Computer Applications

SL No		Name of the Laboratory	List of Major Equipment/Facilities	List of Experiments setup in each lab
1	PG	4 (VLSI DESIGN LAB.)	48 HP i5 Systems, 8GB RAM, 1 TB HDD, Laser Printer, LCD Projector, 15 KVA UPS	Design & Analysis of Algorithms, Computer Networks and communication # Programming with .NET, Mobile Application

		Development, Machine Learning
5 (NETOWORK APPLICATIONS LAB.)	31 (27 HP + 4 Lenovo) i3 Systems, 4GB RAM, 1 TB HDD, Laser Printer, Short Throw Epson LCD Projector, 20 KVA UPS Shared	Python Programming, Big Data Paradigm,DBMS,Object Oriented Software Engineering # programming

Department of ECE

SL. No.	UG/PG	Name of the Laboratory	List of Major Equipment's/Facilities	List of Experiments setup in each lab
	UG	COMMUNICATION SYSTEM LAB. (Dr. Sagar S Santaji & Prof. V K Aithal)	Spectrum Cum Network Analyzer Adv. Communication Kits, Microstrip Communication setup, Data Communication Kits TDM, AM, FM, FSK, QPSK SDR KITS	 Developing and Testing Building Blocks of Communication Systems PSD of line codes Unipolar, Polar and Bipolar Demonstration of line codes Transmission and reception of data using PSK modulation using RF link Probability of error and signal space diagram of BPSK, BFSK DPSK Transmission & reception with Constellation Plot Demonstration of QPSK Generation of PN Sequence (SW) Determine entropy of communication channel and channel capacity Linear and Cyclic code generation Syndrome calculation of LBC, Cyclic codes
	UG PG	DSP LAB./MICROCONTROLLER LAB. Prof. V K AIthal & Prof. G S Sudi	DSK TMS 320C6748, DSP Trainer Kits, MATLAB 2024b, ALS SDA-31, ALS I/F Kits, Interfacing Boards	 UG DSP LAB: Linear and circular convolution using frequency domain approach. FIR Filter (LPF and HPF) realization using DF structures IIR Filters (Butterworth and Chebyshev – I) for LPF and HPF realization usinf DF2 transpose structure. PG MDSP LAB: Design and realize a digital crossover network using IIR Butterworth filters for music signal. Design and synthesize a 3-band digital equalizer

			by using FIR filters using windows. 3. Simulation of up-sampler and study of its frequency domain implication. 4. Simulation of down- sampler and study of its frequency domain implication. 5. Use the up-sampler and down-sampler thus designed in a multirate system containing a down-sampler filter and up-sampler to simulate a real world multirate system. 6. Obtain sub-band signals and reconstruct the original signal back from the sub-band signals, by designing QMF Filter bank.
UG	LOGIC DESIGN LAB. Dr. Suresh C Kuri & Dr. P V Gopikrishna	Oscilloscope, Aplab Make FG & Aplab Make PSU, Adroit FG DC Power supply, function DMM Generators DSO 15 nos.	1. Truth table verification of gates and verification of universality of NAND and NOR gates 2. Simplification and realization of Boolean function using universal gates 3. Design and verification of half and full adders, and half and full subtractors using gates 4. Design and verification of 4-bit parallel adder/subtractor using IC 7483 and gates 5. Use of decoder chip (IC 7447) to drive a seven segment display 6. Study and verification of priority encoder ICs (ICs 74147 & 74148) 7. Boolean function implementation using Decoder 8. Boolean function implementation using Multiplexer 9. Design and verification of 1-bit and 2-bit magnitude comparators using gates and study of 4-bit magnitude comparator IC

T	1		1
			(IC 7485) 10. Study of flip-flops using IC 7474 and IC 7476 11. Study of shift register (IC 7495) 2. Design and verification of ring and Johnson counters using IC 7495 13. Study of counter ICs (IC 7490, IC 74192, IC 74193) 14. Design and verification of mod-n counters
			15. Design and verification of sequence generator using IC 7476 and gates 1. Static characteristics of
UG	POWER ELECTRONICS LAB. Prof. S P Deshpande	Motwane DMM, ET Thysets, Fluk 3 Phase Power Meter, Texas DMM, Aplab Make PSU,SCR Module, Isolation Module	 Static characteristics of MOSFET Static characteristics of SCR SCR Turn-on using UJT Firing Circuit SCR Turn-off using LC Circuit Controlled HWR and FWR using RC Triggering Circuit Voltage Commutated Chopper Speed Control of Universal Motor
UG PG	VLSI/VHDL LAB. Dr. P U Kalkundri & Prof. S M Keshkamat	PCs: Intel (R) core (TM) 2 Pro CPU, E7500@2.93GHZ, 2.99 GB of Ram, 300 GB HDD, 17" Monitor, MS Win, CADENCE LICENSE for 40 users	 Design, analyze and validate the Common Source Amplifier for a specified current drive. Design, analyze and validate the Common Drain Amplifier for a specified current drive. Design, analyze and validate the Differential Amplifier for a specified current drive. Design, analysis and validation of the Hi/Lo/Un-skew CMOS Inverter. Design, analysis and validation of 2 input CMOS NAND gate for the specified Rise/Fall time. Design, analysis and validation of 2 input CMOS NOR gate for the specified Rise/Fall time. Design, analysis and validation of 2 input CMOS NOR gate for the specified Rise/Fall time. Design, analysis and validation of 2 input

 	_		
			CMOS AND-OR-
			INVERT (AOI) based
			XOR gate.
			8. Design, analysis and validation of CMOS
			NAND Based S – R
			Latch.
			9. Design, analysis and
			validation of D-latch
			using Transmission gate.
			10. Design, analysis and
			validation of Dynamic
			CMOS Pre-Charge
			Evaluate logic circuit for
			the specified Boolean
			functions.
			11. Design, analysis and
			validation of CMOS Filp-
			Flop circuit for the
			specified clock input.
			12. Design, analysis and validation of CMOS
			RAM cell and evaluate
			the performance.
			1) Controlling the
			temperature of a thermal
			process by using ON-OFF
			Controller i) without
			Perturbation and ii) with
			perturbation
			perturbation
			2) Controlling the
			temperature of a thermal
			process by using PID
			Controller i) without
			Perturbation and ii) with
		Temperature PID	perturbation
			perturbation
		Controller Kits Op amp	3) Temperature
UG	SENSORS LAB	Application trainer kits	measurement of water
UG	Dr. Saurav Mitra	Phase Locked Loop LL	heating process by RTD,
		Trainer Kits Digital	thermocouple and thermistor
		Mustimeters	and plotting the response
			graph. Determination of
			time constant from the
			response graph.
			k
			4) Measurement of linear
			and angular displacement by
			sing LVDT, potentiometric
			sensor and digital encoder
			5) Measurement of strain
			and stress by strain gauge
			and load cell
			and was cen

		6) Measurement of water
		level and water flow in lab
		environment

Institution's Innovation Council (IIC)

IICID: IC201810862 Star Rating: 3.5

Journey of IIC established at the Institute

Our college has established the Institution's Innovation Council (IIC) for promoting different activities related to innovation, IPR, start up and entrepreneurships. Faculties and students are the members of IIC. The IIC cell conducts quarterly meetings in every quarter to plan the quarterly activities and review quarterly conducted activities. Due to these activities, students get a chance to participate in various innovation related initiatives and competitions organized by MHRD. Students actively interact with renowned businessmen and academicians. They get opportunities to nurture their ideas. GIT's IIC helps students to experiment with the latest technologies to get some prototype for building their confidence. Overall students get an extremely healthy environment right from ideation to start-ups.

Major focus area of IIC is to create a vibrant local innovation ecosystem, Start-up/entrepreneurship supporting Mechanism, prepare institute for Atal Ranking of Institutions on Innovation Achievements Framework (ARIIA), Establish Function Ecosystem for Scouting Ideas and Pre-incubation of Ideas and develop better Cognitive Ability amongst Technology Students.

Mission:

• To establish an ecosystem to nurture the culture of Innovation amongst the Students and Faculty.

Vision: (As laid down by the MHRD, Govt. of India)

- To conduct various innovation and entrepreneurship-related activities in time bound fashion.
- Identify and reward innovations and share success stories.
- Organize periodic workshops/ seminars/ interactions with entrepreneurs, investors, professionals and create a mentor pool for student innovators.
- Network with peers and national entrepreneurship development organizations.
- Create an Institution's Innovation portal to highlight innovative projects carried out by institution's faculty and students.
- Organize Hackathons, idea competition, mini challenges etc. with the involvement of industries.

Journey of IIC established at the Institute

Our college has established the Institution's Innovation Council (IIC) for promoting different activities related to innovation, IPR, start up and entrepreneurships. Faculties and students are the members of IIC. The IIC cell conducts quarterly meetings in every quarter to plan the quarterly activities and review quarterly conducted activities. Due to these activities, students get a chance to participate in various innovation related initiatives and competitions organized by MHRD. Students actively interact with renowned businessmen and academicians. They get opportunities to nurture their ideas. GIT's IIC

helps students to experiment with the latest technologies to get some prototype for building their confidence. Overall students get an extremely healthy environment right from ideation to start-ups. Major focus area of IIC is to create a vibrant local innovation ecosystem, Start-up/ entrepreneurship supporting Mechanism, prepare institute for Atal Ranking of Institutions on Innovation Achievements Framework (ARIIA), Establish Function Ecosystem for Scouting Ideas and Pre-incubation of Ideas and develop better Cognitive Ability amongst Technology Students.

Structure of IIC:

Sr.No	Name of the Member	Key Role/Position assigned in IIC 6.0
1	Dr. Kiran K. Tangod	President
2	Dr. Raviraj M. Kulkarni	Vice President
3	Dr. Manjula Ramannavar	Convener and IA
4	Prof. Vishweshkumar Aithal	ARIIA Coordinator and IA
5	Dr. Padma Dandannavar	Innovation Activity Coordinator and IA
6	Prof. Pankaja S. Kadalagi	Social Media Coordinator
7	Dr. Sujata Bhavikatti	IPR activity coordinator
8	Prof. Kavita D.Hanabaratti	Internship activity coordinator
9	Prof. Mahesh Kori	YUKTI coordinator and IA
10	Dr. Ramesh Bantwal	Member
11	Prof. Neelakanth Karekar	Member
12	Prof. Vinod R Kokitkar	Member
13	Dr Sanjay K Deshpande	ATL Coordinator
14	Dr. Vanishri Hundekar	Startup Activity Coordinator and IA
15	Dr. Manjunath Managuli	NIRF Coordinator
16	Prof. Vaidehi	Member and IA
17	Prof. Pavanika Patil	Member
18	Prof. Shrivatsa D. Perur	Mentor Mentee Scheme Coordinator and IA
19	Prof. Priyanka Joshi	Member
20	Prof. Shashank C. Bangi	Impact Lecture Scheme Coordinator and IA
21	Prof. Prasad Kulkarni	Member
22	Prof. Purshotham Katti	Member
23	Prof. Sudha Ayatti	Member
24	Prof. Arati Shahapurkar	Member

Social Media Cell

KLS GIT hosts a publicity cell, wherein the cell is led by Prof. Ravi Kalkundrikar and supported by Dr. Ameet Chate and Prof. Akhil Deshpande at the institute level.

KLS GIT has established social media connections through YouTube, Facebook, LinkedIn, Twitter, and Instagram at the institute level with more than 20K subscribers.

All the major achievements of the institute are posted on these handles. The publicity cell is also responsible for managing the student cell and chapter handles, Department's social media handles, and also the activity cells at the institute level by monitoring these social media handles and providing technical support.

The institute social media handles links;

Facebook- https://www.facebook.com/KLSGITBelagavi

Instagram- https://www.instagram.com/klsgitbelagavi/

Twitter- https://twitter.com/klsgitbelagavi

LinkedIn- https://www.linkedin.com/company/klsgitbelagavi

YouTube - https://www.youtube.com/c/klsgitlecturevideos

• Compliance of the National Academic Depository (NAD), applicable to PGCM/PGDM Institutions and University Departments

KARNATAK LAW SOCIETY'S GOGTE INSTITUTE OF TECHNOLOGY

"Jnana Ganga", Udyambag, Belagavi – 590 008, Karnataka, India

Approved by All India Council for Technical Education (AICTE), New Delhi and UGC section 2(f) & 12(B). Permanently Affiliated and Autonomous Institution under Visvesvaraya Technological University, Belagavi. "Accredited by National Board of Accreditation (NBA), New Delhi. Accredited by National Assessment and Accreditation Council (NAAC) with A+ Grade

Tel: +91-831-2498500, 2405506, Fax.:+91-831-2441909, E-mail: principal@git.edu, Visit us @ www.git.edu

UNDERTAKING

This is to certify that KLS Gogte Institute of Technology is an autonomous Institution under Visvesvaraya Technological University, Belagavi. The Institute in the process of submitting application to NAD.

Programmes accredited by NBA: BE in E&C Engg, BE in Mech Engg. | M.Tech. in Structural Engg., M.Tech. in Machine Design and MCA

• List of facilities available

			Games an	d Sports Facilities	3	
Sl. No	Location	Activity Type (Indoor/ Outdoor)	Facility Name	Year of Establishment	Area	User Rate/ Day/Week
1	KLS GIT, Belagavi	Indoor	Table Tennis Hall	2002	32' x 30'	300/week
2	KLS GIT, Belagavi	Indoor	Yoga Hall	2008	47' x 16'	200/year
3	KLS GIT, Belagavi	Outdoor	Badminton	2014	70' x 45'	100/week
4	KLS GIT, Belagavi	Indoor	Snooker Table hall	2013	30' x 30'	50/week
5	KLS GIT, Belagavi	Indoor	Multi Gym	2013	40' x 20' (including Toilet and changing room)	100/week
6	KLS GIT, Belagavi	Outdoor	Basketball ground	2010	106' x 63'(Excluding Sitting arrangement)	200/week
7	KLS GIT, Belagavi	Outdoor	Football	2002	100 mts x 60mts	250/week
8	KLS GIT, Belagavi	Outdoor	Cricket	2002	120 mts x 90 mts	300/week
9	KLS GIT, Belagavi	Outdoor	Hockey	2004	91 mts x 60 mts	100/week
10	KLS GIT, Belagavi	Outdoor	Handball	2008	40 mts x 20 mts	200/year
11	KLS GIT, Belagavi	Outdoor	Throwball	2008	18.30 mts x 12.20 mts	100/year
12	KLS GIT, Belagavi	Outdoor	Volleyball	2004	18 mts x 9 mts	50/week
13	KLS GIT, Belagavi	Outdoor	Kho Kho	2006	27 mts x 16 mts	100/year
14	KLS GIT, Belagavi	Outdoor	Kabaddi	2004	12.5 mts x 10 mts	200/year
15	KLS GIT, Belagavi	Outdoor	Netball	2008	30.5 mts x 15.25 mts	50/year
16	KLS GIT, Belagavi	Outdoor	Athletics	2000	200 mts track	50/week
17	KLS GIT, Belagavi	Indoor	Chess	2001	32' x 30'	20/week

18	KLS GIT, Belagavi	Indoor	Carom	2002	32' x 30'	200/week
19	KLS GIT, Belagavi	Indoor	Wt. Lifting/power lifting	2004	40' x 20' (including Toilet and changing room)	100/year
20	KLS GIT, Belagavi	Indoor	Wrestling	2006	32' x 30'	20/year
21	KLS GIT, Belagavi	Outdoor	Archery	2009	50 mts	10/year
22	KLS GIT, Belagavi	Outdoor	Cricket net practice	2016	30'x10' x 2 No.	100/week

Teaching Learning Process

• Curricula and syllabus for each of the Programmes as approved by the University

Department	Link to the website
Aeronautical Engineering	https://git.edu/department-of-aeronautical- engineering/aeronautical-engineering-syllabus/
Architecture	https://git.edu/department-of- architecture/architecture-academics/
Computer Science and Engineering	https://git.edu/cs-syllabus/
Civil Engineering	https://git.edu/civil-engineering-syllabus-ug-pg/
Electronics and Communication Engineering	https://git.edu/department-of-electronics- communication-engineering/electronics- communication-syllabus/
Electrical and Electronics Engineering	https://git.edu/department-of-electrical-and-electronics-engineering/academics-eee/
Information Science and Engineering	https://git.edu/ise-syllabus/
Mechanical Engineering	https://git.edu/department-of-mechanical- engineering/mechanical-engineering-syllabus/
Master of Business Administration	https://git.edu/department-of-master-of- business-administration/mba-academics/
Master of Computer Application	https://git.edu/department-of-master-of- computer-application/mca-syllabus/

• Academic Calendar of the University

The academic calendar is updated on college website in college notification.

• Academic Time table with the name of the faculty members handling the course
Academic Time table with the name of the faculty members is displayed on the department notice
board. The same is communicated to the faculty members and the students.

• Teaching load of each faculty

Theory	1hour	1 unit load
Lab	2 hour	1 unit load
Tutorial	2 hour	1 unit load

Total teaching load per faculty =12.5 units/week
For the HODs and other faculty in administrative department = 8 unit/week

Ex: Theory L.T.P- 4-0-0 Lab L.T.P- 0-0-2

If a faculty takes 2 theory and 3 days Lab

4*2=8hrs (8 Units) 3*2=6hrs (3 Units)

Total = 14 hours/week 11 units per week

• For each Post Graduate Courses give the followings

Title of the course	Curricula and Syllabi	Laboratory facilities exclusive to the Post Graduate
M.Tech (Structural Engineering)	https://cv.git.edu/pg- scheme/	
M.Tech (Machine Design)	https://me.git.edu/syllabus/	
M.Tech (Digital Communication Networking)	https://ec.git.edu/syllabus/	
M.Tech (Computer Science and Engineering)	https://cs.git.edu/syllabus/	
MBA (Master of Business Administration)	https://git.edu/department- of-master-of-business- administration/mba- academics/	
MCA (Master of Computer Application	https://git.edu/department- of-master-of-computer- application/mca-syllabus/	

16. Enrolment and Placement details of students in the last 3 years

Academic Year	Enrolment (Number of eligible candidates)	Number of students Placed	Minimum Salary	Maximum Salary	Average Salary
2021-2022	966	601	2.50 LPA	22.85 LPA	5.76 LPA
2022-2023	1032	604	2.40 LPA	51.00 LPA	6.90 LPA
2023-2024	1054	462	2.16 LPA	45.00 LPA	5.71 LPA

17. List of Research projects/Consultancy Works

Department	Number of Projects Carried out	Funding Agencies	Grant received
Aero			
	22	KLS, Rotary Main	865
Arch			
CV			
	03	KSCST	10000.00
CSE			
	03	KSCST	19500.00
ECE			
	02	KSCST, Tata Technologies	15000.00
EE			
IS			
	Consultancy – 1	AICTE, ACG	FDP- 3,50,000
MBA	FDP -1	Pharmapack Pvt Ltd	Consultancy -30000
	NIL	NIL	NIL
MCA	1,22	1,22	1,22
1/2012	09	KSCST, Tata Technologies	10900.00
ME	•		2000000
1122	01	KLS GIT	80,000/-
PHY	V-1		30,000
MATHS			
	2	KPCL Supadam	16,520/-
CHEM		_	
	10	Prithvi Metal Pvt. Ltd	17,996/-
		Belagavi	

• Industry Linkage

MoUs with Industries

S.No	Department	MoUs with the Industries
	Aeronautical	1. HAL Management Academy
01		2. Latecoere India Pvt. Ltd.
		3. GTTC Belagavi
	Computer Science and	1. VTECH CODERS, Dharwad
02	Engineering	2. Code Villa, Belagavi
		3. Zeel Code Labs, Belagavi
		4. Space Zee Technologies, Chennai
		5. Reputes Marketing Solutions, Belagavi
		6. Cubiccode Digital Media LLP, Belagavi
		7. GitHub Campus program
		8. AWS AcademyAWS Academy
		9. EC-Council Academy Partner
		10. UiPath Academic Alliance
	Civil Engineering	1. Mr. Vrajeshwardas, Project Incharge, Gokuldham,
03		Chikle.
		2. Hitesh Lahoti and Associates, Pune
		3. Synergy
		4. NHAI
		5. Central Building Research Institute
04	Electronics and	1. Uilatech LLP
	Communication	2. DocketRun TecH Private Limited, Hubbali
	Engineering	3. NanoCell-Qualcomm
		4. Friends Union for Energising Lives FUEL, Hubli

05	Electrical and	1. HESCOM, Hubbali					
	Electronics	2. Srujan Electrical Engineers & Consultants					
	Engineering	3. Shantala power limited & industrial consultant &					
		esearch centre.					
		4. Decibels Lab Ltd					
	Information Science	1. Heartfulness organization, Belagavi					
06	and Engineering	2. Internet society India Bengaluru chapter, Bangalore					
	Master of Business	1. Indian Institute of Management Ahmedabad					
07	Administration						
	Master of Computer	1. Rachana Infotech Pvt. Ltd, Belagavi					
08	Application	2. ADIS Technologies Pvt. Ltd					
		3. Portdev India Pvt. Ltd, Singapore					
		4. Express Analytics India Pvt. Ltd., Pune, Maharashtra					
	Mechanical	1. Vega Aviation Products Pvt. Ltd., Belagavi					
09	Engineering	2. Crientors Automation Solutions Pvt, Ltd, Belagavi					
		3. Dassault Systems, Pune					
		4. Enerzi Systems Pvt. Ltd.					
		5. VLCI, IIM Bengaluru					
		6. Octaknight Solutions Pvt. Ltd, Belagavi					
10	Physics	1. Indian Institute of Astrophysics, Bengaluru					
	Chemistry	1. S Nijalingappa Sugar Institute Belagavi					
11		2. Garuda Allied Technologies, Belagavi					

• Expert talks

Sl.No	Department	No. of Expert talks conducted
01	Aeronautical Engineering	
02	Architecture	10
03	Computer Science and Engineering	
04	Civil Engineering	7
05	Electrical and Electronics Engineering	10
06	Electronics and Communication Engineering	17
07	Information Science and Engineering	04
08	Master in Business Administration	20
09	Master of Computer Application	03
10	Mechanical Engineering	9
11	Physics	
12	Maths	
13	Chemistry	03

18. LoA and subsequent EoA till the current Academic year

All India Council for Technical Education

(A Statutory body under Ministry of Education, Govt. of India) Nelson Mandela Marg Vasant Kunj, New Delhi-110070 Website: www.aicte-india.org

APPROVAL PROCESS 2024-25

Extension of Approval (EoA) - Corrigendum

F.No. South-West/1-43953990918/2024/EOA/Corrigendum-1

Date of Approval:27-Jun-2024

The Principal Secretary (Hr. & Tech Education) Govt of Kamataka, K. G.S., 6th Floor, M.S. Bulding, R. N. G4S, Dr. B. R. Ambedkar Road, Bangalon-580001

Sub: Extension of Approval for the Academic Year 2024-25

F.No. South-West/I-43653990918/3024/E/OA F.No. South-West1-43653990918/2024/E/OA/Configendum-1 21-May-2024 27-Jun-2024

Ref. Online application of the Institution submitted for Extension of Approval for the Academic Year 2024-25

In terms of the provisions under the All India Council for Technical Education (Grant of Approvals for Technical Education), Powers delegated in AICTE ACT 1987, (No 52 of 1987) chapter II - uits 2(g) to regulate Technical and subsequent Regulations of AICTE, I am directed to convey the approval to:

Permanent id	1-4254404	Application Id	1-43953990918	
Name of the Institution	K.L.S. GOGTE INSTITUTE OF TECHNOLOGY	Name of the Society/Trust	KARNATAK LAW SOCIETY	
Institution Address	"JNANA GANGA", LIDYAMBAG, BELGALM, BELGALM, Kerrataka, 590008	Society/Trust Address	P.B.NO. 512, TILAKWADI POST, BELGAUM, BELGAUM, Karna taka, 590005	
Institution Type	Private-Self Financing	Region	South-West	
Year of Establishment	1994	·		

To conduct following Programs/Courses with the intake indicated below for the Academic Year 2024-25

Level	Program	Course	Affiliating Body (University /Body)	Intake Approved for 2023-24	Intake Approved for 2024-25	NRI Approval Status	FN / Gulf quota/ OCV Approval Status
UNDER GRADUATE	ENGINEERI NG AND TECHNOLO GY	AERONAUTICAL ENGINEERING	Visvenvaraya Tech nological University, Belgaum	60	60	No	No

Application No.1-4366396918 ALL INDIA COUNCIL FOR TECHNICAL EDUCATION Note: This is a Computer generated Report. No signature is required. Printed By: aed36371

Page 1 of 5

Letter Printed On:28 June 2024

Level	Program	Course	Affiliating Body (University (Body)	Intake Approved for 2023-24	Intake Approved for 2024-25	NRI Approval Status	FN / Gulf quots/ OCV Approval Status
UNDER GRADUATE	ENGINEERI NG AND TECHNOLO GY	CIVIL ENGINEERING	Visvenoraya Tech nological University, Belgaum	120	120	No	No
UNDER GRADUATE	ENGINEERI NG AND TECHNOLO GY	COMPUTER SCIENCE AND ENGINEERING	Viewervaraya Tech nological University, Belgaum	180	180	No	No
UNDER GRADUATE	ENGINEERI NG AND TECHNOLO GY	COMPUTER SCIENCE AND ENGINEERING (ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING)	Visvesvaraya Tech nological University, Belgaum	a	SO ^{EE}	No	No
UNDER GRADUATE	ENGINEERI NG AND TECHNOLO GY	ELECTRICAL AND ELECTRONICS ENGINEERING	Visvesvaraya Tech nological University, Belgaum	80	60	No	No
UNDER GRADUATE	ENGINEERI NG AND TECHNOLO GY	ELECTRONICS & COMMUNICATION ENGG	Viewervaraya Tech nological University, Belgaum	180	180	No	No
UNDER GRADUATE	ENGINEERI NG AND TECHNOLO GY	INFORMATION SCIENCE AND ENGINEERING	Visvenvaraya Tech nological University, Belgaum	120	120	No	No
UNDER GRADUATE	ENGINEERI NG AND TECHNOLO GY	MECHANICAL ENGINEERING	Viewervaraya Tech nological University, Belgaum	120	120	No	No
POST GRADUATE	ENGINEERI NG AND TECHNOLO GY	STRUCTURAL ENGINEERING	Visvenoraya Tech nological University, Belgaum	10	18	No	No
POST GRADUATE	ENGINEERI NG AND TECHNOLO GY	DIGITAL COMMUNICATIO NS AND NETWORKING	Visvesvaraya Tech nological University, Belgaum	10	18	No	No
POST GRADUATE	ENGINEERI NG AND TECHNOLO GY	COMPUTER SCIENCE AND ENGINEERING	Visventaraya Tech nological University, Belgaum	10	10	No	No

Level	Program	Course	Affiliating Body (University /Body)	Intake Approved for 2023-24	Intake Approved for 2024-25	NRI Approval Status	FN / Gulf quota/ OCI/ Approval Status
POST GRADUATE	MANAGEM ENT	MSA	Visvenvaraya Tech nological University, Belgaum	120	120	No	No
POST GRADUATE	ENGINEERI NG AND TECHNOLO GY	MACHINE DESIGN	Visvenvaraya Tech nological University, Belgaum	10	18	No	No
POST GRADUATE	COMPUTE R APPLICATI ONS	MASTERS IN COMPUTER APPLICATIONS	Visvenvaraya Tech nological University, Belgaum	120	120	No	No

^{##} Approved New Course(s)

To conduct following Dual Integrated Programs/Courses with the Intake indicated below for the Academic Year 2024-25

Level	Program	Course	Affiliating Body (Univ/Body)	Intake Approved for 2023-24	Intake Approved for 2024-25
Integrated	MANAGEMENT	BBAMBA	Visvesvaraya Techn ological University, Belgaum	0	60
Integrated	COMPUTER APPLICATIONS	MASTER OF COMPUTER APPLICATIONS (INTEGRATED)	Visvesvaraya Techn ological University, Belgaum	60	60

All AICTE approved Institutions are empowered to nurture ecceystems for Skilling (through Vocational courses) via making effective use of existing infrastructure facilities and human resources.

It is mandatory to comply with all the essential requirements as given in APH 2024-25 to 2027 (Chapter-VI)