KARNATAK LAW SOCIETY'S GOGTE INSTITUTE OF TECHNOLOGY

UDYAMBAG, BELAGAVI-590008

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) (APPROVED BY AICTE, NEW DELHI)

Department of Electronics and Communication Engineering

M. Tech. Scheme (1st to 4th Semester) and 1st and 2nd Semester Syllabus (2022 Scheme) Digital Communication and Networking (DCN)

INSTITUTION VISION

Gogte Institute of Technology shall stand out as an institution of excellence in technical education and in training individuals for outstanding caliber, character coupled with creativity and entrepreneurial skills.

MISSION

To train the students to become Quality Engineers with High Standards of Professionalism and Ethics who have Positive Attitude, a Perfect blend of Techno-Managerial Skills and Problem solving ability with an analytical and innovative mindset.

QUALITY POLICY

- Imparting value added technical education with state-of-the-art technology in a congenial, disciplined and a research oriented environment.
- Fostering cultural, ethical, moral and social values in the human resources of the institution.
- Reinforcing our bonds with the Parents, Industry, Alumni, and to seek their suggestions for innovating and excelling in every sphere of quality education.

DEPARTMENT VISION

The Electronics & Communication Engineering department shall impart quality technical education and entrepreneurship skills to develop creative individuals to face changing global scenario.

MISSION

To augment the national talent pool, with Electronics and Communication Engineers having all-encompassing technical knowledge, principled practices and nationalistic outlook.

	PROGRAM EDUCATIONAL OBJECTIVES (PEOs)								
1.	The post graduates will acquire core competence in Digital Communication and Networking fundamentals necessary to formulate, analyze, and solve problems in communication and networking domain and to pursue advanced study or research.								
2.	The post graduates will engage in the activities that demonstrate desire for ongoing personal and professional growth, and self-confidence to adapt to ongoing technological developments.								
3.	The post graduates will maintain high professionalism and ethical standards, effective oral and written communication skills, work as part of teams on multidisciplinary projects under diverse professional environments, and relate engineering issues to the society, global economy and to emerging technologies.								

	PROGRAM OUTCOMES (POs)								
1.	An ability to independently carry out research /investigation and development work to								
	solve practical problems.								
2.	An ability to write and present a substantial technical report/document.								
3.	Students should be able to demonstrate a degree of mastery over the area as per the								
	specialization of the program.								

	PROGRAM SPECIFIC OUTCOMES (PSOs)										
1	Understanding and applying the mathematical and scientific concepts, for analysis and										
1. design of Communication and Networking systems.											
	Developing critical thinking abilities coupled with competence in use of computational										
2.	tools for professional growth; complimented with communication skills and leadership										
	attributes.										
2	Identifying societal needs and sensitizing individuals towards finding										
5.	innovative solutions to contemporary issues with multidisciplinary outlook.										

2022-23 Scheme of Teaching and Examination

1st to 4th Semester M. Tech. (Digital Communication and Networking)

Total credits for M. Tech. Program: 80

	Semester	Credits per Sem	Total credits
1 at year	1	22	40
1st year	2	18	40
21	3	22	40
2nd year	4	18	40
	Total	80	80

Curriculum frame work:

Sl. No.	Course		Credits
1	Basic Science Courses	BSC	03
2	Professional Core Courses	PCC	29
3	Professional Elective Courses	PEC	09
5	Open Elective Courses	OEC	03
6	Internship	INT	06
7	Minor with seminar	MPS	03
8	Societal project	SP	03
9	Major project	PROJ	21
10	Research methodology and IPR	MCC	03
	Total		80

Theory Course Credits	Online Course Credits				
Duration of course	Credits	Online course duration	Credits		
50 hours of course content	4	04 weeks	1		
40 hours of course content	3	08 weeks	2		
Lecture (L) One Hour /week	1	12 weeks	3		
Practicals (P) Two hours /week	1				

			('ourso Titlo	Teac	hing Hours per	Examination					
Sl. No	Course	Course Code		Theory	Tutorial/ Skill Development Activities	Practical /Seminar	Duratio n in hours	CIE Mark s	SEE Mark s	Total Marks	Credit s
				L	T/SDA	Р					
1	BSC	22DCN11	Advanced Engineering Mathematics	3	0	0	03	100	100	200	3
2	IPCC	22DCN12	Advanced Digital Signal Processing	3 6 01	0	2	03	100	100	200	4
3	PCC	22DCN13	Advanced Communication Networks	4	0	0	03	100	100	200	4
4	PCC	22DCN14	Wireless Communication	3	02	0	03	100	100	200	3
5	PCC	22DCN15	Advanced Embedded System	3	0 7	0	03	100	100	200	3
6	MCC	22DCN16	Research Methodology and IPR	3	0	0	03	100	100	200	3
7	PCCL	22DCNL17	Communication Networks Laboratory	0	0	4	03	100	100	200	2
тот	AL			19	0	06	21	700	700	1400	22

				Tea	ching Hours per		Examin	ation			
SI. No	Course	Course Code	Course Title	Theory	Tutorial/ Skill Development Activities	Practical/ Seminar	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
				L	T/SDA	Р					
1	PCC	22DCN21	Advanced Digital Communication	3	0	0	03	100	100	200	3
2	IPCC	22DCN22	Antenna Theory and Design	3	0	2	03	100	100	200	4
3	PEC	22DCN23x	Professional elective 1	3	F 7 0	0	03	100	100	200	3
4	PEC	22DCN24x	Professional elective 2	3	0	0	03	100	100	200	3
5	MPS	22DCN25	Mini Project with Seminar	0	2 2	4		100		100	3
6	PCCL	22DCNL26	Advanced Communication laboratory	0	0	4	03	100	100	200	2
TOT	TOTAL			12	2	10	15	600	500	1100	18

Professional Elective 1	- ALLAND	Professional Elective 2					
Course Code under 22DCN23X	Course title	Course Code under 22DCN24X	Course title				
22DCN231	Soft Computing	22DCN241	Pattern Recognition and Classification				
22DCN232	Advanced Multimedia Communication	22DCN242	Cyber Physical System				
22DCN233	Information Security	22DCN243	Optical Networks				
22DCN234	Modelling Simulation and Analysis of Systems	22DCN244	Statistical Signal Processing				

				Teaching Hours per Week			Examination				
SI. No	Course	Course Code	Course Title	Theory	Tutorial/ Skill Development Activities	Practical/Seminar	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
				L	T/SDA	Р					
1	IPCC	22DCN31	Adaptive Signal Processing	3	0	2	03	100	100	200	4
2	PEC	22DCN32X	Professional elective 3	3	OTE OF	0	03	100	100	200	3
3	OEC	22DCN33X	Open elective Courses-1	3	0	0	03	100	100	200	3
4	PROJ	22DCN34	Project Work phase - 1	0	0	6		100		100	3
5	SP	22DCN35	Societal Project	0	2	28-4		100		100	3
6	INT	22DCNI36	Internship	Complet	ts Internship ed during the inte semesters.)	ervening vacation of	03	100	100	200	6
7	AUD	22AUD37	BOS recommended ONLINE courses	Classes a	and evaluation pro	ocedures are as per the	e policy of t	he online	course pro	oviders.	PP
TOT	AL	1	1	9	2	12	12	600	400	1000	22

Professi	ional elective 3	Open elective 1					
Course Code under 22DCN32X	Course title	Course Code under 22DCN33X	Course title				
22DCN321	Software Defined Networks	22DCN331	Real Time Systems				
22DCN322	RF and Microwave Circuit Design	22DCN332	RF MEMS				
22DCN323	Software Defined Radio	22DCN333	Modelling Simulation and Analysis of Systems				
22DCN324	Error Control Coding	22DCN334	Internet of Things				

				IV SEM	ESTER					
Sl. No	Course	Course	Course Title	Course Title Teaching Hours /Week Examination						Credits
		Code								
				Theory	Practical/	Duration in	CIE Marks	SEE	Total	
					Field work	hours		Marks	Marks	
				L	Р			Viva		
								voce		
1	Project	22DCN41	Project work phase -2		08	03	100	100	200	18
2	AUD	22AUD42	BOS recommended	Classes and ev	aluation procedu	res are as per the	policy of the or	nline cours	se	PP
			ONLINE courses	providers.						
		TOTAL		TOTOTE C	08	03	100	100	200	18
			/-	CS/P						

Course code	Details
22AUD37/	The students have to complete the online MOOC courses offered by NPTEL/AICTE of specific duration specified by the department and submit the certificate of completion.
22AUD42	The list of courses will be given by PG coordinator depending on the availability.

and

Advanced Engineering Mathematics

Course Code	22DCN11	Course type	BSC	Credits L-T-P	3 - 0 - 0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 Hrs; P = 0 Hrs $Total = 40 Hrs$			CIE Marks	100
Flipped Classes content	0 Hours			SEE Marks	100

Course learning objectives			
1.	To introduce the basic concepts of linear algebra such as RREF, linear independence and linear		
	transformations.		
2.	To explore the concepts of vector spaces, dimension of vector space, rank and change of basis.		
3.	To understand the orthogonality of vectors and matrix factorization techniques.		
4.	To introduce the probability theory concepts.		

Pre-requisites: Engineering Mathematics.

Unit – I Fundamentals of Linear Algebra

Systems of Linear Equations, Row Reduction and Echelon Forms (RREF), Vector equations, Matrix equations, solution sets of linear systems, Applications of linear systems, Linear Independence, Linear Transformation.

Case Study: DFT as a linear Transformation.

Unit – II

Contact Hours = 8 Hours

Contact Hours = 8 Hours

Matrix operations, Matrix inversion, Characterization of invertible matrices, Subspaces of \mathcal{R}^n ,(Null Space, Column Space, Basis of a subspace), Dimension and rank.

Vector Spaces and Subspaces, Null Spaces, Column Spaces, and Linear Transformations, Linearly Independent Sets; Bases, Coordinate Systems, The Dimension of a Vector Space, Rank and change of basis.

Case Study: Fourier Transforms as change of basis.

Unit – III

Contact Hours = 8 Hours

Eigen values and Eigen vectors, Inner Product, Length and Orthogonality, Orthogonal Sets, Orthogonal Projections, Gram-Schmidt Process, Least Squares Problems, Inner Product Spaces. Diagonalization of Symmetric Matrices, Quadratic forms, Constrained Optimization and SVD.

Case Study:

Orthogonal Frequency Division Multiplexing (OFDM) system

SVD based image reconstruction

Unit – IV

Contact Hours = 8 Hours

Probability Theory:- Review of basic probability theory. Definitions of random variables and probability distributions, probability mass and density functions, expectation, moments, central moments, characteristic functions, probability generating and moment generating functions illustrations. Poisson, Gaussian and Erlang distributions-examples.

Case Study: Gaussian Mixture Models

Unit – V

Contact Hours = 8 Hours

Engineering Applications on Random Processes: - Classification. Stationary, WSS and ergodic random process. Autocorrelation function-properties, Gaussian random process.

Case Study: Optimum filtering Weiner Filtering.

Self-Study: After the end of each unit, the students have to review minimum two research papers on any topic covered in the unit and submit the report.

	Books
	Text Books:
1.	David C. Lay, "Linear Algebra and its Applications," 6th edition, Pearson Education (Asia) Pvt.
	Ltd, 2021.
2.	S. L. Miller and D. C. Childers, "Probability and Random Processes with Application to Signal
	Processing and Communication", 2nd edition, Academic Press/ Elsevier 2012 and onwards
	Reference Books:
1.	Gilbert Strang, "Linear Algebra and its Applications," 5th edition, Thomson Learning Asia,
	2016 onwards.
2.	A. Papoullis and S. U. Pillai, "Probability, Random Variables and Stochastic Processes",
	McGraw-Hill, 2002 and onwards.
3.	Peyton Z. Peebles, "Probability, Random Variables and Random Signal Principles", 4th ed.,
	TMH, 2007 and onwards.
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	Prof. Aditya K. Jagannatham, Applied Linear Algebra for Signal Processing, Data Analytics
	and Machine Learning, IIT Kanpur, url: https://nptel.ac.in/courses/108104174

	Course delivery methods	Marine Contraction	Assessment methods	
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)	
		3.	Open Book Tests (OBT)	
		4.	Course Seminar	
		5.	Semester End Examination	

Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning					
	level.)				
Lea	Learning Levels: Re - Remember; Un - Understand; Ap - Apply; Learning				
An - Analysis; Ev - Evaluate; Cr - Create			PO(s)	PSO(s)	
1	Understand the advanced concepts in linear algebra and	Un	3	1	
1.	probability theory.				
2.	Apply probability theory and linear algebra to model and solve	Ар	3	1	
۷.	dynamic systems.				
3.	Analyze the given system using linear algebraic and probabilistic	An	1,3	1,2	
3.	tools.				

Components	Addition of two IA tests	Online Quiz	Addition of two OBAs	Course Seminar	Total Marks
Marks	25+25 = 50	4* 5 marks = 20	10+10 =20	10	100

OBA - Open Book Assignment Minimum score to be eligible for SEE: 50 OUT OF 100

Scł	Scheme of Semester End Examination (SEE):				
1.	It will be conducted for 100 marks of 3 hours duration.				
2.	Minimum marks required in SEE to pass: Score should be $\geq 40\%$, however overall score of				
	CIE + SEE should be \geq 50%.				
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7				
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2				
	questions in part C.				

		CO-P	SO Ma Plannec	pping l)		
C O	PO1	PO2	РОЗ	PSO 1	PSO 2	PSO 3
1			1	✓		
2			<u> </u>	✓		
3	✓		1	✓	✓	
	Tick ma	ark the CO, PO and PSO mapping				

Advanced Digital Signal Processing (Integrated)

Course Code	22DCN12	Course type	IPCC	Credits L-T-P	3 - 0 - 1
Hours/week: L - T- P	3 - 0 - 2		Total credits	4	
Total Contact Hours	L = 40 Hrs; T = 0 Hrs; P = 20 Hrs $Total = 60 Hrs$			CIE Marks	100
Flipped Classes content	10 Hours		SEE Marks	100	

Course learning objectives			
1.	To review the fundamentals of discrete time systems.		
2.	To explore various single rate filter design.		
3.	To understand the basics of multirate systems.		
4.	To introduce the concepts of filter banks and transmultiplexers.		
5.	To explore maximally decimated filter banks and time frequency representations.		

Required Knowledge of: Digital Signal Processing

Unit – I	Contact Hours = 8 Hours
Review of Spectral Analysis of Discrete tim	e Signals and Systems:
Review of Transforms: DTFT, Z transforms	DFT computation using FFT.

Introduction to real transforms: DCT and DST.

Frequency response analysis of discrete time systems: Computing frequency response of a discrete time system for sinusoidal, sum of sinusoidal and complex exponential sequences.

Unit – II

Contact Hours = 8 Hours

Fixed Rate Filter Design and Realization: IIR – Butterworth and Chebyshev (Type – I) LPF, HPF and BPF filter design using bilinear transformation.

FIR – Filter design using frequency sampling technique.

Realization: State space realization of IIR and FIR filters.

Unit – IIIContact Hours = 8 Hours					
Multirate Digital Signal Processing Fundam	entals:				
Introduction, statement of the problem and def	initions, analysis of down sampling and up sampling,				
sampling rate conversion by a rational factor, r	nulti stage implementation of digital filters, efficient				
implementation of multirate systems, application	on of multirate DSP: analog to digital conversion,				
sampling frequency and quantization error.					
Unit – IV Contact Hours = 8 Hours					
DFT Filter Banks and Transmultiplexers:	·				
Introduction DET filter hanks maximally deal	moted DET filter bonks and transmultiplayars				

Introduction, DFT filter banks, maximally decimated DFT filter banks and transmultiplexers, transmultiplexers, application of transmultiplexers to digital communications modulation.

Unit – V	Contact Hours = 8 Hours
Maning alles Danies at al Eller Dansland	

Maximally Decimated Filter Banks:

Introduction, vector spaces, two channel perfect reconstruction conditions, design of perfect reconstruction filter banks with real coefficients, lattice implementation of orthonormal filter banks, application to an audio signal.

Time frequency expansion:

Short time Fourier Transform (STFT), Gabor Transform (GT), wavelet transforms.

S. No.	List of Experiments
1.	Design and synthesis of Digital IIR filters:
	a. LPF
	b. HPF
2.	Design and synthesis of Digital FIR filters.
	a. LPF
	b. HPF
3.	Simulation of Up sampler.
4.	Simulation of down sampler.
5.	QMF Filter design.
6.	Study of FFT analyzer for given application.
7.	Demonstration of Adaptive Sub Band Speech Coding (ASBC)
8.	Implementation of STFT applied to speech analysis.

	Books
	Text Books:
1.	Roberto Cristi, "Modern Digital Signal Processing", Thomson Brooks/Cole Publishers, 2004
	onwards.
	Reference Books:
1.	N. J. Fliege, "Multirate Digital Signal Processing", John Wiley & Sons, USA, 2000.
2.	P. P. Vaidyanathan, "Multirate Systems and Filter Banks", Pearson Education (Asia) Pte.Ltd,
	2004.
3.	Steven M. Kay, "Modern Spectral Estimation", Pearson Education, First edition (2017)

Course delivery methods			Assessment methods		
1.	Chalk and Talk	1.	IA tests		
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project		
3.	Flipped Classes	3.	Lab Test		
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination		
5.	Virtual Labs (if present)				

	Course Outcome (COs)							
Lea	Learning Levels:							
R	e - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev	- Evaluate;	Cr - C	reate				
Δ + + k	he end of the course, the student will be able to	Learning	PO(s)	PSO(s)				
Atu	le end of the course, the student will be able to	Level	10(5)	150(5)				
1.	Understand and apply suitable multirate signal processing technique		1,3	1,2				
1.	for a given application.							
2.	Implement transmultiplexers and QMF filter banks for a given	Ap	1,3	1,2				
۷.	application.							
3.	Design and implement fixed and multirate filter banks and perform	An	1,3	1,2				
3.	spectral analysis.							

Scheme of Continuous Internal Evaluation (CIE):

For integrated courses, a lab test also will be conducted at the end of the semester.

		ORY (60 marks)	LAB (40		
TA test 1		Assignment (OA/Lab Project/			Total
IA test 1	IA test 2	Industry assignment/Course Project)	Conduction	Lab test	
25 marks	25 marks	10 marks	15 marks	25 marks	100 marks
IA Test:					
0		IA question paper			
	stions descri	ptive			
Conduct					
		eriment and journal: 5 marks			
		, graph, conclusion and Outcome:	5 marks		
	oce: 5 marks				
		with 15 students/batch)			
		ed at the end of the semester			
		tails and examiners will be declare		on	
	v	eriment and writing report: 5 marks			
		, graph and conclusion: 10 marks			
	oce: 10 mark	8			
	y for SEE:	montrs and shows) in theory some			
		marks and above) in theory compo- marks and above) in lab componen			
	st is COMPU		a contra		
		one of the two components will mal	o the student N	t Fligible for	SEE
4. NOT CII		ne or the two components will man	the student Ive	n Eliginie 101	JEE
Scheme	of Semester	End Examination (SEE):		7	
1. It w	vill be conduc	cted for 100 marks of 3 hours durat	ion.		
		s required in SEE to pass: Score	should be $\geq 40\%$	&, however o	overall score o
CIE	+SEE should	$1 \text{ be} \ge 50\%.$	A ST AUTO	18	

The lab test (COMPULSORY) will be part of the CIE. No SEE for Lab.

Question paper contains three parts **A**,**B** and **C**. Students have to answer 3.

1. From Part A answer any 5 questions each Question Carries 6 Marks.

2. From Part B answer any one full question from each unit and each Question Carries 10 Marks.

3. From Part C answer any one full question and each Question Carries 20 Marks.

CO-PO Mapping (Planned)				CO-PSO Mapping (Planned)			
CO	PO1	PO2	PO3 PSO1 PSO2				
1	✓		✓	✓	✓		
2	✓		✓	✓	✓		
3	✓		✓	✓	√		
	Tick mark (✓) the CO, PO and PSO mapping						

Advanced Communication Networks

Course Code	22DCN13	Course type	PCC	Credits L-T-P	4 - 0 - 0
Hours/week: L - T- P	4 - 0 - 0			Total credits	4
Total Contact Hours	L = 50 Hrs; T = 0 Hrs; P = 0 Hrs $Total = 50 Hrs$			CIE Marks	100
Flipped Classes content	0 Hours			SEE Marks	100

	Course learning objectives				
1.	To overview depth in computer communication systems and networks topics that may have been				
	covered at undergraduate level.				
2.	To introduce students to some of the latest systems and technologies, and how they are used				
	today.				
3.	To discuss some of the key emerging systems and technologies, including research issues and				
	challenges, and their impact on current and future systems.				
4.	To understand the impact of block chain technology and software defined networking in				
	computer communication.				

Pre-requisites: Digital Communication, Information theory coding.

Unit – I	Contact Hours = 10 Hours
Foundation: Overview Of Communication Networ	rks And Internet, Nuts And Bolts Description,
Services Description, Protocol Description, Netw	ork Edge, Access Networks, Network Core,
Performance Parameters, Layered Architecture, Delay	7 Tolerant Networks.

Case study: Implementing Network Software, IEEE 802.3 and 802.11 standards.

		3	(Ab)		1		
Unit – II		34	A C -	Conta	ct Hours =	10 Hours	
Internetworking-I:	Reliable	Transmission,	Stop-and-Wait,	Sliding	Window,	Switching	and
Forwarding, Virtual (Circuit Swi	tching, Source F	Routing.				
Internetworking-II: Datagram Forwarding in IP, IP addressing, IPv6, Datagram Fragmentation and							
Delays, ARP configuration, Numerical relevant to the topic.							
Case study: Subnetti	ng, Error F	Reporting (ICMF	P), Virtual Networ	ks and Tu	innels.		

Unit – III	Contact Hours = 10 Hours
Resource Allocation in Networks: Challenges, Taxonomy,	Mismatch Multi Link Model And
Evaluation Criteria. Quality Of Service, Application Requirem	nents, Integrated Services (RSVP),
Differentiated Services (EF, AF), Equation-Based Traffic Control.	
Networks Attacks: Types, Firewall, Zone Based Firewall,	rewall Methodologies, HTTP Non-
Persistent & Persistent Connection.	
Case study: LZW (Lempel–Ziv–Welch) Compression technique.	RC4 and RC5 Encryption Algorithm.

Unit – IV	Contact Hours = 10 Hours		
Switches and Control Planes: Evolution of Switches And Control Planes, Cost, SDN Implications For			
Research And Innovation, Data Center Innovation, Data Center Needs.			
Software Defined Networking: Abstract, Fundamental Characteristics of SDN, SDN operation, SDN			
Devices, SDN Controller, SDN Applications.			

Unit – V	Contact Hours = 10 Hours
Plack shain Technology: Origin of block shain technology. The	hinth of blook shoin Davalutionizing

Block chain Technology: Origin of block chain technology, The birth of block chain, Revolutionizing the Traditional Business Network, Exploring a block chain application, Recognizing the key business benefits, Building trust with block chain, What Makes a Block chain Suitable for Business, Identifying Participants and Their Roles, Use of Block chain in Internet of Things. **Case study:** Uses of Block chain for Network Engineers.

	Books
	Text Books:
1.	Larry Peterson and Bruce S Davis, "Computer Networks: A System Approach" 5th Edition,
	Elsevier, 2014.
2.	Computer Networking: A Top-Down Approach Hardcover – by Kurose Ross. Student Edition,
	26 April 2016.
3.	Jean Wairand and Pravin Varaiya, "High Performance Communications Networks", 2 nd edition,
	2010.
	Reference Books
1.	Anurag Kumar, D. Manjunath and Joy Kuri, "Communication Networking: An Analytical
	Approach", Morgan Kaufman Publishers, 2004
2.	Manav Gupta, Blockchain For Dummies, IBM Limited Edition, John Wiley & Sons, Inc.
	E- Resource
1.	https://www.blockchain-council.org/blockchain/uses-of-blockchain-for-network-
	engineers/
2.	Habib, G.; Sharma, S.; Ibrahim, S.; Ahmad, I.; Qureshi, S.; Ishfaq, M. Blockchain
	Technology: Benefits, Challenges, Applications, and Integration of Blockchain
	Technology with Cloud Computing. Future Internet 2022, 14, 341.
	https://doi.org/10.3390/fi14110341

(Nrs)					
	Course delivery methods	1	Assessment methods		
1.	Chalk and Talk	1.	IA tests		
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)		
3.	Flipped Classes	3.	Open Book Tests (OBT)		
4.	Online classes	4.	Course Seminar		
		5.	Semester End Examination		

	Course Outcome (COs)					
At	At the end of the course, the student will be able to (Highlight the action verb representing the learning					
	level.)					
Learning Levels: Re - Remember; Un - Understand; Ap - Apply; Learning						
An -	Analysis; Ev - Evaluate; Cr - Create	Level	PO(s)	PSO(s)		
1.	Identify and explain current technology trends for the	L2	1,2	1		
1.	implementation and deployment of communication network.					
2.	Design and develop protocols for reliable communication	L3	1,2	1		
۷.	Networks					
3.	Design a network with appropriate protocols selected according to	L4	2,3	2		
5.	performance requirement.					
4.	Optimize the Network Design with use of block chain technology	L4	2,3	2		
4.	and software defined network.					

Components	Addition of two IA tests	Online Quiz	Addition of two OBAs	Course Seminar	Total Marks
Marks	25+25 = 50	4* 5 marks = 20	10+10 =20	10	100

OBA - Open Book Assignment Minimum score to be eligible for SEE: 50 OUT OF 100

Scl	heme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be $\geq 40\%$, however overall score of
	CIE + SEE should be \geq 50%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2
	questions in part C.

CO-PO Mapping (Planned)			CO-PSO Mapping (Plan			
СО	PO1	PO2	E OF PO3	PSO1	PSO2	PSO3
1	✓	1		✓		
2	✓	1	ILE VELAN	✓		
3		1 6 100			✓	
4		4			✓	

and PSO mapping Tick mark (✓) the

Wireless Communication

Course Code	22DCN14	Course type	PCC	Credits L-T-P	3 - 0 - 0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 Hrs; P = 0 Hrs $Total = 40 Hrs$			CIE Marks	100
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives				
1.	To enable the student to understand the cellular concept and system design fundamentals				
2.	To enable the student to analyze large scale path loss				
3.	To enable the student to analyze small scale fading and multipath				
4.	To enable the student to choose different modulation techniques for wireless communication				
5.	To enable the student to understand advanced wireless communication techniques				

Pre-requisites : 1. Analog Communication 2. Digital Communication

Unit – I

The Cellular Concept- System Design Fundamentals

Introduction, Frequency reuse, Channel assignment strategies, Handoff strategies, Interference and system capacity, Improving coverage and capacity in cellular systems.

Unit – II

Contact Hours = 8 Hours

Wireless Signal Propagation: Large Scale Path Loss

Introduction, Free-space propagation model, Relating power to electric field, The three propagation mechanisms- Reflection, Diffraction, Scattering, Outdoor propagation models, Indoor propagation models.

Unit – III

Wireless Signal Propagation: Small-scale Fading and Multipath

Small-scale multipath propagation, Impulse response model of a multipath channel, Small-scale multipath measurements, Parameters of mobile multipath channels, Types of small-scale fading, Rayleigh and Ricean distributions, Statistical models for multipath fading channels.

Unit – IV

Modulation Techniques for Wireless Communication

Linear modulation techniques, Constant envelope modulation, Combined linear and constant envelope modulation, Spread spectrum modulation techniques, Multiple Access Techniques.

Unit – V	Contact Hours = 8 Hours
Advanced Wireless Communication Techniques	

Introduction to MIMO, OFDM, Wi-MAX, 4G-LTE, 5G – Basic concepts, types, advantages, disadvantages, applications.

Flipped Classroom Details

		- ipped endered			
Unit No.	Ι	II	III	IV	V
No. for Flipped Classroom Sessions	1	1	1	1	1

	Books
	Text Books:
1.	Theodore S. Rappaport, Wireless Communications- Principles and Practice, Pearson, 2 nd Ed,
	2010.
2.	Dr. Kamilo Feher, Wireless Digital Communications, PHI, 4th Ed, 2010.
	Reference Books:
1.	Jochen Schiller, Mobile Communications, Pearson Education, 2 nd Ed, 2004.
2.	Vijay K. Garg, Wireless Communications and Networking, Elsevier, 1st Ed, 2008.

Course delivery methods		Assessment methods				
1.	Chalk and Talk	1.	IA tests			
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)			
3.	Flipped Classes	3.	Open Book Tests (OBT)			
4.	Online classes	4.	Course Seminar			
	1	5.	Semester End Examination			
	A STOLE COL					

At	Course Outcome (COs) the end of the course, the student will be able to (Highlight the action level.)	verb repres	senting th	e learning
	rning Levels: Re - Remember; Un - Understand; Ap - Apply; Analysis; Ev - Evaluate; Cr - Create	Learning Level	PO(s)	PSO(s)
1.	Understand the cellular concept and system design fundamentals	Un	3	1,2
2.	Analyze large scale path loss in wireless communication channel	An	3	1,2
3.	Analyze small scale fading and multipath in wireless communication channel	An	3	1,2
4.	Choose different modulation techniques for given applications in wireless communication	Ар	1,3	1,2
5.	Understand advanced wireless communication techniques	Un	3	1,2

Components	Addition of two IA tests	Online Quiz	Addition of two OBAs	Course Seminar	Total Marks
Marks	25+25 = 50	4* 5 marks = 20	10+10 =20	10	100
OBA - Open Book Assignment					

OBA - Open Book Assignment Minimum score to be eligible for SEE: 50 OUT OF 100

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be $\geq 40\%$, however overall score of
	CIE + SEE should be \geq 50%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2
	questions in part C.

CO-PO Mapping (Planned)		CO-PSO Mapping (Planned)				
СО	PO1	PO2	PO3	PSO1	PSO2	PSO3
1			✓	✓	✓	
2			✓	✓	✓	
3			✓	✓	√	
4	✓		✓	✓	✓	
5			✓	✓	✓	
I		Tick mark (✔) the	CO, PO and PSO ma	apping	1	

Advanced Embedded System

Course Code	22DCN15	Course type	PCC	Credits L-T-P	3-0-0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 Hrs; P = 0 Hrs $Total = 40 Hrs$			CIE Marks	100
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives
1.	To gain knowledge about ARM Cortex M series, popularly used in embedded systems as
	processing unit and other Embedded processors.
2.	To study the hardware modules and software tools used in programming an embedded system
3.	To study about device drivers needed for embedded systems and Real time communication
4.	To study application areas of Embedded Systems

Pre-requisites: Microcontrollers

Unit – I

Contact Hours = 8 Hours

Embedded vs General computing system, classification, application and purpose of ES. Core of an Embedded System, Sensors, Actuators, Communication Interface.

ARM-32 bit Microcontroller: Thumb-2 technology and applications of ARM, Architecture of ARM Cortex M3, Various Units in the architecture, General Purpose Registers, Special Registers, exceptions, interrupts, stack operation, reset sequence

Unit – II

Contact Hours = 8 Hours

Hardware Modules: Introduction: MC9S12XD family features, Modes of operation, functional block diagram, overview, programming model. Memory Map Overview of Pulse Width Modulator (PWM), On-chip ADC, Serial Communication. Memory Map Overview of Serial Communication Interface (SCI), Serial Peripheral Interface (SPI), Inter-Integrated Circuit (IIC), Controller Area Network (CAN) **Case Study:** Code warrior IDE

Unit – IIIContact Hours = 8 HoursReal Time Communication: Examples of real-time communication in applications, basic
concepts, Real-time communication in LAN, Soft Real-time communication in LAN, Hard
Real-time communication in LAN, Bounded Access Protocol, Performance comparison, Real-time
comparison over internet, Routing, Multicast routing, resource sharing, traffic shaping
and policing, scheduling mechanisms, QOS models.

Real Time Databases: Example applications of real-time databases, Review of basic database concepts, real-time databases, characteristics of temporal data, concurrency control in real-time databases, commercial real-time databases.

Unit – IV

Linux Fundamentals & Device Driver Programming

Contact Hours = 8 Hours

Linux Fundamentals, Linux Commands, VI Editors, Introduction to Device Driver, The Role of Device Driver, Kernel Module Vs Application, Types of Device Driver, Character Driver, Block Driver & Network Driver

Unit – V	Contact Hours = 8 Hours				
Embedded System Applications: Design multitasking Embedded System to simulate ATM machines,					
mirrors and sun-roofs, Central locking and Electric windows, Cruise control, Multimedia over IP,					
Airbags, Safety critical systems, Battery operated smartcard reader, Automated meter reading system					
Design Case Studies: Prototype model of Dashboard, Lighting system, Power window prototype and					
Sun roof control using DC Motor, Climate control system prototyp	e using temperature sensor.				

Flipped Classroom Details

		TT			
Unit No.	Ι	II	III	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

	Books
	Text Books:
1.	James K. Peckol, "Embedded systems- A contemporary design tool", John Wiley, 2008.
2.	ARM System on Chip Architecture by Steve Furber, Pearson Education.
3.	David E. Simon An Embedded Software Primer, Pearson Education
4.	Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private
	Limited, 2009 and onwards.
5.	Raj Kamal, "Embedded Systems Architecture, programming and design", TMH, 2 nd Edition,
	2008
6.	Application module student learning kit featuring freescale MC9S12XDT512.
7.	CodeWarrior Debugger IDE, NXP semiconductors.
8.	Ross Dickson, Jason Andrews, Jacob Engblom, "Design Flow for Embedded System
	Device Driver Development and Verification".
9.	Michael Opdenacker, "Embedded Linux kernel and driver development".
10.	Rajib Mall, "Real-Time Systems: Theory and Practice," Pearson, 2008.
11.	Krishna and Shin, "Real-Time Systems," Tata McGraw Hill. 1999.

Course delivery methods Assessment methods		Assessment methods	
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Tests (OBT)
4.	Online classes	4.	Course Seminar
		5.	Semester End Examination

At	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning level.)				
	Learning Levels: Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - CreateLearning LevelPO(s)PSO(s)				
1.	Understand the importance of embedded systems in real life.	Un	1	2	
2.	Anlayze the importance of cortex M series compared to other series in embedded systems	Ар	2	2	
3.	Design and implement the concepts of Hardware-Software co-	An	1,3	1,2	

	design to design an Embedded System.			
4.	Apply the knowledge of device drivers for development of embedded systems	Ар	2	2
5.	Design and simulate embedded systems for different application domains	Cr	1,3	1,2

Components	Addition of two IA tests	Online Quiz	Addition of two OBAs	Course Seminar	Total Marks
Marks	25+25 = 50	4* 5 marks = 20	10+10 = 20	10	100
OBA - Open Book Assignment					

Minimum score to be eligible for SEE: 50 OUT OF 100

Scheme	of Semester	End	Examination	(SEE):
benefite	of Demester	Linu	L'Adminution	

1. It will be conducted for 100 marks of 3 hours duration.

- 2. Minimum marks required in SEE to pass: Score should be $\geq 40\%$, however overall score of CIE + SEE should be $\geq 50\%$.
- 3. Question paper contains 3 parts A,B & C, wherein students have to answer any 5 out of 7 questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2 questions in part C.

Sta

	CO-P	O Mapping (Planned)		CO-PSC) Mapping (F	Planned)
CO	PO1	PO2	PO3	PSO1	PSO2	PSO3
1	√				✓	
2			The Des	1	✓	
3	√			1	✓	
4			et if the		✓	
5	✓			✓	✓	✓
		Tick mark (✔) the	CO, PO and PSO map	ping	1	1

Research Methodology and IPR

		0.			
Course Code	22DCN16	Course type	MCC	Credits L-T-P	3 - 0 - 0
Hours/week: L-T-P	3-0-0			Total credits	3
Total Contact Hours	L = 40Hrs; T = 00 Hrs; P = 00Hrs Total = 40Hrs			CIE Marks	100
Flipped Classes content	00 Hrs		SEE Marks	100	

Course	Course learning Objectives		
1.	Understand the basic concepts of research and its methodologies		
2.	Identify and select the appropriate research/sampling design methods.		
3.	Analyze and interpret the data to enable hypothesis testing		
4.	Create the aware nessabout Intellectual Property Rights for the protection of inventions.		

Pre-requisites: Probability & Statistics

Unit–I	8 Hours
Research Methodology: Introduction	
Magning Objectives types Pesserch Approaches Significance of Pesserch	Pasaarah Mathada yaraya Mathadalagu

Meaning, Objectives, types, Research Approaches. Significance of Research, Research Methods versus Methodology, Research and scientific method, research Process, Criteria of good research, Problems encountered by researchers.

Research Problem:

Defining a research problem, Selecting a research problem, necessity and techniques involved in defining the research problem.

Unit–II	8 Hours
THE THE THE	

Research Design:

Meaning, need for research design, features of a good design, important concepts relating to research design, different research designs, Basic principles of experimental designs, developing a research plan.

Sampling design:

Implications of a sample design, Steps in sample design, criteria of selecting a sampling procedure, characteristics of a good sample design, different types of sample designs, Random Sample and complex random sample designs.

Unit–III 8 Hours **Data Collection Methods:**

Collection of Primary Data, Observation Method, Interview Method, Questionnaires, Schedules, Other Methods of Data Collection, Collection of Secondary Data, Case study method.

Processing and Analysis of Data

Processing operations, Elements/ types of analysis, Statistics in research- measures of central tendency or statistical averages, measures of dispersion, measures of asymmetry (skewness), measures of relationship, Simple regression analysis, Multiple correlation and regression, Partial correlation, Association in case of attributes,

Unit– IV	8 Hours
Testing of hypotheses- Basic concepts, procedure for hypothesis testing, flow diag	gram, Test of hypothesis,
procedure for hypothesis testing, Hypothesis for means, difference between means	s, comparing two related
samples, proportions, difference between proportions, comparing a variance to some	hypothesized population
variance, power of test,.	
Chi-square test: $\chi 2$ test and their applications in research studies.	
Analysis of variance: Basic principles of ANOVA ANOVA technique setting up	of analysis of variance

TT •4 TT7

0.11

Analysis of variance: Basic principles of ANOVA, ANOVA technique, setting up of analysis of variance table, one way, ANOVA, two way ANOVA, ANOVA in Latin square Design.

Unit-V8 HoursIntellectual Property Rights – IPR- Invention and Creativity- Intellectual Property-Importance and Protection
of Intellectual Property Rights (IPRs)- A brief summary of: Patents, Copyrights, Trademarks, Industrial Designs-
Integrated Circuits-Geographical Indications-Establishment of WIPO-Application and Procedures. Research
ethics, Plagiarism, Prior art search.
Interpretation and Report Writing: Meaning of interpretation, Why interpretation, Technique of interpretation,
Precaution in interpretation, Significance of report writing, Different steps in writing report, Layout of the
research report, Types of reports, Mechanics of writing research report.8 Hours

	Self-Study Topics				
UnitNo.	UnitNo. Topic description				
I Significance of Research Methodology.					
II	Implications of a sample design.				
III	Other measures-Index numbers, Time series analysis.				
IV Limitations of test of hypothesis.					
V	Precautions for writing research reports.				

	1974 g 1000					
	Books					
	Text Books:					
1.	C R. Kothari, Research Methodology, New Age International Publishers, 2nd edition, 2007.					
	Reference Books:					
1.	Panneer Selvam, Research Methodology, PHI Learning Pvt. Ltd., 2007.					
2.	Dr. B.L. Wadhera -Intellectual Property Rights, Universal Law Publishing Co. Ltd 2002					
	William G Zikmund, Business Research Methods, Indian edition, South western Publishers, 8th					
	Indian Reprint – 2009.					
	E-resourses (NPTEL/SWAYAM. Any Other)- mention links					
1.	https://onlinecourses.swayam2.ac.in/cec20_ge37 (Research Methodology)					

	Course delivery methods		Assessment methods
1.	Lecture and Board	1.	Assignments and Open Book Assignments
2.	NPTEL/ Edusat	2.	Quizzes
3.	PowerPoint Presentation	3.	Internal Assessment Tests
4.	Videos	4.	Semester End Examination

	Course Outcome (COs)						
Lea	arning Levels:						
	Re - Remember; Un - Understand; Ap - Apply; An - Analy	vsis; Ev - Eva	luate; (Cr - Create			
At	At the end of the course, the student will be able to Learning PO(s) PSO(s)						
1.	Identify and select an appropriate methodology for research.	Re	1	1			
2.	Design and Apply suitable research/sampling procedure for the research problem.	Ар	1	1			
3.	Analyze and interpret data collected & Evaluate various approaches for hypothesis testing.	An	1,2,3	1,2,3			
4.	Discuss the significance of Intellectual Property Rights & report writing	Ev	1,2,3	2,3			

Components	Addition of two IA tests	Addition of two OBAs	Course Seminar	Total Marks		
Marks	30+30= 60	10+10 =20	20	100		
OBA - Open Book Assignment Minimum score to be eligible for SEE: 50 OUT OF 100						

Sch	Scheme of Semester End Examination (SEE):				
1.	It will be conducted for 100 marks of 3 hours duration.				
2.	Minimum marks required in SEE to pass: Score should be $\geq 40\%$, however overall score of				
	CIE + SEE should be \geq 50%.				
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7				
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2				
	questions in part C.				

CO-PO Mapping (Planned)				CO-PSO Mapping(Planned)		
СО	PO1	PO2	PO3	PSO1	PSO2	PSO3
1	~			 ✓ 		
2	~			~		
3	~	~	~	~	~	~
4	 ✓ 	~	~		~	~

Communication Networks Laboratory

Course Code	22DCNL17	Course type	PCCL	Credits L-T-P	0 - 0 - 2
Hours/week: L-T-P	0 - 0 - 4			Total credits	2
Total Contact Hours	L = 0 Hrs; $T =Total = 48 Hrs$	0 Hrs; P = 48 H	rs	CIE Marks	100
				SEE Marks	100

	Course learning objectives				
1.	To understand the working principle of various communication protocols.				
2.	To analyze the various routing algorithms.				
3.	To know the concept of data transfer between nodes.				
4.	To design small enterprise networks				

Required Knowledge of: Communication Engineering, Computer communication

5	7
Topics to be covered	Contact Hours = 10 Hours
Types of networks: LAN, WAN, MAN and PAN. IP addressing, ns2 simulation, Sample code for ns2 basics. Installation and int tracer. Object explore, Node Configuration, interface types, c Introduction to Wire shark, Packet Capturing and Analyzing, Data filters.	roduction of simulation tool packet hannel selection, IP configuration.
Orientation session on open ended experiment and course project	Contact Hours = 02 Hours

List of Experiments

	No. of Experiments	Topic(s) related to Experiment						
2. Implement extended service set in multiple node communication scenarios and determine the performance of the network with respect to transmission of packets. 3. Implement an enterprise network using N nodes and plot the congestion window. 4. Simulate mobile network with wireless LAN. 5. Implement network of N nodes with random delay and bandwidth. Using drop tail queue of 10, show the packet flow under i) Simplex link ii) Duplex links The following experiments shall be conducted using wireshark/ Packet Tracer (analyzer tool/configure tool) 6. Simulation of home/office LAN network using N nodes. 7. Design and Simulate the DHCP server configuration. 8. Design and simulate the IOT home automation application. 9. Simulate the soil sensing and control using IOT application. 10. Implement and simulate the Border gateway routing protocol. 11. Implement and simulate the Border gateway routing protocol. 12. Open ended experiment: Implementation of Information exchange between moving		The following experiments shall be conducted using NS2/ NS3 Network Simulator						
the performance of the network with respect to transmission of packets. 3. Implement an enterprise network using N nodes and plot the congestion window. 4. Simulate mobile network with wireless LAN. 5. Implement network of N nodes with random delay and bandwidth. Using drop tail queue of 10, show the packet flow under i) Simplex link ii) Duplex links The following experiments shall be conducted using wireshark/ Packet Tracer (analyzer tool/configure tool) 6. Simulation of home/office LAN network using N nodes. 7. Design and Simulate the DHCP server configuration. 8. Design and simulate the IOT home automation application. 9. Simulate the soil sensing and control using IOT application. 10. Implement and simulate the Border gateway routing protocol. 11. Implement and simulate the Border gateway routing protocol. 12. Open ended experiment: Implementation of Information exchange between moving	1.	Simulate a point-to-point network with N nodes and duplex links between them.						
4. Simulate mobile network with wireless LAN. 5. Implement network of N nodes with random delay and bandwidth. Using drop tail queue of 10, show the packet flow under i) Simplex link ii) Duplex links The following experiments shall be conducted using wireshark/ Packet Tracer (analyzer tool/configure tool) 6. Simulation of home/office LAN network using N nodes. 7. Design and Simulate the DHCP server configuration. 8. Design and simulate the IOT home automation application. 9. Simulate the soil sensing and control using IOT application. 10. Implement and simulate the Border gateway routing protocol. 11. Implement and simulate the Border gateway routing protocol. 12. Open ended experiment: Implementation of Information exchange between moving	2.							
 5. Implement network of N nodes with random delay and bandwidth. Using drop tail queue of 10, show the packet flow under i) Simplex link ii) Duplex links The following experiments shall be conducted using wireshark/ Packet Tracer (analyzer tool/configure tool) 6. Simulation of home/office LAN network using N nodes. 7. Design and Simulate the DHCP server configuration. 8. Design and simulate the IOT home automation application. 9. Simulate the soil sensing and control using IOT application. 10. Implement and simulate the Routing Information Protocol. 11. Implement and simulate the Border gateway routing protocol. 12. Open ended experiment: Implementation of Information exchange between moving 	3.	Implement an enterprise network using N nodes and plot the congestion window.						
of 10, show the packet flow under i) Simplex link ii) Duplex links The following experiments shall be conducted using wireshark/ Packet Tracer (analyzer tool/configure tool) 6. Simulation of home/office LAN network using N nodes. 7. Design and Simulate the DHCP server configuration. 8. Design and simulate the IOT home automation application. 9. Simulate the soil sensing and control using IOT application. 10. Implement and simulate the Routing Information Protocol. 11. Implement and simulate the Border gateway routing protocol. 12. Open ended experiment: Implementation of Information exchange between moving	4.	Simulate mobile network with wireless LAN.						
(analyzer tool/configure tool)6.Simulation of home/office LAN network using N nodes.7.Design and Simulate the DHCP server configuration.8.Design and simulate the IOT home automation application.9.Simulate the soil sensing and control using IOT application.10.Implement and simulate the Routing Information Protocol.11.Implement and simulate the Border gateway routing protocol.12.Open ended experiment: Implementation of Information exchange between moving	5.							
 6. Simulation of home/office LAN network using N nodes. 7. Design and Simulate the DHCP server configuration. 8. Design and simulate the IOT home automation application. 9. Simulate the soil sensing and control using IOT application. 10. Implement and simulate the Routing Information Protocol. 11. Implement and simulate the Border gateway routing protocol. 12. Open ended experiment: Implementation of Information exchange between moving 		The following experiments shall be conducted using wireshark/ Packet Tracer						
 7. Design and Simulate the DHCP server configuration. 8. Design and simulate the IOT home automation application. 9. Simulate the soil sensing and control using IOT application. 10. Implement and simulate the Routing Information Protocol. 11. Implement and simulate the Border gateway routing protocol. 12. Open ended experiment: Implementation of Information exchange between moving 		(analyzer tool/configure tool)						
8. Design and simulate the IOT home automation application. 9. Simulate the soil sensing and control using IOT application. 10. Implement and simulate the Routing Information Protocol. 11. Implement and simulate the Border gateway routing protocol. 12. Open ended experiment: Implementation of Information exchange between moving	6.	Simulation of home/office LAN network using N nodes.						
9. Simulate the soil sensing and control using IOT application. 10. Implement and simulate the Routing Information Protocol. 11. Implement and simulate the Border gateway routing protocol. 12. Open ended experiment: Implementation of Information exchange between moving	7.	Design and Simulate the DHCP server configuration.						
 Implement and simulate the Routing Information Protocol. Implement and simulate the Border gateway routing protocol. Open ended experiment: Implementation of Information exchange between moving 	8.	Design and simulate the IOT home automation application.						
11.Implement and simulate the Border gateway routing protocol.12.Open ended experiment: Implementation of Information exchange between moving	9.	Simulate the soil sensing and control using IOT application.						
12. Open ended experiment: Implementation of Information exchange between moving	10.	Implement and simulate the Routing Information Protocol.						
	11.							
venicies.	12.	Open ended experiment: Implementation of Information exchange between moving vehicles.						

	Books				
	Text Books:				
1.	Larry Peterson and Bruce S Davis, "Computer Networks: A System Approach" 5th Edition,				
	Elsevier, 2014.				
	E-resourses (NPTEL/SWAYAM. Any Other)- mention links				
1.	https://onl.kmi.open.ac.uk/				
2.	https://www.wireshark.org/				
3.	https://www.isi.edu/nsnam/ns/				

r

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project	
3.	Flipped Classes	3.	Lab Test	
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination	
5.	Virtual Labs (if present)			

	Course Outcome (COs)			
Lear	ming Levels:			
R	e - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev	- Evaluate;	Cr - C	Create
Λ t tŀ	e end of the course, the student will be able to	Learning	PO(s)	PSO(s)
Atu	le end of the course, the student will be able to	Level	10(8)	1 50(5)
1.	Evaluate the performance of computer networks with n nodes.	Ev	1,3	2
2.	Identify and explain current technology trends for the implementation and deployment of wireless network routing.	Ap	1,3	2
3.	Design a network with appropriate protocols selected according to requirement.	An	1,2	2
4.	Analyze performance of various communication protocols.	An	1,2	2

Lab CIE:

IA	Journal submission	Conduction and Viva	Course Project
25	25	20+10	20
IA Test:			
1. No object	ive part in IA question pape	THE OF ALL	
2. All questi	ons are experiments.	A STON COL	
Conduct of	Lab:		
1. Lab IA: 2	5 marks	MALLING ZA	
2. Lab Journ	nal: 25 marks		
3. Daily lab	execution and viva (average	e): 30 marks	
4. Submission	on of course project: 20 mai	ks	
Lab test: (E	Batchwise with 15 students	/batch)	
1. Test will	be conducted at the end of t	he semester	
2. Conduction	ng the experiment and writin	ng report: 5 marks	
3. Calculation	ons, results, graph and concl	lusion: 10 marks	
4. Viva voce	e: 10 marks	MI THE	
Eligibility f	or SEE:	steller with	
1. 50% and	above (50 marks and above		

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: 40 out of 100
3.	Two questions will be asked and student should execute both. Exam includes quiz and viva voce.

CO-PO Mapping (Planned)			CO-PSO Mapping (Planned)			
СО	PO1	PO2	PO3	PSO1	PSO2	PSO3
1	\checkmark		✓		√	
2	✓		✓		✓	
3	✓	✓			✓	
4	✓	✓			✓	
		Tick mark (✓) the (CO, PO and PSO	mapping	•	

Advanced Digital Communication

Course Code	22DCN21	Course type	PCC	Credits L-T-P	3-0-0
Hours/week: L-T-P	3-0-0		Total credits	3	
Total Contact Hours	L = 40 Hrs; T = 0 Hrs; P = 0 Hrs $Total = 40 Hrs$		CIE Marks	100	
Flipped Classes content	10Hrs			SEE Marks	100

	Course Learning Objectives (CLOs)
1.	Understand the mathematical modeling of wired and wireless channels,
	I-Q modulation and demodulation principles, Bit and carrier Synchronization.
2.	To Study Equalization Techniques and types of adaptive equalizers used in Digital
	communication systems.
3.	To know the importance of Block and Convolutional coded communication systems.
4.	To Study the principles of Multicarrier Modulation systems.
5.	To know the importance and future of Semantic Communications.

Pre-requisites: Digital Communication and Information Theory.

Unit – I	8 Hours
Introduction mathematical models for communication channel:	·
Communication channels and their characteristics, Mathematical models for comm	nunication channels.
Introduction to Wireless channels Rayleigh and Rician channels, Mathematical	models for wireless
channels, Coherent and noncoherent communication systems,	
Carrier Synchronization-Bit synchronization. Mth power loop, I-Q modulation	and demodulation,
Importance of I-Q Carriers in digital communication.	

Unit – II	8 Hours
Equalization Techniques:	

Why Equalizers are used in Communication, Types of Equalizers used in Digital communication, Linear Equalizer-Decision feedback equalization-Adaptive Equalization and Adaptive Equalization Algorithms. Self-recovering (Blind)equalizers. Block diagram of different types of adaptive Equalizers and their working.

Unit – III	8 Hours
Block and Convolutional Coded Digital Communication:	
Architecture and performance-Binary block codes; Modified Linear Block cod	es, Orthogonal;
Biorthogonal; Trans orthogonal-Shannon's channel coding theorem; Channel capacit	y, Linear block
codes; Reed-Muller codes – Space time block codes. Convolutional codes Representatio	n of codes using
Polynomial, State diagram, Tree diagram, and Trellis diagram. Decoding techniques	using Maximum
likelihood, Viterbi algorithm, Turbo Coding.	-

Unit – IV	8 Hours

Multichannel, Multicarrier and OFDM Systems:

Multichannel Digital Communications in AWGN Channels, Binary Signals, M-ary Orthogonal Signals, Single -Carrier verses Multicarrier Modulation, OFDM, Modulation and Demodulation in an OFDM System, An FFT Algorithm Implementation of an OFDM system, Generation of sub-carriers using the IFFT algorithm.

Unit – V	8 Hours			
Introduction to Semantic Communication: A 3-Level communication Model, Semantic Information				
source and Destination, Principles and challenges, Semantic Communication system	stem for object			
recognition, Comparison of conventional and Semantic communication systems, Seman	ntic Channel and			
Semantic Channel Capacity, Semantic Rate distortion and Information Bottleneck, The r	nain components			
in a Semantic Communication system, Semantic OSI model, Semantic Noise, Text Sen	nantic Similarity,			
Image Semantic Similarity, Speech Quality Measurement, Deep Learning Based Ima	ige compression,			
Semantic Communications for image/video transmission.				

Unit No.	I	FIEN	m	IV	V
No. for Flipped Classroom Sessions	2 8	2		2	2

OUTE OF TE

	Books					
	Text Books:					
1.	Bernard Sklar, "Digital Communications", 2 nd edition, Pearson Education, 2001.					
2.	John G. Proakis, "Digital Communication", 4th edition, Mc Graw Hill Publication, 2001.					
3.	IEEE Transactions on Semantic Communications.					
	Reference Books:					
1.	Simon Haykin, "Digital communications", John Wiley and sons, 1998.					
2.	Shu Lin and Daniel J. Costello, "Error control coding", Pearson – Prentice Hall Publication, 2004.					

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Tests (OBT)
4.	Online classes	4.	Course Seminar
		5.	Semester End Examination

	Course Outcome (COs)							
Lear	Learning Levels:							
R	e - Remember; Un - Understand; Ap - Apply; An - Analysis; I	Ev - Evaluate	e; Cr - (Create				
At th	At the end of the course, the student will be able to Learning PO(s) PSO(s)							
1.	Understand and apply mathematical modelling of channels and equalization techniques.	Ар	1,3	1,2				
2.	 Apply various channel coding and multicarrier modulation techniques for effective utilization communication resources like bandwidth and power. 		1, 3	1,2				
3.	Understand the limitations of existing digital communication systems and apply semantic communication techniques for error free and effective data transmission.	Ap	1, 3	1,2				

Components	Addition of two IA tests	Online Quiz	Addition of two OBAs	Course Seminar	Total Marks	
Marks	25+25 = 50	4* 5 marks = 20	10+10 =20	10	100	
OBA - Open Book Assignment Minimum score to be eligible for SEE: 50 OUT OF 100						

71

Minimum score to be eligible for SEE: 50 OUT Scheme of Semester End Examination (SEE):

~ • •	
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be $\geq 40\%$, however overall score of
	CIE + SEE should be \geq 50%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2
	questions in part C.
-	

	CO-PO	Mapping (Planned)		CO-PSO	Mapping (Planned)	
СО	PO1	PO2	PO3	PSO1	PSO2	PSO3	
1	✓		✓	✓	√		
2	✓		✓	✓	√		
3	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
	Tick mark (✓) the CO, PO and PSO mapping						

Antenna Theory and Design

Course Code	22DCN22	Course type	IPCC	Credits L-T-P	3 - 0 - 2
Hours/week: L - T- P	3-0-2	·		Total credits	4
Total Contact Hours	L = 40 Hrs; T = 0 Hrs; P = 20 Hrs $Total = 60 Hrs$			CIE Marks	100
Flipped Classes content	Nil			SEE Marks	100

	Course learning objectives			
1.	To introduce important parameters of antenna and develop EM equations of dipole and loop.			
2.	To explore the arrays of antenna and array synthesis techniques.			
3.	To understand the operation of resonant and antennas and broadband antennas.			
4.	To introduce aperture antennas and computational electromagnetic techniques applied to			
	antennas.			

Pre-requisites: Antenna basics

Unit – I

Contact Hours = 8 Hours

Definition and significance of important antenna parameters – Antenna, Isotropic antenna, practical antenna, beam width, Directive gain and power gain, radiation resistance, antenna aperture, near and far field regions and polarization.

Derivation of EM field components of infinitesimal dipole and small loop antenna.

Comparison of field patterns, radiation resistance and directivity of dipole and loop antennas.

 Unit – II
 Contact Hours = 8 Hours

 Arrays: Array factor for linear arrays, uniformly excited equally spaced linear arrays, Pattern multiplication, Directivity of linear arrays, Nonuniformly excited equally spaced linear arrays, Mutual coupling.

Antenna Synthesis: Formulation of the synthesis problem, Synthesis principles, Line sources shaped beam synthesis, Linear array shaped beam synthesis, Fourier series, Woodward - Lawson sampling method, Comparison of shaped beam synthesis methods, low side lobe narrow main beam synthesis methods, Dolph Chebyshev linear array, Taylor line source method.

Self-study: Use of antenna arrays in practical applications – Rhombic array, Multiple Unit Steerable Antenna (MUSA).

Unit – IIIContact Hours = 8 HoursResonant Antennas: Wires and Patches, Dipole antenna, Yagi-Uda antennas, Micro-strip antenna.Broadband antennas: Traveling wave antennas Helical antennas, Biconical antennas, Sleeve
antennas, and Principles of frequency independent antennas, Spiral antennas, and Log - periodic
antennas.

Unit – IV Contact Hours = 8 Hours	
---------------------------------------	--

Aperture antennas: Techniques for evaluating gain, Reflector antennas- Parabolic reflector antenna principles, Axi-symmetric parabolic reflector antenna, Offset parabolic reflectors, Dual reflector antennas, Gain calculations for reflector antennas, Feed antennas for reflectors, Field representations, Matching the feed to the reflector, General feed model, Feed antennas used in practice.

Unit – V

Contact Hours = 8 Hours

CEM for antennas: The method of moments: Introduction of the methods moments, Pocklington's integral equation, Integral equation and Kirchhoff's networking equations, Source modeling weighted residual formulations and computational consideration, Calculation of antenna and scatter characteristics.

1. N	Measurement of directivity and gain of microstrip antennas: a. Dipole b. Patch
	h Patch
	0. Taten
2. I	Design and Simulation of Dipole antenna and measurement of characteristics of the same.
3. I	Design and Simulation of Loop antenna and measurement of characteristics of the same.
4. E	Design and Simulation of Helical antenna and measurement of characteristics of the same.
5. E	Design and Simulation of Patch antenna and measurement of characteristics of the same.
6. I	Design and Simulation of N element linear array of dipole and loop – using array factor and
p	principle of pattern multiplication.
7. I	Design and Simulation of NxN planar arrays of isotropic point sources.
8. A	Antenna array synthesis using Dolph Chebyshev method.
9. E	Design and simulation of an antenna for a given application. (open ended)

	Books			
	Text Books:			
1.	Stutzman and Thiele, 'Antenna Theory and Design', John Wiley, 2 nd Edition, 2010			
	Reference Books:			
1.	C. A. Balanis, 'Antenna Theory Analysis and Design', John Wiley, 2 nd Edition, 2007			
2.	J. D. Krauss, 'Antennas and Wave Propagation', McGraw Hill TMH, 4th Edition, 2010			
3.	A. R. Harish, M. Sachidanada, 'Antennas and propagation', Pearson Education, 2015			

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Tests (OBT)
4.	Online classes	4.	Course Seminar
		5.	Semester End Examination

	Course Outcome (COs)							
At	At the end of the course, the student will be able to (Highlight the action verb representing the learning							
level.)								
Learning Levels: Re - Remember; Un - Understand; Ap - Apply;								
An - Analysis; Ev - Evaluate; Cr - Create		Level	PO(s)	PSO(s)				
1.	Understand the basic parameters of various types of antennas and	Un	1,3	1				
	computational electromagnetic techniques applied to antennas.	UII						
2.	Design various antennas for the specified application or for given	٨٣	1,3	1,2				
	design constraints.	Ар						
3.	Analyze the designed antenna for various performance	An	1,3	1,2				
	parameters.	An						

Scheme of Continuous Internal Evaluation (CIE):

For integrated courses, a lab test also will be conducted at the end of the semester.

The lab test (COMPULSORY) will be part of the CIE. No SEE for Lab.

THEORY (60 marks)			LAB (40 marks)		
IA test 1	IA test 2	Assignment (OA/Lab Project/ Industry assignment/Course Project)	Conduction	Lab test	Total
25 marks	25 marks	10 marks	15 marks	25 marks	100 marks
IA Test:			18 -1		
1. No obje	ctive part in	IA question paper	18/1		
2. All ques	stions descrip	ptive			
Conduct of	of Lab:				
1. Conduct	ting the expe	eriment and journal: 5 marks	Sel		
2. Calculat	tions, results	, graph, conclusion and Outcome: 5	5 marks		
3. Viva vo	ce: 5 marks	and the second			
Lab test: ((Batchwise	with 15 students/batch)	MA		
1. Test will be conducted at the end of the semester					
2. Timetable, Batch details and examiners will be declared by Exam section					
3. Conducting the experiment and writing report: 5 marks					
4. Calculat	tions, results	, graph and conclusion: 10 marks			
5. Viva vo	ce: 10 marks	5			
Eligibility	for SEE:				
1. 50% and	d above (30	marks and above) in theory compo	nent		
2. 50% and	d above (20	marks and above) in lab component	t		
3. Lab test	t is COMPU	JLSORY			
4. Not elig	ible in any c	one of the two components will make	ke the student No	ot Eligible for	SEE

Sch	Scheme of Semester End Examination (SEE):				
1.	It will be conducted for 100 marks of 3 hours duration.				
2.	Minimum marks required in SEE to pass: Score should be $\geq 40\%$ &, however overall score of				
	CIE+SEE should be \geq 50%.				
3.	Question paper contains three parts A,B and C. Students have to answer				
	1. From Part A answer any 5 questions each Question Carries 6 Marks.				
	2. From Part B answer any one full question from each unit and each Question Carries 10 Marks.				
	3. From Part C answer any one full question and each Question Carries 20 Marks.				

	CO-PO Mapping (Planned)				CO-PSO Mapping (Planned)		
С	DO1	DO1	РОЗ	PSO	PSO	PSO	
0	0 PO1	PO2		1	2	3	
1	\checkmark		✓	✓			
2	√		✓	1	✓		
3	\checkmark		✓	✓	✓		
	Tick mark the CO, PO and PSO mapping						

Soft Computing

Course Code	22DCN231	Course type	PEC	Credits L-T-P	3 - 0 - 0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 Hrs; P = 0 Hrs $Total = 40 Hrs$			CIE Marks	100
Flipped Classes content	0 Hours			SEE Marks	100

	Course learning objectives
1.	Introduce the ideas of fuzzy sets, fuzzy logic and use of heuristics based on human experience.
2.	Become familiar with neural networks that can learn from available examples and generalize to
	form appropriate rules for inference systems.
3.	Provide the mathematical background for carrying out the optimization associated with neural
	network learning.
4.	Familiarize with genetic algorithms and other random search procedures useful while seeking
	global optimum in self-learning situations.
5.	Study Elementary Search Advanced Search Techniques.

Pre-requisites: Linear Algebra and Probability theory.

Unit – I

Contact Hours = 8 Hours

Introduction to Soft Computing: What Fuzzy, Artificial Neural Networks, Evolutionary Search Strategies.

Fuzzy Set Theory: Crisp, Fuzzy Sets, Fuzzy Membership Functions, Operations on Fuzzy Sets, Fuzzy Relations, Fuzzy Extension Principle.

Fuzzy Logic: Crisp, Fuzzy Logic Basics, Fuzzy Truth in Terms of Fuzzy Sets, Fuzzy Rules, Fuzzy Reasoning.

Unit – II

Contact Hours = 8 Hours

Fuzzy Inference Systems: Introduction, Fuzzification of the Input Variables, Application of Fuzzy, Operators on the Antecedent Parts of the Rules, Evaluation of the Fuzzy Rules, Aggregation of Output Fuzzy Sets Across the Rules, Defuzzification of the Resultant Aggregate Fuzzy Set, Fuzzy Controllers.

Unit – III

Contact Hours = 8 Hours

Artificial Neural Networks: Basic Concepts- Introduction, Computation in Terms of Patterns, The McCulloch–Pitts Neural Model, The Perceptron, Neural Network Architectures, Activation Functions, Learning by Neural Nets.

Unit – IV	Contact Hours = 8 Hours			
Pattern Classifiers: Ebb, Perceptrons, ADALINE, MADALINE.				
Pattern Associators: Hopfield Networks, Bidirectional Associative Memory.				
Competitive Neural Nets: Kohonen's Self-organizing Map (SOM), Learning Vector Quantization				
(LVQ), Adaptive Resonance Theory (ART).				

Backpropagation: Multi-layer Feedforward Net, The Generalized Delta Rule, The Backpropagation Algorithm.

Unit - VContact Hours = 8 HoursElementary Search Techniques: State Spaces, State Space Search, Exhaustive Search, Heuristic
Search, Production Systems.

Strategies: Natural, Genetic Algorithms (Gas), Multi-objective Genetic Algorithms, Simulated Annealing.

	Books
	Text Books:
1.	Samir Roy and Udit Chakraborty, "Introduction to Soft Computing- Neuro-Fuzzy and Genetic
	Algorithms", Pearson, 2013 and onwards.
	Reference Books:
1.	J. S. R. Jang, C. T. Sun and E. Mizutani, "Neuro-Fuzzy and Soft Computing", PHI, 2004,
	Pearson Education 2004 and onwards.
2.	Timothy J. Ross, "Fuzzy Logic with Engineering Applications", McGraw-Hill, 1997 and
	onwards.
3.	Davis E. Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning",
	Addison Wesley, N.Y., 1989 and onwards.
4.	S. Rajasekaran and G. A. V. Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms",
	PHI, 2003 and onwards.
5.	R. Eberhart, P. Simpson, and R. Dobbins, "Computational Intelligence – PC Tools", AP
	Professional, Boston, 1996 and onwards.

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Tests (OBT)
4.	Online classes	4.	Course Seminar
		5.	Semester End Examination

	Course Outcome (COs)							
At	At the end of the course, the student will be able to (Highlight the action verb representing the learning							
	level.)							
Lear	rning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)				
An -	Analysis; Ev - Evaluate; Cr - Create	Level	10(5)	1 30(8)				
1.	Understand the pattern recognition techniques and apply to real	Ар	1,3	1,2				
1.	time applications.	лμ	1,5	1,2				
2.	Develop fuzzy and neural network algorithms for pattern	Ар	1,3	1,2				
2.	recognition applications.	лμ	1,5	1,2				
3.	Apply search technique algorithms in optimization of neuro/fuzzy	An	1,3	1,2				
5.	models.	Ар	1,5	1,2				

Components	Addition of two IA tests	Online Quiz	Addition of two OBAs	Course Seminar	Total Marks	
Marks	25+25 = 50	4* 5 marks = 20	or 10+10 =20	10	100	
OBA - Open Book Assignment Minimum score to be eligible for SEE: 50 OUT OF 100						

Sch	heme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be $\geq 40\%$, however overall score of
	CIE + SEE should be \geq 50%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2
	questions in part C.

CO-PO Mapping (Planned)			CO-PSO	Mapping (Planned)	
СО	PO1	PO2	PO3	PSO1	PSO2	PSO3
1	✓		✓	✓	✓	
2	✓		✓	 ✓ 	✓	
3	✓		✓	 ✓ 	√	
	Tick mark (✓) the CO, PO and PSO mapping					

Advanced Multimedia Communication

Course Code	22DCN232	Course type	PEC	Credits L-T-P	3 - 0 - 0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 H $Total = 40 Hrs$	Hrs; $P = 0$ Hrs		CIE Marks	100
Flipped Classes content	0 Hours			SEE Marks	100

	Course learning objectives				
1.	Introduce basic concepts of multimedia communication.				
2.	Explore different image compression standards.				
3.	Understand the concepts of digital representation of audio.				
4.	Understand the importance of compression of video and audio for efficient transmission over				
	band limited channel.				
5.	Explore applications of virtual reality in entertainment, business and education.				

Pre-requisites : Basics of Signals and Systems, Digital Signal Processing

Contact Hours = 8 Hours

Basics of Multimedia Technology:

Computers, Communication and Entertainment: Multimedia -An introduction: Framework for multimedia systems; multimedia devices CD Audio. CD-ROM. CD-I: presentation devices and the user interface; multimedia presentation and authoring; professional development tools: LANs & multimedia. Internet, World Wide Web & Multimedia; distribution network ATM & ADSL; multimedia servers & databases: vector graphics; 3-D graphics programs; animation techniques; shading; anti -aliasing; morphing: video on demand.

Unit – II	Contact Hours = 8 Hours

Image Compression & Standards:

Making still images: editing and capturing images; scanning images; computer color models: color palettes; vector drawing; 3 -D drawing and rendering; JPEG-objectives and architecture: JPEG-DCT encoding and quantization, JPEG statistical coding; JPEG predictive loss less coding; JPEG performance; Overview of other image file formats as GIF, TIFF. BMP. PNG etc.

Unit – III	Contact Hours = 8 Hours	
Digital representation of sound: time domain sampled representation; method of encoding the analog		
signals; sub-band coding; Fourier method: transmission of digital sound; digital audio signal		
processing; stereophonic & quadraphonic signal processing; editing sampled sound.		

MPEG Audio and Video compression standard: brief survey of speech recognition and generation; audio synthesis; Musical Instrument Digital Interface (MIDI); digital video and image Compression; MPEG Motion video compression standard; DVI technology: time-based media representation and delivery.

Unit – V

Contact Hours = 8 Hours

Virtual Reality

Applications of multimedia, Intelligent multimedia system, Desktop Virtual Reality (VR). VR operating System, Virtual environment displays and orientation tracking; visually coupled system requirements; intelligent VR software systems. Applications of environments in various fields viz. Entertainment. manufacturing. Business, education, etc.

	Books			
	Text Books:			
1.	John Villamil and Lois Molina, "Multimedia: An Introduction", Prentice Hall of India, 1997			
	onwards.			
2.	Jose Lozano, "Multimedia Sound & Video", Pearson, 1997 onwards.			
	Reference Books:			
1.	John Villamil and Lois Molina, "Multimedia: Production. Planning and Delivery", Prentice Hall			
	of India, 1997 onwards.			
2.	Sinclair, "Multimedia on the PC", BPB Publications, 2008 onwards			

	Course delivery methods Assessment methods			
1.	Chalk and Talk	<u> </u>	IA tests	
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)	
3.	Flipped Classes	3.	Open Book Tests (OBT)	
4.	Online classes	4.	Course Seminar	
		5.	Semester End Examination	

	Course Outcome (COs)					
At	At the end of the course, the student will be able to (Highlight the action verb representing the learning					
	level.)					
Lear	Learning Levels: Re - Remember; Un - Understand; Ap - Apply; Learning					
An - Analysis; Ev - Evaluate; Cr - Create		Level	PO(s)	PSO(s)		
1.	Represent multimedia information by applying various	٨n	1,3	1,2		
1.	compression techniques.	Ар				
2.	Apply audio and video compression standards to conserve	An	1,3	1,2		
۷.	bandwidth.	Ар				
3.	Apply virtual reality techniques to multimedia information.	Ар	1,3	1,2		

Components	Addition of two IA tests	Online Quiz	Addition of two OBAs	Course Seminar	Total Marks
Marks	25+25 = 50	4* 5 marks = 20	10+10 = 20	10	100

OBA - Open Book Assignment

Minimum score to be eligible for SEE: 50 OUT OF 100

Scl	heme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be $\geq 40\%$, however overall score of
	CIE + SEE should be \geq 50%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2
	questions in part C.

	CO-PC) Mapping (Planned)	ECH	CO-PSO	Mapping (Planned)
CO	PO1	PO2	PO3	PSO1	PSO2	PSO3
1	✓	JE		1	✓	
2	✓			1	✓	
3	✓	10/	~ 1/2	1	✓	

Tick mark (✓) the CO, PO and PSO mapping

Information Security

Course Code	22DCN233	Course type	PEC	Credits L-T-P	3-0-0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; $T = 0$ Hrs; $P = 0$ Hrs Total = 40 Hrs			CIE Marks	100
Flipped Classes content	0 Hours			SEE Marks	100

	Course learning objectives			
1.	Explain the network security model.			
2.	Demonstrate use of various private and public key encryption techniques used in modern			
	cryptosystems.			
3.	Explain the concept of digital signatures and authentication protocols.			
4.	Explain the concept of secured electronic transaction with web security considerations.			
5.	Analyze the security issues with Kerberos and E-mails.			

Introduction on Security

Security Goals, Types of Attacks: Passive attack, active attack, attacks on confidentiality, attacks on Integrity and availability, Security services and mechanisms, Techniques: Cryptography, Steganography, Revision on Mathematics for Cryptography.

Case study: Any two watermarking techniques.

Unit – II

Symmetric & Asymmetric Key Algorithms

Substitutional Ciphers, Transposition Ciphers, Stream and Block Ciphers, Data Encryption Standards (DES), Advanced Encryption Standard (AES), RC4, principle of asymmetric key algorithms, RSA Cryptosystem.

Case study: Elliptic curve cryptography.

Unit – III

Contact Hours = 8 Hours

Contact Hours = 8 Hours

Contact Hours = 8 Hours

Integrity, Authentication and Key Management

Message Integrity, Hash functions: SHA, Digital signatures: Digital signature standards. Authentication: Entity Authentication: Biometrics, Key management Techniques. Case study: Any two Biometric authentication techniques.

Unit – IV

Contact Hours = 8 Hours

Network Security, Firewalls and Web Security

Introduction on Firewalls, Types of Firewalls, Firewall Configuration and Limitation of Firewall. IP Security Overview, IP security Architecture, authentication Header, Security payload, security associations, Key Management. Web security requirement, secure sockets layer, transport layer security, secure electronic transaction, dual signature. Case study: VoIP security.

Unit – V	Contact Hours = 8 Hours
----------	--------------------------------

Wireless Network Security

Security Attack issues specific to Wireless systems: Worm hole, Tunneling, DoS. WEP for Wi-Fi network, Security for 4G networks: Secure Ad hoc Network, Secure Sensor Network. Case study: Any two techniques for Ad hoc Network security.

	Books			
	Text Books:			
1.	Behrouz A. Fourouzan, "Cryptography and Network security" Tata McGraw-Hill, 2008 and			
	onwards.			
2.	William Stallings, "Cryptography and Network security: principles and practice", 2nd Edition,			
	Prentice Hall of India, New Delhi,2002 and onwards.			
3.	Atul Kahate, "Cryptography and Network security", 2nd Edition, Tata McGraw-Hill, 2008 and			
	onwards.			
4.	R. K. Nichols and P.C. Lekkas, "Wireless Security".			
5.	H. Yang et al., Security in Mobile Ad Hoc Networks: Challenges and Solution, IEEE Wireless			
	Communications, Feb. 2004.			

		Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)	
3.	Flipped Classes	3.	Open Book Tests (OBT)	
4.	Online classes	4.	Course Seminar	
		5.	Semester End Examination	

Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning					
	level.)				
Lea	rning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO (s)	
An -	Analysis; Ev - Evaluate; Cr - Create	Level	10(8)	1 30(8)	
1.	Apply the information security concepts for symmetric and asymmetric cryptographic applications.	Ар	1,3	1,2	
2.	Apply security algorithms for ensuring data integrity confidentiality and authentication.	Ар	1,3	1,2	
3.	Analyse security enhancement in various networks using firewalls and secure coding.	An	1,3	1,2	

Scheme of Continuous Internal Evaluation (CIE): Theory course

Components	Addition of two IA tests	Online Quiz	Addition of two OBAs	Course Seminar	Total Marks
Marks	25+25 = 50	4* 5 marks = 20	10+10 =20	10	100

OBA - Open Book Assignment Minimum score to be eligible for SEE: 50 OUT OF 100

Scł	Scheme of Semester End Examination (SEE):				
1.	It will be conducted for 100 marks of 3 hours duration.				
2.	Minimum marks required in SEE to pass: Score should be $\geq 40\%$, however overall score of				
	CIE + SEE should be \geq 50%.				
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7				
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2				
	questions in part C.				

	CO-PO Mapping (Planned)					Planned)
CO	PO1	PO2	PO3	PSO1	PSO2	PSO3
1	✓			✓		
2	✓	h		✓	✓	
3	✓	12		✓	✓	
		Tiels meanly (A) the C		•		

Tick mark (✓) the CO, PO and PSO mapping

Modelling Simulation and Analysis of Systems

Course Code	22DCN234	Course type	PEC	Credits L-T-P	3 - 0 - 0
Hours/week: L - T- P	3-0-0		·	Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 H $Total = 40 Hrs$	Hrs; P = 0 Hrs		CIE Marks	100
Flipped Classes content	0 Hours			SEE Marks	100

	Course learning objectives				
1.	Introduce fundamental concepts in mathematical modelling of a system.				
2.	Understand concept of lumped element modelling.				
3.	Explore the modeling of first and second order systems.				
4.	Analysis of systems in the frequency domain.				
5.	Study systems with feedback.				

Pre-requisites: Basic knowledge of Engineering Mathematics, Signals and Systems and Control Systems

 Unit – I
 Contact Hours = 8 Hours

 Fundamental concepts in mathematical modeling: Abstraction, linearity and superposition, balance and conservation laws and the system, boundary approach.

 Unit – II
 Contact Hours = 8 Hours

 Lumped element modeling:
 Mechanical Systems-Translational, rotational. Hydraulic systems.

 Thermal systems.
 RLC Electrical Systems.

Unit – IIIContact Hours = 8 HoursModeling of first order and second order systems:Governing equations for free and forcedresponses, transient response specifications, experimental determination, Laplace transform.

Unit – IVContact Hours = 8 HoursTime domain, frequency domain and state space: Frequency response of Linear, Time invariant
systems, frequency response of first order and second order systems, state space formulations of
systems problems relating frequency response to pole location – transient response-poles and frequency
response.

Unit - VContact Hours = 8 HoursFeedback systems: Systems with feedback – block diagrams – properties of feedback systems –
relative stability-phase and gain margins.

	Books				
	Text Books:				
1.	Philip D Cha, James J Rosenberg and Clive L Dym, "Fundamentals of Modeling and Analyzing				
	Engineering Systems", Cambridge University, 2000.				
2.	Amalendu Mukherjee, Ranjit Karmakar, "Modeling and Simulation of engineering Systems				
	through Bondgraphs", Narosa, 2000.				
	Reference Books:				
1.	Close Frederick, "Modeling and Analysis of Dynamic Systems", Wiley.				
2.	Woods, Robert L., and Lawrence Kent L, "Modeling and Simulation of Dynamic Systems",				
	Prentice Hall, 1997.				

	Course delivery methods Assessment methods		
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Tests (OBT)
4.	Online classes	4.	Course Seminar
	- ITE	5.	Semester End Examination

14	-	1	P	IF		0
2	Co	urse	Out	tcome	e (C	Os)

At	the end of the course, the student will be able to (Highlight the action level.)	n verb repres	enting the	e learning
	rning Levels: Re - Remember; Un - Understand; Ap - Apply; Analysis; Ev - Evaluate; Cr - Create	Learning Level	PO(s)	PSO(s)
1.	Demonstrating the fundamental concepts of mathematical modelling of physical systems.	Un	1,3	1,2
2.	Application of lumped parameter modelling concepts for first and second order systems.	Ap	1,3	1,2
3.	Application and time frequency analysis of feedback systems with differential equation and state variable modellling.	An	1,3	1,2

Γ

Components	Addition of two IA tests	Online Quiz	Addition of two OBAs	Course Seminar	Total Marks
Marks	25+25 = 50	4* 5 marks = 20	10+10 =20	10	100
-	Book Assignmer ore to be eligible		UT OF 100		

Scł	Scheme of Semester End Examination (SEE):		
1.	It will be conducted for 100 marks of 3 hours duration.		
2.	Minimum marks required in SEE to pass: Score should be $\geq 40\%$, however overall score of		
	CIE + SEE should be \geq 50%.		
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7		
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2		
	questions in part C.		

	СО-РО	Mapping (Planned)		CO-PSO	Mapping (Planned)
CO	PO1	PO2	PO3	PSO1	PSO2	PSO3
1	✓		✓	✓		
2	✓		✓	✓	√	
3	✓		✓	✓	√	
	Tick mark (✓) the CO, PO and PSO mapping					

Pattern Recognition and Classification

Course Code	22DCN241	Course type	PEC	Credits L-T-P	3-0-0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 H $Total = 40 Hrs$	Hrs; P = 0 Hrs		CIE Marks	100
Flipped Classes content	0 Hours			SEE Marks	100

	Course learning objectives			
1.	Provide knowledge of models, methods and tools used to solve regression, classification, feature			
	selection and density estimation problems.			
2.	Provide knowledge of current research topics and issues in Pattern Recognition and Machine			
	Learning.			
3.	Provide knowledge of learning and adaptation in supervised modes of learning.			
4.	Provide experience in conducting and presenting a literature review on a research topic.			

Pre-requisites: It is assumed the students have a working knowledge of calculus, linear algebra, and probability theory. It is also assumed the students have some experience in programming in a scientific computing environment.

Unit – I

Contact Hours = 8 Hours

Introduction to Pattern Recognition:

Introduction to Pattern Recognition - Definitions, Datasets for Pattern Recognition, Different Paradigms of Pattern Recognition., Tree Classifiers - Decision Trees: CART, C4.5, ID3, Random Forests, Bayesian Decision Theory.

Unit – II	Contact Hours = 8 Hours

Parameter Estimation Methods:

Maximum Likelihood Estimation (MLE), Maximum A Posteriori Estimation (MAP), Bayes Estimator for multivariate Gaussian density with unknown covariance matrices.

Sequential Pattern Recognition: Hidden Markov Models (HMM), Discrete HMM.

Unit – III	Contact Hours = 8 Hours
Dimensionality Reduction:	
Introduction to Data Reduction, Principal Component Analysis (PC	CA) – Its relation to Eigen Analysis.
Fisher Discriminant Analysis (FDA) – Generalized Eigen Analysis	. Dictionary Learning Methods –

Sparse Coding.

Unit – IV	Contact Hours = 8 Hours
Classification Techniques:	

Introduction to Data Classification, Unsupervised classification methods: k Means and k Nearest Neighborhood, Supervised classification methods: Neural Networks, Support Vector Machine.

Unit – V

Contact Hours = 8 Hours

Applications of Pattern Recognition:

Overview of applications of Pattern Recognition - Text Classification, Image Classification and Speech recognition and classification.

	Books			
	Text Books:			
1.	R. O. Duda, P. E. Hart and D. Stork, "Pattern Classification", (2nd. Edition), Wiley 2002,			
2.	C. Bishop, "Pattern Recognition and Machine Learning", Springer 2006.			
	Reference Books:			
1.	S. Theodoris and K. Koutroumbas, "Pattern Recognition", 4th Edition, Academic Press 2009			
	onwards.			
2.	Simon Haykin, "Neural Networks and Learning Machines", 3rd Edition, Prentice Hall, 2008			
	onwards.			

	Course delivery methods Assessment methods		
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Tests (OBT)
4.	Online classes	4.	Course Seminar
	1	5.	Semester End Examination

At	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning					
	level.)					
Lear	Learning Levels: Re - Remember; Un - Understand; Ap - Apply; Learning					
An -	Analysis; Ev - Evaluate; Cr - Create	Level	PO(s)	PSO(s)		
1.	Understand the role of information as a pattern and apply	Ар	1,3	1,2		
1.	classification techniques to make decisions.	лμ	1,5	1,2		
2.	Apply dimension reduction techniques to reduce feature of any	iny An		1,2		
2.	pattern to classify accurately.	Ар	1,3	1,2		
3.	Develop mathematical models for pattern analysis and	An	1 3	1,2		
5.	classification.	Ар	1,3	1,2		

Components	Addition of two IA tests	Online Quiz	Addition of two OBAs	Course Seminar	Total Marks
Marks	25+25 = 50	4* 5 marks = 20	10+10 =20	10	100

OBA - Open Book Assignment Minimum score to be eligible for SEE: 50 OUT OF 100

Scł	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be $\geq 40\%$, however overall score of
	CIE + SEE should be \geq 50%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2
	questions in part C.

CO-PO Mapping (Planned) CO-PSO Mapping (Planned)						Planned)
CO	PO1	PO2	PO3	PSO1	PSO2	PSO3
1	✓			1	✓	
2	✓		18	1 1	✓	
3	✓	16.6	- 101	1	✓	

Cyber Physical System

Course Code	22DCN242	Course type	PEC	Credits L-T-P	3-0-0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 Hrs; P = 0 Hrs $Total = 40 Hrs$			CIE Marks	100
Flipped Classes content	0 Hours			SEE Marks	100

	Course learning objectives				
1.	Understand the concept of cyber physical systems (CPS) and know the fundamentals				
2.	research challenges in this area.				
3.	Understand the networked interoperability in heterogeneous CPS systems.				
4.	Improving critical reading, presentation, and research skills.				

Pre-requisites: Background in embedded systems and computer networking is necessary.

Unit – I	Contact Hours = 8 Hours		
Introduction, Modeling Dynamic Behaviors, Basics of	Discrete systems, Hybrid systems, Hierarchical		
State machines.			
Self-learning Topics: Data flow and timed models of computation.			

-0

 Unit – II
 Contact Hours = 8 Hours

 Embedded processors, Types and parallelism, Memory Architecture, Technology Heirarchy and Models.

Unit – III	Contact Hours = 8 Hours

I/O, I/O hardware, Sequential Software, Analog/Digital Interface, Multitasking, Imperative programs and threads, Processes and Message passing, Scheduling basics, Rate monotonic, Earliest Deadline first.

Self-learning Topics: Scheduling and Mutual Exclusion, Multiprocessor scheduling.

Unit – IV	Contact Hours = 8 Hours	
Invariants and temporal logic, linear temporal logic, equivalence and refinement, Models as		
specifications, Type equivalence and refinement.		

Unit – V	Contact Hours = 8 Hours	
Open and closed systems, Reachability analysis, Abstraction in model checking, Quantitative		
analysis, Factors determining execution time, Execution time analysis.		

	Books				
	Text Books:				
1.	E. A. Lee and S. A. Seshia, "Introduction to Embedded Systems - A Cyber-Physical Systems				
	Approach", 1st Edition, 2014 and onwards.				
2.	Other readings for this course will be in the form of research papers which will be made				
	available to students during course delivery.				

	Course delivery methods	Assessment methods	
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Tests (OBT)
4.	Online classes	4.	Course Seminar
		5.	Semester End Examination

At	Course Outcome (COs) the end of the course, the student will be able to (Highlight the actio level.)	on verb repres	senting th	e learning
	rning Levels: Re - Remember; Un - Understand; Ap - Apply; Analysis; Ev - Evaluate; Cr - Create	Learning Level	PO(s)	PSO(s)
1.	Understand the networked interoperability in heterogeneous CPS.	Un	1,3	1
2.	Appy system-modeling techniques and timed automata to CPS system design.	Ap	1,3	1,2
3.	Analyze hardware and OS capabilities in CPS.	Ар	1,3	1,2

Components	Addition of two IA tests	Online Quiz	Addition of two OBAs	Course Seminar	Total Marks
Marks	25+25 = 50	4* 5 marks = 20	10+10 =20	10	100

OBA - Open Book Assignment Minimum score to be eligible for SEE: 50 OUT OF 100

Sch	Scheme of Semester End Examination (SEE):				
1.	It will be conducted for 100 marks of 3 hours duration.				
2.	Minimum marks required in SEE to pass: Score should be $\geq 40\%$, however overall score of				
	CIE + SEE should be \geq 50%.				
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7 questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2 questions in part C.				

	CO-PO Mapping (Planned)			CO-PSO Mapping (Planned		
СО	PO1	PO1 PO2 PO3				PSO3
1	√		✓	✓		
2	√		✓	✓	✓	
3	✓		✓	√	✓	
	Tick mark (✓) the CO, PO and PSO mapping					

Optical Networks

Course Code	22DCN243	Course type	PEC	Credits L-T-P	3 - 0 - 0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours $L = 40$ Hrs; $T = 0$ H Total = 40 Hrs		Hrs; $P = 0$ Hrs		CIE Marks	100
Flipped Classes content	0 Hours			SEE Marks	100

	Course learning objectives				
1.	Learn the basic elements of optical fiber transmission link, fiber modes configurations and				
	structures.				
2.	Understand the different kind of losses, signal distortion in optical wave guides and other signal				
	degradation factors.				
3.	Learn the various optical source materials, LED structures, quantum efficiency, Laser diodes.				
4.	Learn the fiber optical network components, variety of networking aspects, FDDI, SONET/SDH				
	and operational principles of WDM.				
5.	Acquire knowledge about fault and congestion management.				

Pre-requisites: Optic Fiber Communication and Computer Communication Networks

Unit – I

Contact Hours = 8 Hours

Client Layers of the Optical Layer: SONET/SDH: Multiplexing, CAT and LCAS, Sonnet/SDH Layers, SONET Frame Structure, SONET/SDH Physical Layer, Elements of a SONET/SDH Infrastructure.

Optical Transport Network: Hierarchy, Frame Structure, Multiplexing, Generic Framing **Procedure Ethernet:** Frame Structure, Switches, Ethernet Physical Layer, Carrier Transport IP: Routing and Forwarding, Quality of Service.

Multiprotocol Label Switching: Labels and Forwarding, Quality of Service, Signaling and Routing, Carrier Transport, Resilient Packet Ring: Quality of Service, Node Structure, Fairness. Storage-Area Networks: Fiber Channel.

Unit – II	Contact Hours = 8 Hours		
WDM Network Elements: Optical Line Terminals, Optical Line A	Amplifiers, Optical Add/Drop		
Multiplexers: OADM Architectures, Reconfigurable OADMs Optical Cross connects: All-Optical			
OXC Configurations.			

Unit – IIIContact Hours = 8 HoursControl and Management Network Management Functions: Management Framework, InformationModel, Management Protocols. Optical Layer Services and Interfacing, Layers within the OpticalLayer, Multivendor Interoperability.

Performance and Fault Management: The Impact of Transparency, BER measurement, Optical

Trace, Alarm Management, Data Communication Network (DCN) and Signaling, Policing, Optical Layer Overhead, Client Layers.

Configuration Management: Equipment Management, Connection Management, Adaptation Management. Optical Safety: Open Fiber Control Protocol.

Unit – IV

Contact Hours = 8 Hours

Protection in SONET/SDH: Point-to-Point Links, Self-Healing Rings, Unidirectional Line-Switched Rings, Bidirectional Line-Switched Rings, Ring Interconnection and Dual Homing, Protection in the Client Layer: Protection in Resilient Packet Rings, Protection in Ethernet, Protection in IP, Protection in MPLS, Why Optical Layer Protection: Service Classes Based on Protection. Optical Layer Protection Schemes: 1+1 OMS Protection, 1:1 OMS Protection, OMS-DPRing, OMS-SPRing, 1:N Transponder Protection, 1+1 OCh Dedicated Protection, OCh-SPRing, OCH-Mesh Protection, GMPLS Protection, Interworking between Layers.

Unit – V

Contact Hours = 8 Hours

WDM Network Design: Cost Trade-OFFS: A Detailed Ring Network Example LTD and RWA Problems, Light path Topology Design, Routing and Wavelength Assignment, Wavelength Conversion. Dimensioning Wavelength- Routing Networks, Statistical Dimensioning Models: First-Passage Model, Blocking Model, Maximum Load Dimensioning Models: Offline Light Path Requests, Online RWA in Rings.

	Books
	Text Books:
1.	Rajeev Ramaswamy, Kumar N Sivarajan and Galen H Sasaki, "Optical Networks", Elsevier
	Publication 3rd Edn. (onwards), 2009.
	Reference Books:
1.	Uyless Black, "Optical Networks-Third generation transport system", Pearson, 2013 and
	onwards.

	Course delivery methods	Assessment methods	
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Tests (OBT)
4.	Online classes	4.	Course Seminar
		5.	Semester End Examination

	Course Outcome (COs)						
At	At the end of the course, the student will be able to (Highlight the action verb representing the learning						
	level.)						
Lea	rning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)			
An - Analysis; Ev - Evaluate; Cr - Create		Level	FO(8)	130(8)			
1.	Understand the architecture of SONET/SDH in optical networks.	Un	1,3	1			
2.	Apply WDMs in optical network for appropriate utilization of network resources.	Ар	1,3	1,2			
3.	Apply secured algorithms to protect data over SONET/SDH optical networks.	Ар	1,3	1,2			

Components	Addition of two IA tests	Online Quiz	Addition of two OBAs	Course Seminar	Total Marks
Marks	25+25 = 50	4* 5 marks = 20	10+10 = 20	10	100

OBA - Open Book Assignment Minimum score to be eligible for SEE: 50 OUT OF 100

Scl	Scheme of Semester End Examination (SEE):				
1.	It will be conducted for 100 marks of 3 hours duration.				
2.	Minimum marks required in SEE to pass: Score should be $\geq 40\%$, however overall score of				
	CIE + SEE should be \geq 50%.				
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7				
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2				
	questions in part C.				

	CO-PO	CO-PSO Mapping (Planned)				
CO	PO1	PO2	PO3	PSO1	PSO2	PSO3
1	✓	JE	1	1		
2	✓			1	✓	
3	✓	1)0//	~~ 5</td <td>11</td> <td>✓</td> <td></td>	11	✓	

Tick mark (✓) the CO, PO and PSO mapping

Statistical Signal Processing

Course Code	22DCN244	Course type	PEC	Credits L-T-P	3-0-0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 Hrs; P = 0 Hrs $Total = 40 Hrs$			CIE Marks	100
Flipped Classes content	0 Hours			SEE Marks	100

Course learning objectives					
1.	Study the statistical modelling techniques for modelling real-world signals and systems.				
2.	Understand the spectrum estimation and optimal filtering techniques.				
3.	Study the concepts of adaptive filtering and array processing with applied to real-world signals				
	and systems.				

Pre-requisites: Basic knowledge of Advanced Engineering Mathematics, Signals and Systems and Digital Signal Processing is required.

 Unit – I
 Contact Hours = 8 Hours

 Random Processes: Random variables, random processes, white noise, filtering random processes, spectral factorization, ARMA, AR and MA processes (Text 1).

 Unit – II
 Contact Hours = 8 Hours

 Signal Modeling: Least squares method, Padé approximation, Prony's method, finite data records, stochastic models, Levinson-Durbin recursion; Schur recursion; Levinson recursion (Text 1).

Unit – IIIContact Hours = 8 HoursSpectrum Estimation: Nonparametric methods, minimum-variance spectrum estimation, maximum
entropy method, parametric methods, frequency estimation, principal components spectrum estimation
(Text 1).

Unit – IVContact Hours = 8 HoursOptimal and Adaptive Filtering: FIR and IIR Wiener filters, Discrete Kalman filter, FIR Adaptive
filters: Steepest descent, LMS, LMS-based algorithms (Text 1).

Unit – VContact Hours = 8 HoursArray Processing: Array fundamentals, beam-forming, optimum array processing, performance
considerations, adaptive beamforming, linearly constrained minimum-variance beam-formers, side-
lobe cancellers (Text 2).

	Books					
	Text Books:					
1.	Monson H Hayes, 'Statistical Digital Signal Processing and Modeling', John Wiley & Sons					
	(Asia) Pvt. Ltd., 2002.					
2.	Dimitris G. Manolakis, Vinay K. Ingle, and Stephen M. Kogon, 'Statistical and Adaptive Signal					
	Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing',					
	McGraw Hill International Edition, 2000.					

Course delivery methods		Assessment methods	
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Tests (OBT)
4.	Online classes	4.	Course Seminar
		5.	Semester End Examination

Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning level.)						
	rning Levels: Re - Remember; Un - Understand; Ap - Apply; • Analysis; Ev - Evaluate; Cr - Create	Learning Level	PO(s)	PSO(s)		
1.	Apply the concepts of random processes for the modelling of signals and systems.	Ap	1,3	1,2		
2.	Apply various spectrum estimation techniques for the spectral analysis of real-world signals.	Ap	1,3	1,2		
3.	Apply optimal filtering and array processing techniques for analysis of real-world signals.	Ap	1,3	1,2		

Components	Addition of two IA tests	Online Quiz	Addition of two OBAs	Course Seminar	Total Marks	
Marks	25+25 = 50	4* 5 marks = 20	10+10 = 20	10	100	
OBA - Open Book Assignment						

OBA - Open Book Assignment Minimum score to be eligible for SEE: 50 OUT OF 100

Scł	cheme of Semester End Examination (SEE):					
1.	It will be conducted for 100 marks of 3 hours duration.					
2.	Minimum marks required in SEE to pass: Score should be $\geq 40\%$, however overall score of					
	CIE + SEE should be \geq 50%.					
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7					
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2					
	questions in part C.					

	CO-PO Mapping (Planned)				Mapping (Planned)
СО	PO1	PO2	PO3	PSO1	PSO2	PSO3
1	√		✓	✓	√	
2	√		✓	✓	√	
3	✓		✓	✓	√	
	Tick mark (✓) the CO, PO and PSO mapping					

Advanced Communication laboratory

Course Code	22DCNL26	Course type	PCCL	Credits L-T-P	0-0-2
Hours/week: L - T- P	0 - 0 - 4			Total credits	2
Total Contact Hours	L = 0Hrs; T = 0 Hrs; P = 48 Hrs $Total = 48 Hrs$			CIE Marks	100
Flipped Classes content	Nil			SEE Marks	100

	Course learning objectives					
1.	To study the effect of SNR variation on BER.					
2.	2. To study the use of channel equalizers in digital communication.					
3.	3. To know the importance of adaptive signal processing applied to digital communication					
	systems.					

Required Knowledge of: Digital Communication, Information Theory and Coding and Digital Signal Processing.

1

Topics to be covered	Contact Hours = 10 Hours					
Review of RF digital modulation techniques - ASK, FSK, PSK and QPSK, effect ISI, Probability of						
error, Bit error rate.	$\langle C \rangle$					
Significance of Signal constellation, Effect of SNR on BER. In	troduction to communication tool box					
and useful commands.	C					
Introduction to Rayleigh distribution, Rayleigh channel modelling	g, Rayleigh fading.					
Gaussian distribution and AWGN channel Modelling.						
Introduction to equalizers, adaptive equalizers, types – ZFE and MMSE.						
Introduction to adaptive signal processing, adaptive systems, basic applications, introduction to LMS						
algorithm, significance of learning curve.						
Orientation session on open ended experiment and course project	Contact Hours = 02 Hours					

List of Experiments

Expt. No.	Topic(s) related to Experiment				
1.	To study the effect of ISI in Amplitude Shift Keying using Signal Constellation and to				
	analyze the effect of SNR variation on error probability.				
2.	To study the effect of ISI in Frequency Shift Keying using Signal Constellation and to				
	analyze the effect of SNR variation on error probability.				
3.	To study the effect of ISI in Phase Shift Keying using Signal Constellation and to analyze				
	the effect of SNR variation on error probability.				
4.	To study the effect of ISI in Quadrature Phase Shift Keying (QPSK) using Signal				
	Constellation and to analyze the effect of SNR variation on error Probability.				
5.	To study the effect of BER against SNR for QPSK modulation in Rayleigh fading channel				
	& AWGN channel.				
6.	To study the effect of BER against SNR for M-ary QAM with Rayleigh fading channel &				
	AWGN channel.				

7.	To study the effect of BER against SNR for BPSK Modulation with ZFE Equalizer In 3 Tap
	ISI Channel.
8.	To study the effect of BER against SNR for BPSK modulation with Minimum Mean Square
	Error (MMSE) equalization in 3 tap ISI channels.
9.	Comparative analysis of BER for BPSK modulation in 3 tap ISI channels with ZFE and
	MMSE Equalization.
10.	To study the performance of Least Mean Square (LMS) Algorithm for adaptive filtering
	applications.

	Books			
	Text Books:			
1.	Bernard Sklar, "Digital Communications", 2 nd edition, Pearson Education, 2001.			
2.	John G. Proakis, "Digital Communication", 4th edition, Mc Graw Hill Publication, 2001.			
	Reference Books:			
1.	Simon Haykin, "Digital communications", John Wiley and sons, 1998.			
2.	Shu Lin and Daniel J. Costello, "Error control coding", Pearson – Prentice Hall Publication,			
	2004. OF E OF E			

Course delivery methods		Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project	
3.	Flipped Classes	3.	Lab Test	
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination	
5.	Virtual Labs (if present)			

	Course Outcome (COs)				
Lea	rning Levels:				
Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create					
At the end of the course, the student will be able to			PO(s)	PSO(s)	
1.	Apply the various RF digital modulation and equalization techniques.		1,3	1,2	
2.	2. Apply LMS algorithms for adaptive filtering applications.		1,3	1,2	
3.	Analyze channel performance in terms of SNR and BER variation.	An	1,3	1,2	

Scheme of Continuous Internal Evaluation (CIE): Lab CIE:

IA	Journal submission	Conduction and Viva	Course Project			
25	25	20+10	20			
IA Test:						
1. No objective part in IA question paper						
2. All questi	2. All questions are experiments.					
Conduct of	Conduct of Lab:					

1. Lab IA: 25 marks

2. Lab Journal: 25 marks

3. Daily lab execution and viva (average): 30 marks

4. Submission of course project: 20 marks

Lab test: (Batchwise with 15 students/batch)

1. Test will be conducted at the end of the semester

- 2. Conducting the experiment and writing report: 5 marks
- 3. Calculations, results, graph and conclusion: 10 marks

4. Viva voce: 10 marks

Eligibility for SEE:

1. 50% and above (50 marks and above)

Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration.

- 2. Minimum marks required in SEE to pass: 40 out of 100
- 3. Two questions will be asked and student should execute both. Exam includes quiz and viva voce.

CO-PO Mapping (Planned)				CO-PSO	CO-PSO Mapping (Planned)		
CO	PO1	PO2	PO3	PSO1	PSO2	PSO3	
1	\checkmark	Jahren 1	1 4 9	1	✓		
2	√				✓		
3	✓	10/	~ 1/5	1	✓		

Tick mark (✓) the CO, PO and PSO mapping