

KARNATAK LAW SOCIETY'S GOGTE INSTITUTE OF TECHNOLOGY "JNANA GANGA" UDYAMBAG, BELAGAVI-590008, KARNATAKA, INDIA. Approved by AICTE and UGC Permanently Affiliated and Autonomous Institution Under Visvesvaraya Technological University, Belagavi www.git.edu

ESTD. 1979

5th to8th Semester B.E.

Electronics and Communication Engineering Scheme and Syllabus (2022 Scheme)

INSTITUTION VISION

Gogte Institute of Technology shall stand out as an institution of excellence in technical education and in training individuals for outstanding caliber, character coupled with creativity and entrepreneurial skills.

MISSION

To train the students to become Quality Engineers with High Standards of Professionalism and Ethics who have Positive Attitude, a Perfect blend of Techno-Managerial Skills and Problem-solving ability with an analytical and innovative mindset.

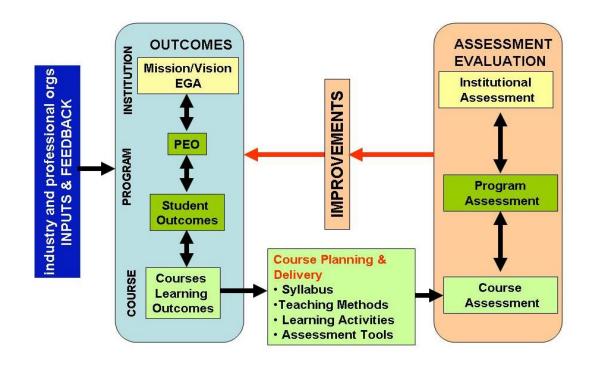
QUALITY POLICY

- Imparting value-added technical education with state-of-the-art technology in a congenial, disciplined and a research-oriented environment.
- Fostering cultural, ethical, moral and social values in the human resources of the institution.
- Reinforcing our bonds with the Parents, Industry, Alumni, and to seek their suggestions for innovating and excelling in every sphere of quality education.

DEPARTMENT VISION

The Electronics & Communication Engineering department shall impart quality technical education and entrepreneurship skills to develop creative individuals to face changing global scenario.

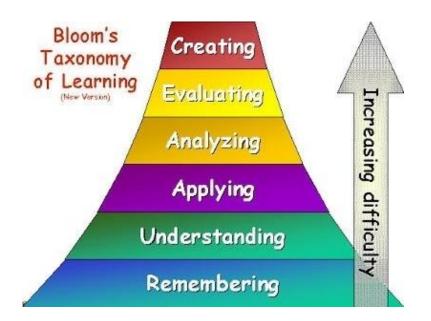
DEPARTMENT MISSION


To augment the national talent pool, with Electronics and Communication Engineers having allencompassing technical knowledge, principled practices and nationalistic outlook.

	PROGRAM EDUCATIONAL OBJECTIVES (PEOs)						
1.	The graduates will acquire core competence in basic science and Electronics and Communication Engineering fundamentals necessary to formulate, analyze, and solve engineering problems and to pursue advanced study or research.						
2.	The graduates will engage in the activities that demonstrate desire for ongoing personal and professional growth and self-confidence to adapt to rapid and major changes.						
3.	The graduates will maintain high professionalism and ethical standards, effective oral and written communication skills, work as part of teams on multidisciplinary projects under diverse professional environments, and relate engineering issues to the society, global economy and to emerging technologies.						

	PROGRAM OUTCOMES (POs)
1.	Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals
	and an engineering specialization to the solution of complex engineering problems.
2.	Problem Analysis: Identify, formulate, research literature and analyze complex engineering
	problems reaching substantiated conclusions using first principles of mathematics, natural
	sciences and engineering sciences.
3.	Design/ Development of Solutions: Design solutions for complex engineering problems and
	design system components or processes that meet specified needs with appropriate
	consideration for public health and safety, cultural, societal and environmental considerations.
4.	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data and synthesis of
	information to provide valid conclusions.
5.	Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
6	with an understanding of the limitations.
6.	The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	professional engineering practice.
7.	Environment and Sustainability: Understand the impact of professional engineering solutions
<i>.</i>	in societal and environmental contexts and demonstrate knowledge of and need for
	sustainable development.
8.	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of engineering practice.
9.	Individual and Team Work: Function effectively as an individual, and as a member or leader in
	diverse teams and in multidisciplinary settings.
10.	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as being able to comprehend and write
	effective reports and design documentation, make effective presentations and give and receive
	clear instructions.
11.	Project Management and Finance: Demonstrate knowledge and understanding of engineering
	and management principles and apply these to one's own work, as a member and leader in a
12	team, to manage projects and in multidisciplinary environments.
12.	Life-long Learning: Recognize the need for and have the preparation and ability to engage in
	independent and lifelong learning in the broadest context of technological change.

	PROGRAM SPECIFIC OUTCOMES (PSOs)					
1.	Understanding and applying the mathematical and scientific concepts, for analysis and design of basic Electronics and Communication systems.					
2.	Developing critical thinking abilities coupled with competence in use of computational tools for professional growth; complimented with communication skills and leadership attributes.					
3.	Identifying societal needs and sensitizing individuals towards finding innovative solutions to contemporary issues with multidisciplinary outlook.					


OUTCOME BASED EDUCATION (OBE)

BLOOM'S TAXONOMY OF LEARNING OBJECTIVES

Bloom's Taxonomy in its various forms represents the process of learning. It was developed in 1956 by Benjamin Bloom and modified during the 1990's by a new group of cognitive psychologists, led by Lorin Anderson (a former student of Bloom's) to make it relevant to the 21stcentury. The **revised taxonomy** given below emphasizes what a learner "Can Do".

Lowe	r order thinking sk	ills (LOTS)		
L1	Remembering	Retrieve relevant knowledge from memory.		
L2	Understanding	Construct meaning from instructional material, including oral, written, and graphic communication.		
L3	Applying Carry out or use a procedure in a given situation–using learned knowledge.			
Highe	er order thinking sl	kills (HOTS)		
L4	Analyzing	Breakdown knowledge into its components and determine the relationships of the components to one another and then how they relate to an overall structure or task.		
L5	Evaluating	Make judgments based on criteria and standards, using previously learned knowledge.		
L6	Creating	Combining or reorganizing elements to form a coherent or functional whole or into a new pattern, structure or idea.		

KLS Gogte Institute of Technology 3rd to 8th sem B.E. Scheme of Teaching and Examination- 2022 Outcome-Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2023-24)

Total credits for B.E. Program: 160

Credit definition:

Offline Courses	Online Courses
 1-hour Lecture (L) per week = 1 Credit 2 hours Tutorial (T) per week = 1 Credit, 2 hours Practical /Drawing (P) per week = 1 Credit 	04 weeks =1 Credit 08 weeks = 2 Credit 12 weeks = 3 Credit

Semester wise distribution of credits for B.E program

Year	ar Semester Credits		Total/Year	Cumulative Credits
1 st	I	20	40	10
1	II	20	40	40
2 nd	III	20	40	90
2	IV	20	40	80
3 rd	V	22	40	120
3	VI	18	40	120
4 th	VII	24	40	100
4	VIII	16	40	160
· · · ·	Total		160	

Curriculum frame work:

Structure of Undergraduate Engineering program

S.No.	Category of courses	VTU Breakup of credits	KLSGIT Breakup of credits
	Humanities and Social Sciences including Management		
1	courses (English, Kannada, Indian Constitution,	9	10
	Environmental Sciences, Health and Management)		
2	Basic Science courses	22	22
3	Engineering Science courses including ETC, PLC & Drawing	24	24
4	Professional Core Courses	54	54
5	Professional Elective courses relevant to chosen	12	12
	specialization/branch		
6	Open subjects – Electives from other technical, emerging, arts, commerce	9	9
7	Mini, Project, Major Project work and Seminar	10	9
8	Summer Internship and Research /Industrial Internship	10	10
	Ability Enhancement Courses, including Research		
9	Methodology, NCC/NSS/ Sports/Ex- Curricular, Online	8	8
	Certification Course		
10	Universal Human Values	2	2
	TOTAL	160	160

L-T-P Model for Courses

		Conta	Credits			
S.No.	L-T-P	Lecture	Tutorial	Practical	L-T-P	Total
1	3 - 0 - 0	3	0	0	3 - 0 - 0	3
2	3 - 2 - 0	3	2	0	3 - 1 - 0	4
3	3 - 0 - 2	3	0	2	3 - 0 - 1	4
4	2 - 0 - 2	2	0	2	2 - 0 - 1	3
	1 - 0 - 4	1	0	4	1 - 0 - 2	3

Theory courses having the corresponding lab are converted to integrated type course. Also, the electives (if possible) can also be made integrated type.

Integrated courses (Professional Core/Electives): Integrated courses will have **Theory Syllabus with Practical Syllabus of the same course**. In such a course there could be **no Semester End Examination (SEE) for the practical syllabus** of the course, however, Continuous Internal Evaluation (CIE) will be conducted for the practical topics. **SEE can include questions from practical topics**.

SDA-Skill Development Activities, TD/PSB- Teaching Department / Paper Setting Board, ASC-Applied Science Course, ESC- Engineering Science Courses, ETC- Emerging Technology Course, AEC- Ability Enhancement Course, HSMS-Humanity and Social Science and Management Course, SDC- Skill Development Course.

			5 th Semester		Hou	irs/we	ek	Total contact		Ex	aminat	ion
S.No.	Course Type	Course Code	Course Title	Teaching Dept.	L	Т	Ρ	hours/week	Credits	CIE	SEE	Total
1	HSMS	22EC51	Management for Electronics Engineers	E & C	3	0	0	03	3	100	100	200
2	PCC	22EC52	CMOS VLSI Circuit Design	E & C	3	0	0	03	3	100	100	200
3	IPCC	22EC53	Digital Signal Processing	E & C	3	0	2	05	4	100	100	200
4	PEC	22EC54x	Professional Elective Course	E & C	3	0	0	03	3	100	100	200
5	PROJ	22EC55	Mini Project	E & C	0	0	4	04	2	100	-	100
6	AEC	22AECEC56	Research Methodology and IPR	E & C	2	0	0	02	2	100	100	200
7	AEC	22AECEC57	Employability Skills -1	Bizotic	1	0	0	01	1	100	-	100
8	MC	22EC58A	Environmental Studies	Chem/CV	2	0	0	02	2	100	100	200
	МС	22EC58B1	National Service Scheme (NSS)/	NSS coordinator								
9		22EC58B2	Physical Education (PE) (Sports and Athletics) and Yoga/	Physical Education dept & Yoga instructor	0	0	2	02	0	100	-	100
		22EC58B3	Clubs- Social, Cultural & Academic	Coordinators								
10	PCCL	22ECL59	CMOS VLSI Lab	E & C	0	0	4	04	2	50	50	100
			Total						22	950	650	1600
		1		Elective Course 22	1							
22EC54	11	Automotive S	ystems	22EC546	Mult	imedi	a Cor	nmunication				
22EC54	12	Operating Sys		22EC547	Cryptography and Network Security							
22EC54	13	Power Conver	ters	22EC548	Requirements Engineering							
22EC544 Embedded System Design			22EC549	Data	Analy	vsis a	nd Visualization w	ith Python				
22EC545 Digital Image Processing												
Abilit	y Enhancer	nent Course, SE	PCCL: Professional Core Course laborato C: Skill Enhancement Course, L: Lecture Evaluation. K: The letter in the course co PEC: Profe	, T : Tutorial, P : Prac	ctical S ion to	= SDA	: Skil	l Development Ac	tivity, CIE:	Continu	uous In	ternal

Professional Core Course (IPCC): Refers to Professional Core Course Theory Integrated with practicals of the same course. Credit for IPCC can be 04 and its Teaching–Learning hours (L : T : P) can be considered as (3 : 0 : 2) or (2 : 2 : 2). The theory part of the IPCC shall be evaluated both by CIE and SEE. The practical part shall be evaluated by only CIE (no SEE). However, questions from the practical part of IPCC shall be included in the SEE question paper. For more details, the regulation governing the Degree of Bachelor of Engineering /Technology (B.E./B.Tech.) 2022-23

National Service Scheme /Physical Education/Yoga/Clubs: All students have to register for any one of the courses namely National Service Scheme (NSS), Physical Education (PE)(Sports and Athletics), Yoga(YOG) and Clubs with the concerned coordinator of the course during the first week of III semesters. Activities shall be carried out between III semester to the VI semester (for 4 semesters). Successful completion of the registered course and requisite CIE score is mandatory for the award of the degree. The events shall be appropriately scheduled by the colleges and the same shall be reflected in the calendar prepared for the NSS, PE, Yoga and Club activities. These courses shall not be considered for vertical progression as well as for the calculation of SGPA and CGPA, but completion of the course is mandatory for the award of degree.

Mini-project work: Mini Project is a laboratory-oriented/hands-on course that will provide a platform to students to enhance their practical knowledge and skills by the development of small systems/applications etc. Based on the ability/abilities of the student/s and recommendations of the mentor, a single discipline or a multidisciplinary Mini- project can be assigned to an individual student or to a group having not more than 4 students.

CIE procedure for Mini-project:

(i) Single discipline: The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two faculty members of the Department, one of them being the Guide. The CIE marks awarded for the Mini-project work shall be based on the evaluation of the project publication/technical paper, project presentation skill, and question and answer session in the ratio of 50:25:25. The marks awarded for the project report shall be the same for all the batches mates.

(ii) Interdisciplinary: Continuous Internal Evaluation shall be group-wise at the college level with the participation of all the guides of the project.

The CIE marks awarded for the Mini-project, shall be based on the evaluation of the **project publication/technical paper**, project presentation skills, and question-answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

No SEE component for Mini-Project.

Professional Elective Courses (PEC): A professional elective (PEC) course is intended to enhance the depth and breadth of educational experience in the Engineering and Technology curriculum. Multidisciplinary courses that are added supplement the latest trend and advanced technology in the selected stream of engineering. Each group will provide an option to select one course. The minimum number of students' strengths for offering a professional elective is 10. However, this conditional shall not be applicable to cases where the admission to the program is less than 10.

			6 th Semester		Но	urs/w	reek	Tatal soute at		E>	Examination	
S.No.	Course Type	Course Code	Course Title	Teaching Dept.	L	т	Ρ	Total contact hours/week	Credits	CIE	SEE	Total
1	PCC	22EC61	ARM Microcontroller	E & C	3	0	0	03	3	100	100	200
2	IPCC	22EC62	Digital Communication	E & C	3	0	2	05	4	100	100	200
3	PEC	22EC63x	Professional Elective Course	E & C	3	0	0	03	3	100	100	200
4	OEC	22EC64x	Open Elective Course	E & C	3	0	0	03	3	100	100	200
5	PROJ	22EC65	Major Project Phase I	E & C	0	0	4	04	2	100		100
6	AEC/SDC	22AECEC66	Employability Skills -2	Bizotic	1	0	0	01	1	100	-	100
		22EC671	National Service Scheme (NSS)/	NSS coordinator		0						
7	МС	22EC672	Physical Education (PE) (Sports and Athletics) and Yoga/	Physical Education dept & Yoga instructor	0		0	2	02	0	100	
		22EC673	Clubs- Social, Cultural & Academic	Coordinators								
8	PCCL	22ECL68	ARM Microcontroller Lab	E & C	0	0	2	02	1	50	50	100
9	PCCL	22ECL69	Linear Integrated Circuits Design Lab	E & C	0	0	2	02	1	50	50	100
			Total						18	800	500	1300
			Professional E	lective Course22E	C63x							
22EC63	22EC63A Modern Electric, Hybrid Electric and Fuel Cell Based Vehicles			22EC63F	Adaptive Digital Signal Processing							
22EC63	22EC63B Low Power Architecture			22EC63G	Internet of Things and Cyber Physical Systems							
22EC63	C Digital	System Design	with FPGA	22EC63H	Com	putat	ional I	ntelligence and	Applicatior	าร		
22EC63	D Roboti	cs & Automatio	n	22EC63I	DBN	1S						
22EC63	E Bio Me	edical Image Un	derstanding and Analysis	22EC63J	Digit	al Fo	rensics					

Open Elective Course22EC64x				
22EC641	Human Computer Interaction	22EC644	Requirements Engineering	

22EC642	Embedded Systems with Arduino	22EC645	Modern Vehicular Technology					
22EC643	Digital Image Processing							
PCC: Prof	fessional Core Course, PCCL: Professional Core Course laborator	y, UHV : Universal	Human Value Course, MC : Mandatory Course (Non-credit), AEC :					
Ability En	hancement Course, SEC : Skill Enhancement Course, L: Lecture, `	T : Tutorial, P : Prac	tical S= SDA : Skill Development Activity, CIE : Continuous Internal					
Evaluatio	n, SEE: Semester End Evaluation. K : The letter in the course coc	le indicates comm	on to al the stream of engineering. PROJ : Project /Mini Project.					
	PEC: Professional Elective Course. PR	OJ : Project Phase -	I, OEC : Open Elective Course					
Profession	al Core Course (IPCC): Refers to Professional Core Course Theo	ory Integrated with	practicals of the same course. Credit for IPCC can be 04 and its					
Teaching-L	earning hours (L : T : P) can be considered as (3 : 0 : 2) or (2 : 2 :	: 2). The theory pa	rt of the IPCC shall be evaluated both by CIE and SEE. The practical					
part shall b	e evaluated by only CIE (no SEE). However, questions from the	practical part of I	PCC shall be included in the SEE question paper. For more details,					
the regulat	ion governing the Degree of Bachelor of Engineering /Technolog	gy (B.E./B.Tech.) 20)22-23					
National Se	ervice Scheme /Physical Education/Yoga/Clubs: All students I	have to register fo	r any one of the courses namely National Service Scheme (NSS),					
Physical Ed	ucation (PE)(Sports and Athletics), Yoga(YOG) and Clubs with the	concerned coordi	nator of the course during the first week of III semesters. Activities					
shall be ca	rried out between III semester to the VI semester (for 4 sem	nesters). Successfu	I completion of the registered course and requisite CIE score is					
mandatory	for the award of the degree. The events shall be appropriately	scheduled by the	colleges and the same shall be reflected in the calendar prepared					
for the NSS	5, PE, Yoga and Club activities. These courses shall not be consi	dered for vertical	progression as well as for the calculation of SGPA and CGPA, but					
completion	of the course is mandatory for the award of degree.							
Profession	al Elective Courses (PEC): A professional elective (PEC) course	e is intended to e	nhance the depth and breadth of educational experience in the					
Engineering	g and Technology curriculum. Multidisciplinary courses that are	added supplemen	t the latest trend and advanced technology in the selected stream					
of engineer	ring. Each group will provide an option to select one course. The select one course.	he minimum numl	per of students' strengths for offering professional electives is 10.					
However, t	his conditional shall not be applicable to cases where the admis	sion to the progra	m is less than 10.					
Open Elect	ive Courses:							
Students b	elonging to a particular stream of Engineering and Technology a	are not entitled to	the open electives offered by their parent Department. However,					
they can o	pt for an elective offered by other Departments, provided the	ey satisfy the prer	equisite condition if any. Registration to open electives shall be					
documented under the guidance of the Program Coordinator/ Advisor/Mentor. The minimum numbers of students' strength for offering Open Elective Course								
is 10. Howe	is 10. However, this condition shall not be applicable to class where the admission to the program is less than 10.							
Project Pha	ase-I : Students have to discuss with the mentor /guide and with	n their help he/she	has to complete the literature survey and prepare the report and					
finally defir	ne the problem statement for the project work.							

			7 th Semester			Ηοι	urs/v	veek	Total contract		Ex	aminat	ion
S.No.	Course Type	Course Code	Course Title		ching ept.	L	т	Ρ	Total contact hours/week	Credits	CIE	SEE	Total
1	IPCC	22EC71	Communication Networks	E 8	δ C	3	0	2	05	4	100	100	200
2	IPCC	22EC72	Microwave and Antenna Engineering	Ε δ	δς	3	0	2	05	4	100	100	200
3	PCC	22EC73	Wireless Communication	Ε δ	δς	3	0	0	03	3	100	100	200
4	PEC	22EC74x	Professional Elective Course	E 8	δ C	3	0	0	03	3	100	100	200
5	OEC	22EC75x	Open Elective Course	E 8	δ C	3	0	0	03	3	100	100	200
6	PROJ	22EC76	Major Project Phase-II	E 8	δ C	0	0	10	10	5	100	100	200
7	AEC	22AECEC77	Indian Knowledge System			1	0	0	01	1	100	-	100
8	PCCL	22ECL78	Advanced Wireless Communication Lab	E & C		0	0	2	02	1	50	50	100
			Total							24	750	650	1400
			Professional Ele	ective Co	ourse 22	EC74x							
22EC74	1A /	Advanced VLSI Des	sign		22EC74	0 0				sing			
22EC74	4B I	RF and Microwave	Integrated Circuits		22EC74	IG	Human Computer Interaction						
22EC74	4C I	Biomedical System	n Design		22EC74	ιH	C	Cyber Security – A Practical Approach					
22EC74	4D S	Satellite Communi	cation Techniques		22EC74	H	Ν	Multirate Digital Signal Processing					
22EC74	4E \	Vehicular Network	KS										
			Open Electiv	ve Cour	se 22EC7	'5x							
22EC75	51	Digital Forensics			22EC75	54	C	Computational Intelligence					
22EC75	52	Bio Medical Image	Understanding and Analysis		22EC75	55	F	undan	nentals of Robotic	cs			
22EC75	53 /	Artificial Neural Ne	etworks										
		T : Tutorial, P : Prac	PCCL : Professional Core Course laboratory, tical S= SDA : Skill Development Activity, CIE B : Paper Setting department, OEC : Open Elect	: Contin	uous Inte	ernal	Evalu	uation,	SEE: Semester Er	nd Evaluatio	on. TD- [•]	-	-
			V years of the program										
(1) Inst	itutions	can swap the VII	and VIII Semester Schemes of Teaching and	Examin	ations to	accor	nmo	date r	esearch internshi	ps/ industry	y intern	ships a	ter the
VI sem	ester.												
• •			s of VII and VIII Semester Scheme of Teachin leted during the beginning of the IV year or	0					0	orrespondi	ng seme	esters w	/hether

Professional Elective Courses (PEC): A professional elective (PEC) course is intended to enhance the depth and breadth of educational experience in the Engineering and Technology curriculum. Multidisciplinary courses that are added supplement the latest trend and advanced technology in the selected stream of engineering. Each group will provide an option to select one course. The minimum number of students' strengths for offering professional electives is 10. However, this conditional shall not be applicable to cases where the admission to the program is less than 10.

Open Elective Courses:

Students belonging to a particular stream of Engineering and Technology are not entitled to the open electives offered by their parent Department. However, they can opt for an elective offered by other Departments, provided they satisfy the prerequisite condition if any. Registration to open electives shall be documented under the guidance of the Program Coordinator/ Advisor/Mentor. The minimum numbers of students' strength for offering Open Elective Course is 10. However, this condition shall not be applicable to class where the admission to the program is less than 10.

PROJECT WORK: The objective of the Project work is

(i) To encourage independent learning and the innovative attitude of the students.

(ii) To develop interactive attitude, communication skills, organization, time management, and presentation skills.

(iii) To impart flexibility and adaptability.

(iv) To inspire team working.

(v) To expand intellectual capacity, credibility, judgment and intuition.

(vi) To adhere to punctuality, setting and meeting deadlines.

(vii) To install responsibilities to oneself and others.

(viii) To train students to present the topic of project work in a seminar without any fear, face the audience confidently, enhance communication skills, involve in group discussion to present and exchange ideas.

CIE procedure for Project Work:

(1) Single discipline: The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide.

The CIE marks awarded for the project work, shall be based on the evaluation of the project work Report, project presentation skill, and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

(2) Interdisciplinary: Continuous Internal Evaluation shall be group-wise at the college level with the participation of all guides of the college. Participation of external guide/s, if any, is desirable. The CIE marks awarded for the project work, shall be based on the evaluation of project work Report, project presentation skill, and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

SEE procedure for Project Work: SEE for project work will be conducted by the two examiners appointed by the COE. The SEE marks awarded for the project work shall be based on the evaluation of project work Report, project presentation skill, and question and answer session in the ratio 50:25:25.

			8 th Semester		Н	ours/v	veek	Total contract		Ex	amina	tion
S.No.	Course Type	Course Code	Course Title	Teaching Dept.	L	Т	Ρ	Total contact hours/week	Credits	CIE	SEE	Total
1	PEC	22EC81x	Professional Elective (Online Courses)	TD- PSB	3	0	0	03	3	100	-	100
2	OEC	22EC82x	Open Elective (Online Courses)	TD: PSB	3	0	0	03	3	100	-	100
3	INT	22EC83	Internship (Industry/Research) (14 - 20 weeks)	TD: PSB	0	0	20	20	10	100	100	200
			Total						16	300	100	400
			ctive Course (Online courses) 22EC81x Subject		-							
22EC81A	Analog	VLSI Design		22EC81H	Simu	ulatio	n of Co	mmunication Sy	ystems us	sing M	ATLA	В
22EC81B	VLSI De	sign Flow: F	RTL to GDS	22EC81I	Principles and Techniques of Modern Radar Systems							
22EC81C	2EC81C Digital VLSI Testing		22EC81J	Real-Time Digital Signal Processing								
22EC81D	22EC81D		22EC81K	Applied Linear Algebra for Signal Processing, Data								
	Microe	lectronics: L	Devices to Circuits		Analytics and Machine Learning							
22EC81E	Semico	nductor Dev	vices and Circuits	22EC81L	Electrical Measurement and Electronic Instruments							
22EC81F	C-Based	VLSI Desig	n									
22EC81G	Fiber O	ptic Commu	inication Technology									
	(Open Elective	e Courses (Online Courses 22EC82x Subject to	o availability o	ty on NPTEL and list will be prepared accordingly							
22EC82A	Compu	ter Architec	ture	22EC82K	Software Testing							
22EC82B	Advanc	ed Distribut	ed Systems	22EC82L	Pattern Recognition and Application							
22EC82C	Cloud C	omputing		22EC82M	Computer Vision							
22EC82D	22EC82D		22EC82N	Mac	hine l	earnir	ig and Deep Lea	rning - Fu	Indam	ental	s and	
Programming in Modern C++			Арр	licatio	ns							
22EC82E	22EC82E Getting Started with Competitive Programming		22EC82O	Dee	p Lear	ning						
22EC82F	The Joy	of Computi	ing using Python	22EC82P	Reinforcement Learning							
22EC82G	Data St	ructure and	Algorithms using Java	22EC82Q	Responsible & Safe AI Systems							
22EC82H	Introdu	ction to Int	ernet of Things	22EC82R	Desi	gn of	Mecha	tronic Systems				

22EC82I	Introduction to Industry 4.0 and Industrial Internet of Things	22EC82S	Industrial Robotics : Theories for Implementation
22EC82J	Software Engineering		
	ture, T : Tutorial, P : Practical S= SDA : Skill Development Activity, CIE	: Continuous Ir	Iternal Evaluation, SEE: Semester End Evaluation. TD- Teaching
	nent, PSB : Paper Setting department, OEC : Open Elective Course, P		
	Research Interns		
Note: VII a	and VIII semesters of IV years of the program		
Swapping	Facility		
• Institu	tion can swap VII and VIII Semester Scheme of Teaching and E	xaminations to	accommodate research internships/ industry internships/Rura
Intern	ship after the VI semester.		
• Credits	s earned for the courses of VII and VIII Semester Scheme of Teaching	g and Examinat	ions shall be counted against the corresponding semesters whether
VII or V	VIII semester is completed during the beginning of IV year or later p	part of IV year o	of the program.
Elucidatio	n:		
At the beg	inning of IV years of the program i.e., after VI semester, VII semest	ter classwork a	nd VIII semester Research Internship /Industrial Internship / Rura
Internship	shall be permitted to be operated simultaneously so that student	s have ample c	pportunity for an internship. In other words, a good percentage o
the class s	hall attend VII semester classwork and a similar percentage of othe	ers shall attend	to Research Internship or Industrial Internship or Rural Internship.
Research/	Industrial /Rural Internship shall be carried out at an Industry, NGO	, MSME, Innova	tion center, Incubation center, Start-up, center of Excellence (CoE)
Study Cent	tre established in the parent institute and /or at reputed research o	organizations/i	nstitutes.
The mand	atory Research internship /Industry internship / Rural Internship is	s for 14 to 20 v	veeks. The internship shall be considered as a head of passing and
	onsidered for the award of a degree. Those, who do not take up/co	-	rnship shall be declared to fail and shall have to complete it during
	quent University examination after satisfying the internship require		
	internship: A research internship is intended to offer the flavor of	current resear	ch going on in the research field. It helps students get familiarized
	eld and imparts the skill required for carrying out research.		
-	nternship: Is an extended period of work experience undertaken b	-	
	n to overcome unexpected obstacles and successfully navigate org		
-	appreciate, and adapt to organizational realities by tempering the	-	•
	rnship: Rural development internship is an initiative of Unnat	-	
	nts studying in different academic years for exploring various opp		
-	t. The faculty coordinator or mentor has to monitor the student's i		
	rnship. The students are permitted to carry out the internship anyw	/here in India o	r abroad. University shall not bear any expenses incurred in respec
of the inte	rnship.		

With the consent of the internal guide and Principal of the Institution, students shall be allowed to carry out the internship at their hometown (within or outside the state or abroad), provided favorable facilities are available for the internship and the student remains regularly in contact with the internal guide. College shall not bear any cost involved in carrying out the internship by students. However, students can receive any financial assistance extended by the organization. Professional Elective /Open Elective Course: These are ONLINE courses suggested by the respective Board of Studies. Details of these courses shall be made available for students on the college web portal.

Management for Electronics Engineers

Course Code	22EC51	Course type	HSMS	Credits L-T-P	3 – 0 - 0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 Hrs; P = 0 Hrs Total = 40 Hrs			CIE Marks	100
Flipped Classes content 10 Hours			SEE Marks	100	

	Course learning objectives					
1.	Understand Characteristics and roles of management in an Electronics Industry.					
2.	Understand the need of entrepreneur & characteristics of Entrepreneurship					
3.	Apply to verify the opportunities of MSME's through various Central and State Institutional					
	Supports.					
4.	Analyze the need of Project report for Business Proposals.					

Unit – I	Contact Hours = 8 Hours				
Management: Introduction, nature and characteristics of Management, Scope and Functional areas					
of management, Management as a science, art of profession					

Planning: Nature, importance and purpose of planning process, Types of plans, Decision making, Importance of planning, steps in planning.

Organizing: Nature and purpose of organization, Principles of organization, Types of organization (based on departments, based on commands), Span of control, MBO

Course Activity: Identify the roles various managers in an electronic core organization.

Unit – II	Contact Hours = 8 Hours
Staffing, Directing & Controlling: Nature and importance	e of staffing, Process of Selection &
Recruitment, Training Methods	
Directing: Meaning and nature of directing, Leadership s	tyles, Motivation Theories (McGregor's
Theory of X and Y, Maslow's Hierarchy of needs theory, H	Herzberg's Motivation-Hygiene Theory),
Communication- Meaning and importance	
Controlling: Meaning and steps in controlling, Essentials	of a sound control system, Methods of
establishing control.	

Course Activity: Identify the roles of HR Department in different department of the electronics industry.

Unit – III	Contact Hours = 8 Hours				
Entrepreneur: Meaning of entrepreneur: Evolution of the concept	Functions of an Entrepreneur, Types				
of Entrepreneur, Concept of Entrepreneurship, Evolution of Entrepreneurship, The Entrepreneurial					
Culture and Stages in entrepreneurial process.					
Creativity and Innovation: Creativity, Source of New Idea, Ideas into Opportunities, Creative Problem					
Solving: Heuristics, Brainstorming, Synectics, Significance of Intellectual Property Rights.					
Course Activity: Identify the innovative start-ups recently launched based on Electronic product or					

service.

Unit – IV	Contact Hours = 8 Hours
Unit – IV	Contact Hours = 8 Hours

Micro, Small and Medium Enterprises [MSMEs] and Institutional Support: Business environment in India, Role of MSMEs, Government policies towards MSMEs, Impact of Liberalization, Privatization and Globalization on MSMEs.

Institutional support: NSIC, TECKSOK, KIADB, KSSIDC, SIDBI; KSFC; KDEM

Course Activity: Identify the nearby MSMEs funded through various institutional support

Unit – V

Contact Hours = 8 Hours

Preparation of Project report and Business Plan: Meaning of Project, Project Identification, Project Selection, Project Report, Need and Significance of Report, Contents.

Business Plan: Need of business plan, anatomy of business plan, executive summary, business description, Business environment analysis, background information.

Venture Capital: Meaning, Need, Types and Venture capital in India

Course Activity: Identify the roles of Angel Investors to support financial needs of start-ups and <mark>visit to incubation center.</mark>

Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

	Books				
	Text Books:				
1.	Henry Koontz, "Essentials of Management", McGraw Hill, 10 th Edition 2017 onwards				
2.	Poornima.M.Charantimath, "Entrepreneurship Development", Pearson Education, 2014				
	Edition onwards				
	Reference Books:				
1.	P.C.Tripathi, P.N.Reddy "Principles of Management" — Tata McGraw Hill.				
	Dr.M.M.Munshi, Prakash Pinto and Ramesh Katri "Entrepreneurial Development" Himalaya				
	Publishing House, 2016.				
	E-resourses (NPTEL/SWAYAM Any Other)- mention links				
1.	https://nptel.ac.in/courses/110107150 - (Principles of Management, IIT Roorkee)				

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)	
3.	Flipped Classes	3.	Open Book Tests (OBT)	
4.	Online classes	4.	Course Seminar	
		5.	Semester End Examination	

At t	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning								
	level.)								
Lear	Learning Levels: Re - Remember; Un - Understand; Ap - Learning PO(s) PSO								
Арр	ly; An - Analysis; Ev - Evaluate; Cr - Create	Level	PO(3)	PSO(s)					
1.	Understand the Functions of management,	Un	8,9,10,11,12	2					
1.	Characteristics of Management, and Purpose of Planning.	011							
2.	Understand the need and role of entrepreneur in the	Un	7,8,9,10,11,12	2,3					
Ζ.	development of the industry.	011							
	Apply to verify the opportunities of MSME's through		6,7,8,9,10,11,12	2,3					
3.	various Central and State Institutional Supports and for	Ар							
	the Start Up.								
4.	Analyze a business plan and its report to the support	An	6,7,8,9,10,11,12	3					
4.	organizations.	AII							

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification etc)	Course project (CP)/ Case study etc	Total Marks						
Marks 30+30 = 60		10 + 10 = 20	20 marks (with report & presentation)	100						
-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks. -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. -Lack of minimum score in IA test will make the student Not Eligible for SEE -Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.										

Sch	Scheme of Semester End Examination (SEE):						
1.	It will be conducted for 100 marks of 3 hours duration.						
2.	Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of						
	CIE + SEE should be \geq 40%.						
3.	Question paper contains three parts A,B and C. Students have to answer						
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.						
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each						
	Question Carries 10 Marks.						
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.						

	CO-PO Mapping (Planned)										CO-PSO Mapping (Planned)				
со	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	РО 7	РО 8	РО 9	РО 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
1								✓	✓	✓	✓	✓		✓	
2							✓	✓	✓	✓	✓	✓		✓	✓
3						✓	✓	✓	✓	✓	✓	✓		✓	✓

4						✓	✓	✓	✓	✓	✓			✓
	Use tick mark(✓)													

CMOS VLSI Circuit Design

Course Code	22EC52	Course type	PCC	Credits L-T-P	3 – 0 - 0
Hours/week: L - T- P		3-0-0	Total	3	
Hoursy week. L - I - P		5-0-0	credits	5	
Total Contact Hours	L = 40 Hrs;	CIE Marks	100		
	Tot		100		
Flipped Classes content		SEE Marks	100		

	Course learning objectives							
1.	To understand the fundamentals characteristics and parameters of MOSFET based circuits.							
2.	To analyze MOSFET based circuits on the basis of given data.							
3.	To design MOSFET based circuits for specific requirements.							

Pre-requisites: Electrical Circuits, Analog Electronics, Digital Electronics

Unit – I	Contact Hours = 8 Hours							
MOSFETs in Amplifier Design: Device Structure and Phy	ysical Operation, Current–Voltage							
Characteristics, The $i_D - v_{DS}$ Characteristics, The $i_D - v_{GS}$ Characteristics, The $i_D - v_{SS}$ Characteristics, The $i_D - v$	Characteristics, The i _D -v _{DS} Characteristics, The i _D -v _{GS} Characteristic, Finite Output Resistance in							
Saturation, Applying the MOSFET in Amplifier Design, The Voltage	Transfer Characteristic (VTC), Biasing							
the MOSFET to Obtain Linear Amplification, The Small-Signal Voltage Gain, Determining the VTC by								
Graphical Analysis.								

Unit – IIContact Hours = 8 HoursSmall-Signal Operation and Models: The DC Bias Point, The Signal Current in the Drain Terminal, The
Voltage Gain, Separating the DC Analysis and the Signal Analysis, Small-Signal Equivalent-Circuit
Models, The Transconductance gm, Basic MOSFET Amplifier Configurations, The Common-Source (CS)
Amplifier, The Common-Gate (CG) Amplifier, The Common-Drain (CD) Amplifier, Biasing in MOS
Amplifier Circuits

Unit – III	Contact Hours = 8 Hours
Characterization & performance Estimation: Definitions, RC delay	model, effective resistance, gate and
diffusion capacitance, equivalent RC circuits; linear delay model: I	ogical effort, parasitic delay; Logical
Effort of path: Delay in multistage networks.	

Case Study: Design of gates for a specified delay, Elmore delay model analysis for basic gates, and simple circuits.

Unit – IV	Contact Hours = 8 Hours					
CMOS Fabrication and Layout: CMOS fabrication and layout, layout design rules, gate layouts, stick						
diagrams, sheet resistance and area capacitance concepts, delay unit. (Conceptual overview with						
numerical problem solving for analysis).						
Case Study: Stick and layout diagrams for basic gates/SOP/POS equations; RC delay calculations from						
layout.						

Unit – V Contact Hours = 8 Hours

Combinational Circuit Design: Introduction, circuit families: pseudo nMOS, Cascode Voltage Switch Logic (**CVSL**), dynamic circuits, domino logic, pass transistor circuits, Bi-CMOS circuits. **Sequential MOS Logic Circuits**: Introduction, behavior of bi-stable elements, SR latch circuits, clocked latch and flip flop circuits, CMOS D-latch and edge triggered flip-flop.

Case Study: Designing of Logical Gates/Circuits with Different CMOS Logic Structures.

Flipped	Classroom	Details
---------	-----------	---------

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	1	1	1	1	1

	Books				
	Text Books:				
1.	Neil Weste, and David Harris, "CMOS VLSI Design, A Circuits and System Perspective", 4 th				
	Edition; Pearson Education, India.				
2.	Douglas Pucknell, and Kamran Eshragian, "Basic VLSI Design", PHI Publications India Pvt. Ltd.				
3.	Sedra Smith, "Microelectronic Circuits", 6 th edition, Oxford University Press.				
	Reference Books:				
1.	Wayne Wolfe, "Modern VLSI Design, System-On-Chip Design", Prentice Hall, 2002				
	Onwards				
	E-resourses (NPTEL/SWAYAM)				
1.	Prof. Sudeb Dasgupta, IIT Roorkee, "CMOS Digital VLSI Design",				
	https://onlinecourses.nptel.ac.in/noc24_ee29/preview_				
2.	Prof. Janakiraman, IIT Madras, "Digital IC Design",				
	https://onlinecourses.nptel.ac.in/noc24_ee43/preview_				

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)	
3.	Flipped Classes	3.	Open Book Tests (OBT)	
4.	Online classes	4.	Course Seminar	
		5.	Semester End Examination	

	Course Outcome (COs)								
Lea	Learning Levels:								
	Re - Remember; Un - Understand; Ap - Apply; Ar	- Analysis; Ev	/ - Evaluate; Cr - Cre	ate					
At t	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)					
1.	Understand the operation and characteristics of MOSFET to study analog and digital circuits.	Un	1, 2	1					
2.	Apply the MOSFET models to design and characterization of analog amplifier/digital CMOS circuits.	Ар	1,2,3,4,5,12	1					

2	Analyze the CMOS circuits parameters for optimizing	٨٣	1,2,3,4,5,12	1
5.	the performance.	An		

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification etc)		Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of
	CIE + SEE should be \geq 40%.
3.	Question paper contains three parts A, B and C. Students have to answer
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each
	Question Carries 10 Marks.
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

	CO-PO Mapping (planned)							CO-PSO Mapping (planned)							
~	РО	PO	РО	РО	PO	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	~	✓			✓							✓	✓		
2	✓	✓			✓							✓	✓		
3	✓	✓			✓							✓	✓		
4															
	Use tick mark(✓)														

Digital Signal Processing

Course Code	22EC53	Course type	IPCC	Credits L-T-P	3 - 0 - 1
Hours/week: L - T- P	3 - 0 - 2			Total credits	4
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 60 Hrs	rs; P = 20 Hrs	CIE Marks	100	
Flipped Classes content	05 Hours			SEE Marks	100

	Course learning objectives						
1.	To understand the fundamental concepts of digital signal processing, including sampling,						
	reconstruction, and frequency domain analysis using the Discrete Fourier Transform (DFT).						
2.	To apply various DSP algorithms and techniques, such as Fast Fourier Transform (FFT) and digital						
	filter design methods, to process and manipulate discrete-time signals.						
3.	To analyze the performance and efficient implementation of digital filters and signal processing						
	algorithms, assessing their effectiveness and efficiency in different signal processing						
	applications.						

Required Knowledge of: Engineering Mathematics, Signals and Systems

Contact Hours = 8 Hours						
stem (Block Diagram), simulation						
Discrete Fourier Transform (DFT): Frequency-Domain Sampling and Reconstruction of Discrete-Time						
Signals, DFT and inverse DFT (IDFT). DFT as a Linear Transformation. Application of Properties of the						
DFT.						
R						

Unit – II	Contact Hours = 8 Hours				
Efficient Computation of the DFT: FFT Algorithms, Direct Computation of the DFT, Divide-and-Conquer					
Approach to Computation of the DFT.					
Radix-2 FFT Algorithms: Decimation in Time FFT (DIT FFT), Decimation	n in Frequency FFT (DIF FFT)				
Applications of FFT Algorithms: Efficient Computation of the DFT of Two Real Sequences, Efficient					
Computation of the DFT of a 2N-Point Real Sequence, numericals					
Unit – III Contact Hours = 8 Hours					

Filtering of Long Data Sequences: overlap save and overlap add method.

Design of Digital Filters:

Characteristics of Practical Frequency-Selective Filters

Design of Finite Impulse Response (FIR) Filters: Symmetric and Antisymmetric FIR Filters, Design of Linear-Phase FIR Filters Using Windows, Design of Linear-Phase FIR Filters by the Frequency-Sampling Method.

Unit – IV	Contact Hours = 8 Hours
IIR Filters:	
Simple filter design by Pole-Zero placement	
Design of IIR Filters from Analog Filters:	
IIR Filter Design by the Bilinear Transformation	
Characteristics of Commonly Used Analog Filters: Butterworth	h filters, Chebyshev filters (Type – I)
Frequency Transformations: Frequency Transformations in	the Analog Domain, Frequency
Transformations in the Digital Domain.	
Introduction to Optimum Filters: Linear Prediction (Forward a	and Backward), Wiener Filters and Kalman
Filters (mention application)	

Unit – V	Contact Hours = 8 Hours
Digital Filter Realizations:	
Structures for EIP Systems: direct form, caseado and lattice struc	turoc

Structures for FIR Systems: direct form, cascade and lattice structures.

Structures for IIR Systems: direct form, signal flow graphs and transposed structures, cascade,

parallel, lattice and lattice ladder structures.

Introduction to Multirate Digital Signal Processing: Decimation by factor D, Interpolation by factor I, Sample rate conversion by a rational factor.

Adaptive Filters, Applications of Adaptive filters.

Flipped Classroom Details

Unit No.	I	II	111	IV	V
No. for Flipped Classroom Sessions	1	1	1	1	1

List of	Experiments

Unit No.	No. of	Tonic(c) related to Experiment
Unit No.	Experiments	Topic(s) related to Experiment
1	1	1. Spectral analysis of discrete time (DT) signal (sampled speech) using
		DFT.
		2. Linear convolution and circular using DFT.
		3. Study of mathematical operations (addition, scaling, delay etc.) on
		DT signals (sampled speech) and its consequences in the frequency
		domain.
2	3	4. Implementation of DIT FFT and DIT IFFT algorithm.
		5. Implementation of DIF FFT and DIF IFFT algorithm.
		6. Efficient Computation of: DFT of Two Real Sequences and DFT of a 2 <i>N</i> -
		Point Real Sequence.
3,5	2	7. Design and realization (using DF-II transposed structure) of Digital
		Butterworth low pass filter (LPF) and high pass filter (HPF).
		8. Design and realization (using DF-II transposed structure) of Digital
		Chebyshev Type – I low pass filter (LPF) and high pass filter (HPF).
4,5	2	9. Design and realization (using DF structure) of FIR LPF.
		10. Design and realization (using DF structure) of FIR HPF.

	Books											
	Text Books:											
1.	J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and											
	Applications, Pearson Publications, 2017 onwards. (For theory)											
2.	E. Ifeachor and B. W. Jervis, Digital Signal Processing: A Practical Approach, 2002 onwards. (for											
	lab)											
	Reference Books:											
1.	A. V. Oppenheim, R. W. Schafer and J. R. Buck, Discrete Time Signal Processing, Pearson											
	Publications, 2021 onwards.											
2.	Li Tan, Digital Signal Processing: Fundamentals and Applications, Elsevier, 2008 onwards.											
3.	Sanjit K. Mitra, Digital Signal Processing: A Computer Based Approach, Tata McGraw Hills, 2013											
	onwards.											
	E-resourses (NPTEL/SWAYAM Any Other)- mention links											
1.	Digital Signal Processing, by Prof. S. C. Dutta Roy, IIT Delhi, link:											
	https://nptel.ac.in/courses/117102060											
2.	Digital Signal Processing, by Prof. T. K. Basu, IIT Kharagpur, link:											
	https://archive.nptel.ac.in/courses/108/105/108105055/#											
3.	Digital Signal Processing and its Applications, by Prof. V. M. Gadre, IIT Bombay, link:											
	https://archive.nptel.ac.in/courses/108/101/108101174/											

	Course delivery methods	Assessment methods				
1.	Chalk and Talk	1.	IA tests			
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project			
3.	Flipped Classes	3.	Lab Test			
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination			
5.	Virtual Labs (if present)					

	Course Outcome (COs)										
Lea	Learning Levels :										
	Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create										
At th	ne end of the course, the student will be able to	Learning	PO(s)	PSO(s)							
		Level									
1.	Explain the sampling, reconstruction and discrete time processing of continuous-time signals and describe the importance of the Discrete Fourier Transform (DFT) in the frequency-domain analysis.	Un	1,2,3,5,10	1,2							
2.	Implement Fast Fourier Transform (FFT) algorithms for efficient DFT computation and design digital filters (FIR and IIR) to process discrete-time signals for various DSP applications.	Ар	1,2,3,5,10	1,2							

ſ		Analyze the structure and performance of digital filters			
	3.	and signal processing algorithms, evaluating their impact	An	1,2,3,5,10	1,2
		on the frequency response and overall system		_,_,_,_,_	_,_
		performance in different scenarios.			

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test

(COMPULSORY) will be part of the CIE. No SEE for Lab.

		LAP (40 marks)		
THEORY (60 m		LAB (40 marks)	Lob toot	Total
IA test 1	IA test 2	Conduction	Lab test	100
30 marks	30 marks	10 marks	30 marks	100 marks
IA Test:				
•	e part in IA questior	n paper		
2. All question	s descriptive			
Conduct of La	o:			
1. Conducting	the experiment and	d journal: 5 marks		
2. Calculations	s, results, graph, cor	nclusion and Outcome	e: 5 marks	
Lab test: (Batc	hwise with 15 stude	ents/batch)		
1. Test will be	conducted at the e	nd of the semester		
2. Timetable, I	Batch details and ex	aminers will be decla	red by Exam section	
3. Conducting	the experiment and	d writing report: <mark>5 ma</mark>	rks	
4. Calculations	, results, graph and	conclusion: 15 marks	5	
5. Viva voce: 1	0 marks			
Eligibility for S	EE:			
1. Student sho	ould score minimun	n 40% of 60 marks (i.e	e. 24 marks) in IA tests.	Lack of minimum
score in IA tes	t will make the stu	dent Not Eligible for S	SEE	
2. Student sho	ould score minimun	n 40% of 30 marks (i.e	e. 12 marks) in Lab test	& should score 40%
of 40 marks (i.	.e. 16 marks) in Lab	component.		
3. Lab test is C	OMPULSORY	-		
4. Minimum s	core in CIE to be eli	gible for SEE: 40 OUT	OF 100.	
5. Not eligible	in any one of the tv	vo components will m	hake the student Not El	igible for SEE
	-	·		-
Scheme of Se	emester End Examin	ation (SEE):		
1 It will be	conducted for 100	marks of 2 hours dur	ation	

301	leme of semester End Examination (SEE).
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be ≥35 &, however overall score of
	CIE+SEE should be \geq 40%.
3.	Question paper contains three parts A,B and C. Students have to answer
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each
	Question Carries 10 Marks.
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

	CO-PO Mapping (planned)										SO Map planned				
~	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓	✓		✓					✓			✓	✓	
2	✓	✓	✓		✓					✓			✓	✓	
3	✓	✓	✓		✓					✓			✓	✓	
	Use tick mark(✓)														

Research Methodology and IPR

•••						
Course Code	22AECEC56	Course type	AEC	Credits L-T-P	2-0-0	
Hours/week: L-T-P	2-0-0	I		Total credits	2	
Total Contact Hours	L = 30 Hrs; Total = 30 Hrs			CIE Marks	100	
Flipped Classes content	05 Hours			SEE Marks	100	

	Course learning objectives			
1.	Understand the basic concepts of research and its methodologies			
2.	Identify and select the appropriate research.			
3.	Understand the basic concepts & types of hypothesis.			
4.	Create the awareness about Intellectual Property Rights for the protection of inventions.			

Required Knowledge of : --

Unit – I	Contact Hours = 5 Hours	
Research Methodology: Introduction		
Meaning, Objectives, types, Research Approaches. Significance of Research, Research Methods versus		
Methodology, Research and scientific method, research Process, Criteria of good research, Problems		
encountered by researchers.		

Unit – II	Contact Hours = 6 Hours			
Research Problem: Defining a research problem, Sele	ecting a research problem, necessity and			
techniques involved in defining the research problem.				
Data Collection Methods: Collection of Primary Data, Observation Method, Interview Method,				
Questionnaires, Schedules, Collection of Secondary Data, C	Case study method.			

Contact Hours = 9 Hours

Processing and Analysis of Data

Processing operations, Elements/ types of analysis, Statistics in research- measures of central tendency or statistical averages, measures of dispersion, measures of asymmetry (skewness), measures of relationship.

Testing of hypothesis 1

Definition, basic concepts, procedure, flow diagram, measuring the power of hypothesis tests, tests of hypothesis.

Chi-square test

Chi-square as a test for comparing variance, steps involved in applying chi-square test.

Unit	– IV
------	------

Intellectual Property Rights – IPR- Invention and Creativity- Intellectual Property-Importance and Protection of Intellectual Property Rights (IPRs)- A brief summary of: Patents, Copyrights, Trademarks, Industrial Designs- Integrated Circuits-Geographical Indications-Establishment of WIPO-Application and Procedures. Research ethics, Plagiarism, Prior art search.

Unit – V	Contact Hours = 5 Hours		
Interpretation and Report Writing: Meaning of interpretati	on, Why interpretation, Technique of		
interpretation, Precaution in interpretation, Significance of report writing, Different steps in writing			
report, Layout of the research report, Types of reports, Mechan	nics of writing research report.		

Flipped Classroom Details

Unit No.	I	II		IV	V
No. for Flipped Classroom Sessions	01	01	01	01	01

Unit No.	Self-Study Topics [Mention if applicable else NIL]	
1	Significance of Research Methodology.	
2	Limitations of test of hypothesis.	
3	Other measures-Index numbers, Time series analysis.	

	Books				
	Text Books:				
1.	C R. Kothari, "Research Methodology" , New Age International Publishers, 2 nd edition, 2007.				
2.	Dr. B.L. Wadhera, "Intellectual Property Rights", Universal Law Publishing Co. Ltd 2002				
	Reference Books:				
1.	Panneer Selvam, "Research Methodology", PHI Learning Pvt. Ltd., 2007.				
	E-resources (NPTEL/SWAYAM Any Other)-				
1.	https://onlinecourses.swayam2.ac.in/cec20_ge37				

Course delivery methods		Assessment methods	
1.	Chalk and Talk	1. IA tests	
2.	PPT and Videos	2. Open Assignments (OA)	
3.	Flipped Classes	3. Case studies	
4.		4. Semester End Examination	

Course Outcome (COs) Learning Levels:

Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create

At	At the end of the course, the student will be able to		PO(s)	PSO(s)
1.	Identify and select an appropriate methodology for research.	Un	1,2,9,10	1
2.	Analyze and interpret data collected	Ар	1,2,9,10	1
3.	Analyze the significance of hypothesis testing	An	1,2,9,10	1
4.	Discuss the significance of Intellectual Property Rights & report writing	Ар	1,2,3,9,10,12	1,2,3

Components	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case	Total
Components	tests	/Industry/Certification etc)	study etc	Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE

-Minimum score in CIE to be eligible for SEE 40 OUT OF 100

Scheme of Semester End Examination (SEE):

1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be > 35%, however overall score of
	CIE + SEE should be \geq 40%.
3.	Question paper contains three parts A,B and C. Students have to answer
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each
	Question Carries 10 Marks.
	2. Energy Dart Compared 1 aut of 2 quantizing coupling Coupling 20 Martin

3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

	CO-PO Mapping (planned)									O-PSO ng(plann	ed)				
<u> </u>						r	1								
CO/	1	2	3	4	5	6	/	8	9	1	T	1	PS	PS	PS
PO										0	1	2	01	02	03
1	\checkmark	\checkmark							\checkmark	\checkmark			\checkmark		
2	\checkmark	\checkmark							\checkmark	\checkmark			\checkmark		
3	\checkmark	\checkmark							\checkmark	\checkmark			\checkmark		
4	\checkmark	\checkmark	\checkmark						\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark

Employability Skills I

Course Code	22AECEC57 Course type AEC		AEC	Credits L-T-P	1-0-0
Hours/week: L - T- P	1-0-0		Total credits	1	
Total Contact Hours	L = 30 Hrs; T = 0 Hrs; P = 0 Hrs			CIE Marks	100
Total Contact Hours	Total = 30 Hrs				100

	Course learning objectives
1.	Skill development is/are personal attributes that influence how well an individual works or
	interacts with others.
2.	Skill development is/are personal attributes that influence how well an individual works or
	interacts with others.
3.	In essence, they are essential for individual success in the workplace, their company's success,
	and their personal life also

Pre-requisites :

Unit – I	Contact Hours = 6 Hours	
Quantitative Aptitude: Number System (2 Hours), HCF, LCM and Decimal Fractions (1 Hour),		
Simplification (1 Hour)		
Logical Reasoning: Blood Relations (1 Hour), Direction Sense Test	(1 Hour)	

Unit – II	Contact Hours = 6 Hours		
Quantitative Aptitude: Percentages (2 Hours), Profit, Loss and Discounts (2 Hours)			
Verbal Ability: Change of Speech and Voice (2 Hours)			

Unit – III	Contact Hours = 6 Hours	
Quantitative Aptitude: Simple and Compound Interest (2 Hours)		
Logical Reasoning: Number and Letter Series (2 Hours)		
Verbal Ability: Sentence Correction (2 Hours)		

Unit – IV	Contact Hours = 6 Hours		
Quantitative Aptitude: Averages (2 Hours)			
Logical Reasoning: Coding and Decoding (1 Hour), Analogy (1 Hour)			
Soft Skills: Body Language (1 Hour), Grooming and Etiquette (1 Hour)			

Unit – V	Contact Hours = 6 Hours
Quantitative Aptitude: Alligations and Mixtures (2 Hours)	
Verbal Ability: Sentence Completion (2 Hours)	
Soft Skills: Group Discussion and Mock GDs (2 Hours)	

Books
Text Books:

	Name of the author(s), Title of the Book, Publisher, Edition/Year and onwards
1.	The Aptitude Triad , BIZOTIC
2.	How to prepare for Quantitative Aptitude for CAT & other Management Examinations, Arun
	Sharma, McGraw Hill Education(India) Private Limited, 4 th Edition, 2018.
3.	How to prepare for Logical Reasoning for CAT & other Management Examinations, Arun Sharma,
	McGraw Hill Education(India) Private Limited, 8 th Edition, 2018.
4.	How to prepare for Verbal Ability and Reading Comprehension for CAT & other Management
	Examinations, Arun Sharma, McGraw Hill Education(India) Private Limited, 8th Edition, 2018.
5.	How to prepare for Data Interpretation for CAT & other Management Examinations, Arun
	Sharma, McGraw Hill Education(India) Private Limited, 5 th Edition, 2018.

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Online Quizzes	
		3.	Assignments	
		4.	Seminar	

	Course Outcome (COs)					
At t	At the end of the course, the student will be able to (Highlight the action verb representing the learning					
	level.)					
Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)		
An -	Analysis; Ev - Evaluate; Cr - Create	Level	PO(S)			
1.	Clear the Aptitude round of recruiters during placements	L2	10, 12			
2.	Perform confidently during the GD and Interview process	L2	10, 12			
3.	Develop behaviors that are appropriate for a professional	L2	10, 12			

Components	nponents Addition of two IA tests Online Quiz		Addition of two	Total Marks			
	IA LESIS		Assignments	IVIALKS			
Marks	30+30 = 60	20	10+10 =20	100			
- Writing 2 IA t	- Writing 2 IA tests are compulsory						
-Student shoul	-Student should score minimum 40% of 100 marks to pass the course.						

	CO-PO Mapping (Planned)									CO-PSO Mapping (Planned)					
со	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	РО 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
1										\checkmark		\checkmark			
2										\checkmark		\checkmark			
3										\checkmark		\checkmark			

Tick mark the CO, PO and PSO mapping			
--------------------------------------	--	--	--

Environmental Studies

Course Code	22EC58A	Course type	HSMS	Credits L-T-P	2-0-0
Hours/week: L-T-P	2-0-0		Total credits	2	
Total Contact Hours	L = 30 Hrs; Tota	l = 30 Hrs	CIE Marks	100	
Flipped Classes content	5 Hours		SEE Marks	100	

	Course learning objectives					
1.	To understand the scope of Environmental Engineering.					
2.	Identify the Environmental impact due to Human activities.					
3.	Identify the renewable and non-renewable sources of energy.					
4.	To understand the concept of Disaster Management.					
5.	Identify the various Legal aspects in Environmental Protection.					

Required Knowledge of : Nil

Unit – I	Contact Hours = 6 Hours				
Definition of Environment, Ecology and Ecosystem, Structure and	functions of ecosystem,				
balanced ecosystem, Introduction to Environmental Impact Assessment					
Natural Resources: Material Cycles – Oxygen, Carbon, Nitrogen	and Hydrological cycle.				
Importance of water quality, Water borne diseases, Water induced	d diseases, Significance of				
Fluoride in drinking water.					

Unit – II	Contact Hours = 6 Hours			
Energy – Different types of energy, Conventional and Non – Conventional sources – Advantages				
and Limitations of Wind Mills, Hydro Electric, Fossil fuel, Nuclear, S	Solar, Biomass and Biogas,			
Geothermal energy.				

Unit – III	Contact Hours = 6 Hours
Disasters – Natural Disasters: Meaning and nature of natural disast	ers, their types and effects
(Floods, drought, cyclone, earthquakes, Tsunami). Man Made Di	sasters: Nuclear disasters,
chemical disasters, biological disasters, building fire, coal fire, fores	t fire, oil fire, air pollution,
water pollution, deforestation, industrial waste water pollution and n	narine pollution.

Unit – IV	Contact Hours = 6 Hours
Disaster Management: International strategy for disaster reduct	ion. Concept of disaster
management and national disaster management framework.	

Unit – V	Contact Hours = 6 Hours

Environmental Protection: Role of Government, Legal aspects, Initiatives by Non – Governmental Organizations (NGO), Environmental Education, Women Education. E-waste and solid waste management rules.

Flipped Classroom Details

Unit No.	I	II	111	IV	V
No. for Flipped Classroom Sessions	1	1	1	1	1

Unit No.	Self-Study Topics [Mention if applicable else NIL]

	Books
	Text Books:
1.	Benny Joseph, "Environmental Studies", Tata McGraw – Hill Publishing Company Limited
	(2005).
2.	Sanjay K. Sharma, "Environment Engineering and Disaster Management", USP (2011).
3.	Harsh K. Gupta, "Disaster Management", Universities Press (India) Pvt. Ltd (2003).
4.	Ranjit Daniels R.J. and Jagdish Krishnaswamy, "Environmental Studies", Wiley India Private
	Ltd., New Delhi (2009).
	Reference Books:
1.	Meenakshi P., "Elements of Environmental Science and Engineering", Prentice Hall of
	India Private Limited, New Delhi (2006).
2.	Tyler Miller Jr. G., "Environmental Science - Working with the Earth", Tenth Edition,
	Thomson Brooks/Cole (2004).
	E-resources (NPTEL/SWAYAM Any Other)-
1.	-
2.	-

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Assignment- Open/Industry/Certification	
3.	Flipped Classes	3.	Course Project	
4.	Online classes	4.	Semester End Examination	

Course Outcome (COs)	
Learning Levels:	
Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate;	Cr - Create

A	t the end of the course, the student will be able to	Learning Level	PO (s)	PSO (s)
1.	Understand the importance of the Environment and different sources of energy and energy crises.	Un	6,7	1
2.	Understand various environmental disasters and its management.	Ар	6,7	1
3.	Understand the various Legislations related to Environment.	Un	6,7	1

Components	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case	Total
components	tests	/Industry/Certification etc)	study etc	Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration.

2. Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of CIE + SEE should be \geq 40%.

3. Question paper contains three parts **A,B and C**. Students have to answer

1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.

2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each Question Carries 10 Marks.

3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

	CO-PO Mapping (planned)								Map	CO-PSO ping(plai			
CO /P									PS O1	PS O2	PS O3		
0 1						 ✓ 	✓				✓		
2						✓	✓				✓		
3						✓	✓				✓		

CMOS VLSI Circuit Design Lab

Course Code	22ECL59	Course type	PCCL	Credits L-T-P	0 - 0 - 2
Hours/week: L - T- P	0 - 0 - 4			Total credits	2
Total Contact Hours	L = 0 Hrs; T = 0 Hrs Total = 40 Hrs	s; P = 40 Hrs	CIE Marks	50	
Flipped Classes content				SEE Marks	50

	Course learning objectives							
1.	To comprehend the principles of transistor-level circuit design.							
2.	To analyze circuit behavior through simulation.							
3.	To optimize the designed circuit by applying standard rules and processes of CMOS Circuit							
	design.							

Required Knowledge of: Analog Electronics, Digital Electronics, CMOS VLSI Circuit Design

Lab Experiment – I	Contact Hours = 2 Hours					
Design, analyze and validate the Common Source Amplifier for a specified current drive.						
Lab Experiment – 2	Contact Hours = 2 Hours					
Design, analyze and validate the Common Drain Amplifier for a specified current drive.						
Lab Experiment – 3	Contact Hours = 2 Hours					
Design, analyze and validate the Differential Amplifier for a specifi	ed current drive.					
Lab Experiment – 4	Contact Hours = 2 Hours					
Design, analysis and validation of the Hi/Lo/Un-skew CMOS Invert	er.					
Lab Experiment – 5	Contact Hours = 2 Hours					
Design, analysis and validation of 2 input CMOS NAND gate for the	e specified Rise/Fall time.					
Lab Experiment – 6	Contact Hours = 2 Hours					
Design, analysis and validation of 2 input CMOS NOR gate for the specified Rise/Fall time.						
Lab Experiment – 7	Contact Hours = 2 Hours					
Design, analysis and validation of 2 input CMOS AND-OR-INVERT (AOI) based XOR gate.					
Lab Experiment – 8	Contact Hours = 2 Hours					
Design, analysis and validation of CMOS NAND Based S – R Latch.						
Lab Experiment – 9	Contact Hours = 2 Hours					
Design, analysis and validation of D-latch using Transmission gate.						
Lab Experiment – 10	Contact Hours = 2 Hours					
Design, analysis and validation of Dynamic CMOS Pre-Charge Evalu	uate logic circuit for the specified					
Boolean functions.						
Lab Experiment – 11	Contact Hours = 2 Hours					
Design, analysis and validation of CMOS Filp-Flop circuit for the specified clock input.						
Lab Experiment – 12	Contact Hours = 2 Hours					
Design, analysis and validation of CMOS RAM cell and evaluate the performance.						

	Books					
	Text Books:					
1.	Neil Weste, and David Harris, "CMOS VLSI Design, A Circuits and System Perspective", 4 th					
	Edition; Pearson Education, India.					
2.	Douglas Pucknell, and Kamran Eshragian, "Basic VLSI Design", PHI Publications India Pvt. Ltd.					
3.	Sedra Smith, "Microelectronic Circuits", 6 th edition, Oxford University Press.					
4.	J M Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits A Design Perspective.					
	E-resources (NPTEL/SWAYAM)					
1.	Prof. Sudeb Dasgupta, IIT Roorkee, "CMOS Digital VLSI Design",					
	https://onlinecourses.nptel.ac.in/noc24_ee29/preview_					
2.	Prof. Janakiraman, IIT Madras, "Digital IC Design",					
	https://onlinecourses.nptel.ac.in/noc24_ee43/preview_					

	Course delivery methods	Assessment methods		
1.	Practice session/Demonstrations in Labs	1.	Conduction of Experiments	
2.	Virtual Labs (if present)	2.	Journal writing	
3.	Chalk and Talk	3.	Lab project/ Open ended experiment	
4.		4.	Lab Test	
5.		5.	Semester End Examination	

	Course Outcome (COs)							
Lea	Learning Levels:							
	Re - Remember; Un - Understand; Ap - Apply; An -	Analysis; Ev	/ - Evaluate; Cr - Crea	ite				
At th	At the end of the course, the student will be able to Level PO(s) PSO							
	Verify transistor-level circuits using Cadence		1,2,3,4,5,12	1				
1.	Virtuoso, ensuring accurate functionality and	Ар						
	performance through detailed analysis							
	Develop the capability to generate comprehensive		1,2,3,4,5,12	1				
2.	test circuits and utilize Cadence Virtuoso for DC, AC	An						
	and Transient waveform verification							
	creating and verifying layouts for combinational and		1,2,3,4,5,12	1				
	sequential circuits using Cadence Virtuoso to							
	perform Design Rule Checks (DRC), Layout Versus							
3.	Schematic (LVS) verification, and Quantitative Risk	An						
	Calculation (QRC) to ensure the physical design							
	meets all specified criteria and adheres to industry							
	standards.							

Conduction of experiments	Journal	Lab project/	Lab Test	Total		
& viva-voce		Open ended expt				
20 marks	5 marks	10 marks	15	50 marks		
Conduct of Lab:						
1. Conduction of the experiment: 15 marks + Viva voce: 5 marks						
2. Calculations, results, graph, conclusion and Outcome recorded in Journal: 5 marks						
3. Lab project/ Open ended expt: 10 marks						
3. Lab Test: 15 marks						
Eligibility for SEE:						
1. 40% and above (20 marks and above)						

2. Lab test is COMPULSORY

Sche	Scheme of Semester End Examination (SEE):					
1.	It will be conducted for 50 marks of 2/3 hours duration.					
2.	Minimum marks required in SEE to pass: Score should be ≥35%, however overall score of					
	CIE+SEE should be ≥40%.					
2.	One experiments to be conducted.					
3.	Minimum marks required in SEE to pass: 20 out of 50					
	Initial write up	10 marks				
4	Conduct of experiments, results and conclusion	20 marks	EQ recertor			
4.	. One mark question 10 marks 50 mark					
	Viva- voce 10 marks					
5.	Viva-voce shall be conducted for individual student and not in a group.					

	CO-PO Mapping (planned)								CO-PSO Mapping (planned)						
~	РО	PO	РО	PO	PO	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓											√		
2	✓	~	✓	✓	✓							✓	✓		
3	✓	~	✓	✓	~							✓	✓		
	Tick mark the CO, PO and PSO mapping														

Automotive Systems

Course Code	22EC541	Course type	PEC	Credits L-T-P	3 - 0 - 0
Hours/week: L - T- P	3-0-0		Total credits	3	
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	rs; P = 0 Hrs	CIE Marks	100	
Flipped Classes content	04 Hours		SEE Marks	100	

	Course learning objectives						
1.	To understand basic concepts of Automotive System as an Electronic systems.						
2.	To understand various mechanical systems, electrical and instrumentations related to an						
	automobile.						
3.	To illustrate study of vehicular chassis system, manual and auto transmission systems and						
	related modules.						
4.	To illustrate study of HVAC, vehicle safety and comfort, and vehicle diagnostics.						

Pre-requisites: Basics of Mechanical Engineering, Control Systems.

Unit – I	Contact Hours = 8 Hours				
Introduction to Automotive Electronics: Development of the automobile electrical system, The basics					
of Electronic Engine Controls- Motivation for Electronic Engine Control, Exhaust Emissions, Fuel					
Economy, Concept of an Electronic Engine Control System, Basic Principle of Four-Stroke Engine					
Operation, Definition of Engine Performance Terms.					
Sensors and Actuators: Automotive Control System Applications of Sensors and Actuators,					
Temperature Sensors, Position Sensors, Coolant sensor EGO, O2, Sensor for feedback control,					
Automotive Engine Control Actuators.					

Unit – II	Contact Hours = 8 Hours				
Batteries- Vehicle batteries, Lead-Acid Batteries, Maintenance charging and testing, Charging-					
Requirements of the charging system, principles, alternators, smart charging, advance charging					
systems, Starting- requirements, motors and circuits, types, advan	ce starting system technology,				
Ignition- fundamentals, Electronic Ignition, distributor-less ignition system, Fuel-control- combustion,					
fuel injection, advance fuel control technology, Advance Engine Management technology, Digital					
Powertrain Control Systems.					

Unit – III	Contact Hours = 8 Hours				
Automotive Instrumentation: Modern Automotive Instrumentation, Advantages of Computer-Based					
Instrumentation, Digital Display, Lighting: fundamentals, circuits, C	Gas discharge, LED, infra-red				
lighting, advance technology, Auxiliaries: windscreen, washers, signaling circuits, advance auxiliary					
technology, HVAC: conventional heating and ventilation, air-conditioning, other heating systems,					
advance temperature control technology,					

Unit – IV	Contact Hours = 8 Hours
-----------	-------------------------

Chassis Electricals: ABS, traction and stability control, active suspension, automatic transmission, advance chassis systems technology, Electronic Safety related systems: Blind Spot Detection, Automatic Collision Avoidance System, Lane Departure Monitor, Tire Pressure Monitoring System, Enhanced Vehicle Stability, Comfort and safety: seat, mirrors and sun roofs, central locking, electric windows, cruise control (4WS), in-car multimedia, advance comfort and safety systems technology, Airbags and Seatbelts.

Unit – V

Contact Hours = 8 Hours

Vehicle Motion Controls: introduction, cruise control (4WS), electronic suspension system, Electronic Power Steering, Diagnostics: Electronics Control System Diagnostics, Onboard Diagnostics, Model-Based Sensor Failure Detection, General Model-Based Diagnostics, Diagnostic Fault Codes, Onboard Diagnosis (OBD II), Automonous Vehicles: Automatic Parallel Parking System, Autonomous Vehicle Block Diagram.

Flipped Classroom Details

Unit No.	1	II		IV	V
No. for Flipped Classroom Sessions	0	1	1	1	1

Unit No.	Self-Study Topics
1	Four Stroke Engine
2	Knock sensors, Lambda Sensor, diaphragms for actuators

Book	IS STATES AND A STATES
	Text Books:
1.	William Ribbens, Understanding Automotive Electronics – An Engineering Perspective,
	Butterworth-Heinemann Publication, 8 th Edition.
2.	Tom Denton, Automobile Electrical and Electronics System – Automotive Technology, Vehicle
	Maintenance and Repairs, Routledge A Taylor & Francis Group, 4 th Edition.
	Reference Books:
1.	Automotive Transmissions Fundamentals, Selection, Design and Application - Harald
	Naunheimer, Bernd Bertsche, Springer, 2 nd Edition
	E-resources (NPTEL/SWAYAM Any Other)- mention links
1.	

Course delivery methods		Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Assignment- Open/Industry/Certification	
3.	Flipped Classes	3.	Course Project	
4.	Online classes	4.	Semester End Examination	

Course Outcome (COs)

At the end of the course, the student will be able to (Highlight the action verb representing the learning level.)						
	Learning Levels: Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - CreateLearning LevelPO(s)PSO(s)					
1.	Explain the systems applied for Electronic Engine Controls, Sensors and Actuators	Un	1,2,3	1,2		

	Sensors and Actuators.	0		
2.	Illustrate the advance automotive electrical and electronics	Un	1,2,3	1,2
2.	systems.	011		
2	Apply the comfort and safety facilities for different driving	4.5	1,2,3,5,9	1,2
3.	conditions.	Ар		
4.	Infer the use diagnostics for different faults.	An	1,2,5,9	1,2

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification etc)		Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	eme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of
	CIE + SEE should be \geq 40%.
3.	Question paper contains three parts A, B and C. Students have to answer
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each
	Question Carries 10 Marks.
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

CO-I	PO Ma	pping	(Plann	ed)									CO-PS (Plani	SO Map ned)	ping
~~~	РО	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓	✓										✓	✓	
2	✓	✓	✓										✓	✓	
3	✓	✓	✓		✓				✓				✓	✓	
4	✓	✓			✓				✓				✓	✓	
	I	1	T	ick ma	rk the	CO, PC	) and P	SO ma	pping						

#### **Operating Systems**

Course Code	22EC542	Course type	PEC	Credits L-T-P	3 – 0 - 0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	L = 40 Hrs; T = 0 Hrs; P = 0 Hrs Total = 40 Hrs			100
Flipped Classes content	5 Hours			SEE Marks	100

	Course learning objectives					
1.	To summarize key functions of an OS and evolution of OS					
2.	To understand the concepts of process and various scheduling policies of OS					
3.	To comprehend the various memory management techniques					
4.	To learn the mass storage structure and Disk scheduling algorithms					

### Pre-requisites : Basic Computer knowledge

Unit – I Contact Hours = 8 Hours			
Introduction: Goals of an OS, Functions of an OS: Program management, Resource management and			
Security & protection.			

**Features of computer system from OS viewpoint**: CPU, MMU, Memory Hierarchy, Input/Output, Interrupts. System calls, Computing environments and classes of OS. Structure of an OS

Unit – II	Contact Hours = 8 Hours		
Process Management: Process Concept: The process, Process states, Process control Block, Threads.			
Process Scheduling: Scheduling queues, Schedulers, Context Switch.			

**Uni-processor Scheduling**- Types of scheduling: Preemptive & Non-preemptive, Scheduling criteria, Scheduling algorithms: FCFS, SJF, Priority, Round Robin and Shortest Time to Go.

Unit – III Contact Hours = 8 Hours		
Process Synchronization: Race condition, Critical section problem, Mutual exclusion, Semaphores,		
Monitors, Classic problems of Process Synchronization – The Bounded-Buffer problem, The Readers-		
Writers problem, The Dining Philosophers problem.		
Deadlocks: Principles of Deadlock, Resource allocation graphs, Conditions for Deadlock, Deadlock		
Prevention, Deadlock Avoidance- Safe state, Banker's algorithm.		

Unit – IV	Contact Hours = 8 Hours			
Memory Management: Memory Management requirements, Contiguous Memory Allocation- Fixed				
and Variable Partitioning, Memory Allocation Strategies- Fi	rst Fit, Best Fit, and Worst Fit.			
Fragmentation-internal and External, Swapping, Segmentation, Paging.				
Virtual Memory: Introduction, Management of Virtual Memory, Demand Paging, Page Replacement				
Policies-FIFO, LRU, Optimal, Counting-based page replacement.				

Unit – V Contact Hours = 8 Hours	
----------------------------------	--

**File system:** File concept, access methods, directory structure, file system mounting, file sharing, protection.

**Disk scheduling**: I/O Devices, Organization of I/O functions, Mass Storage structure-Magnetic disks, Solid-State disks, Magnetic tapes. Disk Scheduling -FCFS, SSTF, SCAN, C-SCAN.

Unit No.	I	II	III	IV	V	
No. for Flipped Classroom Sessions	1	1	1	1	1	

#### **Flipped Classroom Details**

Unit No.	Self-Study Topics
1	History and Evolution of Operating Systems
2	Analyze real-world applications of scheduling algorithms in different OS environments
3	Concurrency and parallelism in modern operating systems
4	Advanced paging techniques like hierarchical paging, inverted page tables, and hashed
	page tables.
5	Different file systems (NTFS, FAT32, ext4) and their features.

	Books
	Text Books:
1.	Dhananjay M. Dhamdhere, "Operating Systems – A Concept – Based Approach", Tata
	McGraw–Hill, 3rdEdition, 2012 and onwards.
2.	Silberschatz, Galvin, Gagne, "Operating System Concepts" John Wiley, 6th Edition, 2004
	and onwards.
	Reference Books:
1.	William Stallings, "Operating Systems-Internals and Design Principles" Pearson,6th
	Edition, 2012 and onwards.
2.	Charles Crowley, "Operating Systems-A Design Oriented approach", McGraw Hill.
	2012 and onwards.
3.	H. M. Deitel, P. J.Deitel and David R. Choffnes, "Operating Systems".
	PHI,3rdEditionand onwards.
4.	Elmasri, Carrick, Levine, "Operating Systems–Aspiral Approach", Tata McGraw–
	Hill,2012 and onwards.
	E-resources (NPTEL/SWAYAM Any Other)- mention links
1.	https://onlinecourses.nptel.ac.in/noc24_cs108/preview
2.	https://www.nesoacademy.org/cs/03-operating-system

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Assignment- Open/Industry/Certification	
3.	Flipped Classes	3.	Course Project	

4.	Online	classe
••	0111110	0.000

ses		

At t	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning level.)				
	ning Levels: Re - Remember; Un - Understand; Ap - Apply; Analysis; Ev - Evaluate; Cr - Create	Learning Level	PO(s)	PSO(s)	
1.	Explain the fundamental concepts and terminology related to operating systems and the structure of an operating system.	Un	1,3,5,12	1	
2.	Solve the problems on various process scheduling algorithms and memory allocation strategies.	Ар	1,3,5,12	1	
3.	Analyze the process synchronization issues and identify and evaluate different solutions for deadlock prevention and deadlock avoidance.	An	1,3,5,12	1	
4.	Assess the efficiency and effectiveness of different page replacement policies and disk scheduling algorithm and justify the choice of appropriate strategies in various scenarios.	An	1,3,5,12	1	

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification etc)		Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

1.	It will be conducted for 100 marks of 3 hours duration.

 Minimum marks required in SEE to pass: Score should be ≥ 35%, however overall score of CIE + SEE should be ≥ 40%.

3. Question paper contains three parts **A,B and C**. Students have to answer

1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.

- 2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each Question Carries 10 Marks.
- 3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

				C	0-PO N	Ларріп	ıg (Plar	nned)						SO Map Planned	
со	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	РО 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
1	✓		✓		✓							✓	✓		

2	✓	✓	, ,		✓				✓	✓	
3	✓	✓	, 		✓				✓	✓	
4	✓	<ul> <li>✓</li> </ul>	, ,		✓				✓	✓	
5											
	Tick mark (✓) the CO, PO and PSO mapping										

#### **Power Converters**

Course Code	22EC543	Course type	PEC	Credits L-T-P	3-0-0
Hours/week: L-T-P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 Hrs	s; P = 0 Hrs	CIE Marks	100	
	Total = 40 Hrs		SEE Marks	100	

	Course Learning Objectives (CLOs)
1.	To provide a comprehensive understanding of the principles and concepts of power electronics.
2.	To explore problem-solving skills with power electronic circuits and systems.
3.	To foster the ability to select appropriate power electronic components and devices for specific
	applications.

Pre-requisites: Basic Electronics, Analog Electronic Circuits

Unit – I	Contact Hours = 8 Hours			
Thyristor: Principles and Characteristics: Introduction, History	of Power Electronics Development,			
Thyristor Family, Principle of Operation of SCR, Static Anode-Cat	hode Characteristics of SCR, The Two-			
transistor Model of SCR (Two Transistor Analogy), Gate Characteristics of SCR, Turn-on Methods of a				
Thyristor, Dynamic Turn-on Switching Characteristics, Turn-off Mechanism (Turn-off Characteristic),				
Turn-off Methods, Numerical Problems				

Unit – II	Contact Hours = 8 Hours
Gate Triggering Circuits: Introduction, Firing of Thyristors, Pulse	Transformers, Optical Isolators (Opto-
isolators), Gate Trigger Circuits, Unijunction Transistor, The P	rogrammable Unijunction Transistor
(PUT), Numerical Problems	

Unit – III	Contact Hours = 8 Hours
Phase Controlled Rectifiers: Introduction, Phase Angle Control	, Single Phase Half-Wave Controlled
Rectifier (One-quadrant), Single-Phase Full-Wave Controlled F	Rectifier (Two-quadrant Converters),
Single-Phase Half Controlled Bridge Rectifier, (R and L Load), Nun	nerical Problems
Self-Study: Problem solving with the help of simulation tools and	techniques.

Unit – IV	Contact Hours = 8 Hours			
Inverters: Introduction, Thyristor Inverter Classification, Series	Inverters: Basic Series Inverter, Self-			
Commutated Inverters, Parallel Inverter: Basic Parallel Inverter				
Choppers: Introduction, Principle of Chopper Operation, Step-up Choppers, Step-up/down Chopper				
A. C. Regulators: Introduction, Single-phase A. C. Regulators (With R Load Only), Numerical Problems				
Self-Study: Problem solving with the help of simulation tools and techniques.				
Unit –V	Contact Hours = 8 Hours			

Thyristor Applications: Introduction, Overvoltage Protection, Zero Voltage Switch, Integral Cycle Triggering (or Burst Firing), Switched Mode Power Supplies (SMPS), Uninterruptible Power Supplies (UPS), ARC Welding

	Books
	Text Books:
1.	M. D. Singh, K. B. Khanchandani, "Power Electronics", Tata McGraw-Hill Publishing Company Limited, New Delhi, 2005 onwards
2.	Robert W. Erickson, Dragon Maksimovic, "Fundamentals of Power Electronics", Kluwer Academic Publishers, New York, 2004 onwards
	Reference Books:
1.	Muhammad Rashid, "Power Electronics: Circuits, Devices, and Applications", Pearson Education, 2004 onwards
2.	Dr. P. S. Bimbhra, "Power Electronics", Khanna Publishers, 4th edition onwards
3.	L. Umanand, "Power Electronics – Essentials and Applications", Wiley India Pvt. Ltd, Copyright 2009

	Course delivery methods	elivery methods Assessment methods		
1.	Chalk and Talk	1. IA tests		
2.	PPT and Videos	2. Online Quizzes (Surprise and Scheduled)		
3.	Flipped Classes	3. Open Book Assignment (OBA)		
4.	Online classes	4. Course Seminar		
		5.	Semester End Examination	

	Course Outcome (COs)					
	At the end of the course, the student will be able to (Highlight the	action verb r	epresentin	g the		
	learning level.)					
Lea	rning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)		
An	- Analysis; Ev - Evaluate; Cr - Create	Level	PO(S)	P50(S)		
1.	<b>Understand</b> the fundamental concepts of power electronics, including power semiconductor devices, switching circuits, and converter topologies.	Un	1	1		
2.	<b>Analyze</b> the dynamic behavior of power electronic circuits and systems.	An	1,2	1		
3.	Analyze the performance of power electronic systems.	An	1,2,3,5	1		
4.	<b>Evaluate</b> the impact of power electronics on energy conversion and utilization in different applications.	Ev	1,2,3,5, 7,12	1,3		

Components Addition of two tests		Two Assignments – (Open /Industry/Certification etc)		Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	Scheme of Semester End Examination (SEE):			
1.	It will be conducted for 100 marks of 3 hours duration.			
2.	Minimum marks required in SEE to pass: Score should be $\geq$ 35%, however overall score of			
	CIE + SEE should be $\geq$ 40%.			
3.	Question paper contains three parts A,B and C. Students have to answer			
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.			
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each			
	Question Carries 10 Marks.			
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.			

## Embedded System Design

Course Code	22EC544	Course type	PEC	Credits L-T-P	2-0-1
Hours/week: L - T - P 2 - 0 - 2		Total credits	3		
Total Contact Hours	L = 30 Hrs; T = 0 Hrs; P = 20 Hrs Total = 50 Hrs			CIE Marks	100
Flipped Classes content 10 Hours		SEE Marks	100		

	Course learning objectives			
1.	Explain the need and applications of embedded system			
2.	Apply Instruction sets for Assembly basics, Instruction list and description.			
3.	Analyze Cortex-M3 programming using C language concepts and Microcontroller Software			
	Interface Standard concepts for practical applications.			

# Pre-requisites:

Unit – I	Contact Hours = 6 Hours
Embedded System basics: Embedded vs General computing system	stem, classification, application and
purpose of ES. Core of an Embedded System, Memory, Sens	ors, Actuators, LED, Opto-coupler,
Communication Interface, Reset circuits, RTC, WDT, Characteristics	and Quality Attributes of Embedded
Systems	

Unit – II	Contact Hours = 6 Hours			
Embedded System firmware and memory: Hardware Software Co-Design, embedded firmware design				
approaches, computational models, Integration and testing of Embedded Hardware and firmware,				
Components in embedded system development environment (IDE), Files generated during compilation,				
simulators, emulators and debugging, Big and Little Endian formats, Memory (ROM and RAM types)				

Unit – III	Contact Hours = 6 Hours
ARM-32 bit Microcontroller: Thumb-2 technology and application	ions of ARM, Architecture of ARM
Cortex M3, Various Units in the architecture, General Purpose Reg	isters, Special Registers, exceptions,
interrupts, stack operation, reset sequence .	

Unit – IV	Contact Hours = 6 Hours		
Instruction Sets: Assembly basics, Instruction list and description, useful instructions.			
Communication Interfaces: I2C, SPI, IrDA, Bluetooth, Wi-Fi, Zigbee only			

#### Unit – V

#### Contact Hours = 6 Hours

**Programming**: Exceptions, Nested Vector interrupt controller design, Timer, Cortex-M3 Programming using assembly and C language

#### Flipped Classroom Details

inpped classicient becaus					
Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

	List of Experiments				
Unit No.	No. of Experiments	Topic(s) related to Experiment			
5	5	1. ALP to multiply two 16 bit binary numbers.			
		2. ALP to find the sum of first 10 integers.			
		3. ALP to find the number of 0's and 1's in a 32 bit data.			
		4. ALP to determine the given 16 bit number is ODD or EVEN.			
		5. ALP to write data in RAM.			
3	2	6. Interface and Control a DC Motor.			
		7. Interface a Stepper motor and rotate it in clockwise and anti-			
		clockwise direction.			
1	3	8. Interface a DAC and generate Triangular and Square waveforms.			
		9. Display the Hex digits 0 to F on a 7-segment display interface, with			
		an appropriate delay			
		10. Measure Ambient temperature using a sensor and SPI ADC			

Unit No.	Self-Study Topics
1	PWM
1	Interface a simple Switch and display its status through Relay, Buzzer and LED.

	Books								
	Text Books:								
1.	K. V. Shibu , "Introduction to embedded systems", TMH education Pvt. Ltd. 2009								
2.	Joseph Yiu, "The Definitive Guide to the ARM Cortex-M3", Newnes, (Elsevier) 2nd edn, 2010.								
3.	James K. Peckol, "Embedded systems - A contemporary design tool", John Wiley, 2008								
	Reference Books:								
1.	Yifeng Zhu, "Embedded Systems with Arm Cortex-M Microcontrollers in Assembly Language								
	and C", 2nd Ed., Man Press LLC ©, 2015								
2.	Rajkamal, "Embedded Systems", 2nd Edition, McGraw hill Publications, 2010.								

	Course delivery methods	Assessment methods				
1.	Chalk and Talk	1.	IA tests- Lab based			
2.	PPT and Videos	2.	Project phase 1 & 2			
3.	Flipped Classes	3.	SEE- Project evaluation			
4.	Practice session/Demonstrations in Labs	4.	SEE- Solving an Open ended problem			
5.	Virtual Labs ( if present)					

	Course Outcome (COs)									
Lea	Learning Levels:									
F	Re - Remember; Un - Understand; Ap - Apply; An - Analysis	; Ev - Evaluat	te; Cr – C	create						
Δ+ +k	ne end of the course, the student will be able to	Learning	PO(s)	PSO(s)						
	ie end of the course, the student will be able to	Level	10(3)	1 30(3)						
1	Develop programs using the various instructions of ARM for	An	2,3,5	1						
1.	different Applications.									

2.	Develop the hardware software co-design and firmware	An	2,3	1
	design approaches.			
3.	Analyze the code to optimize the ARM assembly code	An	3 <i>,</i> 5	1
1	Develop a project and follow the concept of "Learning by	Cr	9,10,11	1,2
4.	Doing".			

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test **(COMPULSORY)** will be part of the CIE. **No SEE for Lab**.

LAB (4	0 marks)	F			
IA test (Theory)	IA test (Lab)	Project Phase 1	Project Phase 2	Project report	Total
25 marks	15 marks	25 marks	25 marks	10 marks	100 marks

Theory IA test should be of one-hour duration.

Lab IA test should be of two/three-hour duration.

Project batch will ideally consist of 2 students (maximum of 3).

Project Phase 1 presentation will be conducted after 6 weeks and Project Phase 2 presentation will be conducted after 13 weeks from the start of the semester.

Submitting Project report is compulsory.

### **Eligibility for SEE:**

1. 40% and above (16 marks and above) in LAB component

2. 40% and above (24 marks and above) in project component

3. Not eligible in any one of the two components will make the student **Not Eligible** for SEE

### Semester End Examination (SEE):

-								
1.	It will be conducted for 100 marks having 3 hours duration.							
	Lab Open ended program/problem/experiment							
	Write-up & execution (1 open ended expt)- (15 marks write-up + 50 marks							
	20 marks algorithm/flowchart + 15 marks execution)							
	Project evaluation							
	a. Initial write up stating the objectives, methodology and the	10 marks						
2.	outcome							
	b. Hardware project: Exhibiting and demonstration of working of		100 marks					
	project. Software project: Demonstration of the programming	30 marks	100 11101 KS					
	Software project: Demonstration of the programming capabilities by writing flowchart, algorithm and codes related							
	to a section of the project.							
	c. Viva-voce	10 marks						
3.	Minimum marks required in SEE to pass: Score should be $\geq$ 35%, ho	wever overal	l score of					
	CIE + SEE should be $\geq$ 40%.							
4.	SEE will be conducted in project batches by <b>Internal &amp; External examiners</b> together.							

	CO-PO Mapping (planned)											SO Map planned			
со	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	РО 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
1		✓	✓		✓								✓		

2		✓	✓									✓		
3			✓		✓							√		
4									✓	✓	√	√	√	
	Tick mark the CO, PO and PSO mapping													

Course Code	22EC545	Course type	PEC	Credits L-T-P	2-0-2
Hours/week: L - T- P	2 - 0 - 2		Total credits	3	
Total Contact Hours	L = 30 Hrs; T = 0 Hrs; Total = 40 Hrs	CIE Marks	100		
Flipped Classes content	8 Hours			SEE Marks	100

Cours	Course learning objectives						
1.	To explore fundamental image processing system						
2.	To study the techniques used for quality enhancement of image						
3.	To comprehend image retrieval techniques						

**Pre-requisites** : Signals and systems, Engineering mathematics

Unit – I Introduction to Digital Image Processing	Contact Hours = 6 Hours					
Introduction to Digital Image Processing, Examples of fields that use DIP, Fundamental Steps in Digital						
Image Processing, Components of an Image Processing System, Ele	ements of Visual Perception, Image					
Sensing and Acquisition, Image Sampling and Quantization.						

Unit – II Spatial Domain image processing	Contact Hours = 6 Hours
Basic Intensity Transformation Functions, Fundamentals of Spatia	l Filtering, Smoothing Spatial Filters,
Sharpening Spatial Filters, Numericals as applicable	

Unit – III Frequency Domain image processing	Contact Hours = 6 Hours	
Basics of Filtering in the Frequency Domain, Image Smoothing and Image sharpening using frequency		
domain filters, Numericals as applicable		

Unit – IV Image Restoration	Contact Hours = 6 Hours	
A model of the Image Degradation/Restoration Process, Noise models, restoration in the presence of		
noise only using spatial filtering and frequency domain filtering, N	linimum Mean Square Error	
(Wiener) Filtering, numericals as applicable.		

Unit – V Segmentation and feature extraction	Contact Hours = 6 Hours	
Point, Line, and Edge Detection, Thresholding, Segmentation by R	egion Growing and by Region	
Splitting and Merging Region Segmentation Using Clustering and Super pixels, Region Segmentation		
Using Graph Cuts Feature extraction: Boundary Feature Descripton	rs, Region Feature Descriptors,	
Principal Components as Feature Descriptors		

### Flipped Classroom Details

Unit No.	1	II		IV	V
No. for Flipped Classroom Sessions	2	2	2	1	1

# List of Experiments

Unit No.	No. of Experiments	Topic(s) related to Experiment
1	2	Programs on Basic Relationships and mathematical operations on pixels.
2	2	Programs on Intensity Transformation Functions, Histogram, Spatial domain filters
3	2	Programs on Image filtering
4	2	Programs on image restoration
5	2	Open ended problem statement for real life application of image processing (Ex: Biometric authentication, medical image analysis, image processing in agriculture, etc.)

Unit No.	Self-Study Topics
1.	Arithmetic and Logical operations
2.	Histogram processing
3.	Color Image Processing, Color Fundamentals, Color Models, Pseudo-color image processing
4	Inverse Filtering

Book	Books				
	Text Books:				
1.	Digital Image Processing- Rafael C Gonzalez and Richard E Woods, PHI, 3rd Edition, 2010.				
	Reference Books:				
1.	Digital Image Processing- S Jayaraman, S Esakkirajan, T Veerakumar, Tata McGraw Hill, 2014.				
	E-resources (NPTEL/SWAYAM Any Other)- mention links				
1.	NPTEL Course, Introduction to Digital Image Processing,				
	https://nptel.ac.in/courses/117105079				
2.	Computer Vision and Image Processing, <u>https://nptel.ac.in/courses/108103174</u>				

ſ	3.	Image Processing and Computer Vision – Matlab and Simulink,
	4.	https://in.mathworks.com/solutions/image-video-processing.html

Course delivery methods		Assessment methods	
1.	Chalk and Talk	k and Talk 1. IA tests	
2.	PPT and Videos	2. Online Quizzes (Surprise and Scheduled	
3.	Flipped Classes	3. Open Assignment (OA)/ Certification	
4.	Online classes	4. Course Project	
			Semester End Examination

	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning level.)					
	Learning Levels: Re - Remember; Un - Understand; Ap -LearningPO(s)PSO(s)Apply;An - Analysis; Ev - Evaluate; Cr - CreateLevelPO(s)PSO(s)					
1.	Understand image formation and visualization in digital domain.	2	1,2,3,5,9,10,12	1		
2.	Apply the image quality enhancement techniques to different types of images	3	1,2,3,5,9,10,12	1		
3.	Understand image segmentation and analyze restoration methods used in digital image processing	2	1,2,3,5,9,10,12	1		

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test **(COMPULSORY)** will be part of the CIE. **No SEE for Lab**.

THEORY (60 marks)			LAB (40 marks)		Total
IA test 1	IA test 2	Assignment (OBA/Lab Project/ Industry assignment)/ Course project	Conduction	Lab test	
25 marks	25 marks	10 marks	10 marks	30 marks	100 marks
IA Test: 1. No objective part in IA question paper					

2. All questions descriptive

Conduct of Lab:

- 1. Conducting the experiment and journal: 5 marks
- 2. Calculations, results, graph, conclusion and Outcome: 5 marks

Lab test: (Batchwise with 15 students/batch)

- 1. Test will be conducted at the end of the semester
- 2. Timetable, Batch details and examiners will be declared by Exam section
- 3. Conducting the experiment and writing report: 5 marks
- 4. Calculations, results, graph and conclusion: 15 marks
- 5. Viva voce: 10 marks

Eligibility for SEE:

- 1. 40% and above (24 marks and above) in theory component (No change)
- 2. Student should score minimum 40% of 30 marks (i.e. 12 marks) in Lab test & should score 40% of

40 marks (i.e. 16 marks) in Total.

3. Lab test is COMPULSORY

4. Not eligible in any one of the two components will make the student Not Eligible for SEE

Sch	Scheme of Semester End Examination (SEE):					
1.	It will be conducted for 100 marks of 3 hours duration.					
2.	Minimum marks required in SEE to pass: Score should be $\geq$ 35 &, however overall score of CIE+SEE should be $\geq$ 40%.					
3.	<ul> <li>Question paper contains three parts A,B and C. Students have to answer</li> <li>1. From Part A answer any 5 questions each Question Carries 6 Marks.</li> <li>2. From Part B answer any one full question from each unit and each Question Carries 10 Marks.</li> <li>3. From Part C answer any one full question and each Question Carries 20 Marks.</li> </ul>					

	CO-PO Mapping (Planned)							CO-PSO Mapping (Planned)							
6	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓	✓		✓				✓	✓		✓	✓		
2	✓	✓	✓		✓				✓	✓		✓	✓		
3	✓	✓	✓		✓				✓	✓		✓	✓		
	1	1	T	ick ma	rk the	CO, PC	) and P	SO ma	pping			1			

#### Multimedia Communication

Course Code	22EC546	Course type	PEC	Credits L-T-P	3 – 0 - 0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	CIE Marks	100		
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives					
1.	To understand the fundamental concepts of multimedia, including information representation					
	and networking.					
2.	To gain knowledge about digitization principles and the representation of various forms of					
	media					
3.	To investigate and apply sophisticated methods for converting analog signals to digital					
	formats, emphasizing high fidelity and data integrity.					
4.	To analyze and implement resource management strategies in distributed multimedia					
	systems, optimizing performance and scalability.					

# Pre-requisites : Digital Signal Processing

Unit – I	Contact Hours = 8 Hours				
Introduction, Multimedia information representation, multimedia networks, multimedia applications,					
Application and networking terminology.					

Contact Hours = 8 Hours

# Unit – II

Introduction, Digitization principles, Text, Images, Audio and Video.

Unit – III	<b>Contact Hours = 8 Hours</b>				
Introduction, Compression principles, text compression, image Compression.					
Distributed Multimedia Systems:					
Introduction, main Features of a DMS, Resource management of DMS, Networking, Multimedia					
Operating Systems.					

Unit – IV	Contact Hours = 8 Hours				
Introduction, Audio compression, video compression, video compression principles, video					
compression.					

Unit – V	Contact Hours = 8 Hours				
Introduction, LANs, Ethernet, Token ring, Bridges, FDDI High-speed LANs, LAN protocol					
The Internet: Introduction, IP Datagrams, Fragmentation, IP Address, ARP and RARP, QoS Support,					
IPv8.					

#### Flipped Classroom Details

Unit No.	I	П	111	IV	v
No. for Flipped Classroom Sessions	1	1	1	1	1

	Books					
	Text Books:					
1.	Multimedia Communications- Fred Halsall, Pearson Education, 2001, ISBN -9788131709948					
2.	Multimedia Communication Systems- K. R Rao, Zoran S. Bojkovic, Dragorad A. Milovanovic,					
	Pearson Education, 2004. ISBN - 9788120321458.					
3.	Reference Books:					
4.	Ze-Nian Li and Mark S. Drew, "Fundamentals of Multimedia", Prentice Hall.					
	Yao Wang, Joern Ostermann, and Ya-Qin Zhang, Video Processing and Communications,					
	Prentice-Hall, 2002.					
1.	E-resourses (NPTEL/SWAYAM Any Other)- mention links					
2.	Multimedia processing https: //nptel.ac.in/courses/117/105/117105083/					

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Assignment- Open/Industry/Certification	
3.	Flipped Classes	3.	Course Project	
4.	Online classes	4.	Semester End Examination	

	Course Outcome (COs)						
At t	At the end of the course, the student will be able to (Highlight the <b>action verb</b> representing the learning						
	level.)						
Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)			
An -	Analysis; Ev - Evaluate; Cr - Create	Level	PO(S)	P30(S)			
1.	nonstrate a clear understanding of multimedia information	2	1,2	1			
1.	representation, networks, and applications.	2					
2.	Apply compression principles to text and image data, utilizing	3	1,2	1			
Ζ.	appropriate algorithms and techniques	5					
3.	Evaluate the main features, resource management, and	4	1,2	1			
5.	networking requirements of distributed multimedia systems.	4					
4.							

# Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case	Total
	tests	/Industry/Certification etc)	study etc	Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks. -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. -Lack of minimum score in IA test will make the student Not Eligible for SEE -Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Scheme of Semester End	Examination (SEE):
------------------------	--------------------

- 1. It will be conducted for 100 marks of 3 hours duration.
- Minimum marks required in SEE to pass: Score should be > 35%, however overall score of CIE + SEE should be > 40%.
- 3. Question paper contains three parts **A,B and C**. Students have to answer
  - 1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.

2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each Question Carries 10 Marks.

3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

	CO-PO Mapping (Planned)							'SO Map Planned							
6	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓	✓										✓		
2	✓	✓	✓										✓		
3	✓	✓	✓										√		
4	✓	✓	✓										√		
5	✓	✓	✓										✓		
		1	Ti	ck mai	k the 0	со, ро	and P	SO ma	pping		1	1			

## **Cryptography and Network Security**

Course Code	22EC547Course typePEC		Credits L-T-P	3 - 0 - 0	
Hours/week: L - T- P			Total credits	3	
Total Contact Hours	L = 40 Hrs; T = 0 Hrs; P = 0 Hrs Total = 40 Hrs			CIE Marks	100
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives
1.	Study the network security model, security attacks, mechanisms and services and to
	demonstrate use of various symmetric key ciphers and their principles.
2.	Understand the concept of Modular Arithmetic and its application in public key cryptography
	and apply the knowledge to solve security related problems.
3.	Understand the design principles of Public key cryptosystems for encryption, key exchange
	and Authentication.
4.	Comprehend the concept of secured electronic transaction with web security considerations.
5.	Study the security threats to networks and their counter measures.

# Pre-requisites :

Unit – I	Contact Hours = 8 Hours					
Security services, mechanisms and attacks, OSI security model, symmetric key cryptography,						
Substitution techniques: play fair and transposition techniques, SI	DES: encryption, decryption and key					
generation, DES: design principles, AES: encryption and decryption	n model, steganography.					
Case Study:						
1. Perform encryption and decryption on a file using the princip	e of substitution and transposition					
cipher.						
2. Survey research papers which use multiple techniques to perform	m image watermarking and					
Report the findings.						
Unit – II	Contact Hours = 8 Hours					
Galois fields, extended Euclid's theorem, discrete log problem, Chinese remainder theorem, elliptic						

Calois fields, extended Euclid's theorem, discrete log problem, Chinese remainder theorem, elliptic curve arithmetic, principles of public key cryptosystems. Case Study:

1. Survey of extended Euclid's algorithm in cryptographic applications.

2. Develop a code to implement ECC algorithm

Unit – III	Contact Hours = 8 Hours
Principles of public-key cryptosystems: public-key cryptosys	stems, applications for public-key
cryptosystems, requirements for public-key cryptography, public-key	ey cryptanalysis, the RSA: description
of the algorithm, computational aspects, the security of RSA Algor	rithm, Daffier Hellman key exchange,
cryptographic hash functions: applications of cryptographic hash f	unctions, two simple hash functions,
requirements and security, hash functions based on cipher block ch	naining, secure hash algorithm (SHA).

Unit – IV	Contact Hours = 8 Hours			
Secure socket layer, Transport layer security, and secure hypertext transfer protocol, brief introduce to TCP/IP, Firewalls, IP security, and virtual private networks.				
Case Study:				
1. Demonstration of secure socket layers' applications.				
2. Survey and report the recent challenges in secure electronic tra	nsactions.			

Unit – V	Contact Hours = 8 Hours			
Case studies on cryptography and security: introduction, cryptogra secure intra-branch payment transactions, Denial of services (DoS site scripting vulnerability (CSSV) contract signing, secret splitting, v calculation, creating a VPN, cookies and privacy	) attacks, IP spoofing attacks, cross			
Case Study:				
1. Document the history of any two recent viruses and their impact.				

2. Identify the limitations of any two antivirus programs.

# Flipped Classroom Details

Unit No.	1	II	111	IV	V
No. for Flipped	2	2	2	2	2
Classroom Sessions					

Unit No.	Self-Study Topics					
1.	Perform encryption and decryption on a file using the principle of substitution and					
	transposition cipher.					
2.	Develop a code to implement ECC algorithm.					
3.	Develop a code for implementing simple hash function.					
4.	Demonstration of secure socket layers' applications.					
5.	Identify the limitations of any two antivirus programs.					

Book	s
	Text Books:
1.	William Stallings, "Cryptography and Network security: principles and practice", 2nd Edition,
	Prentice Hall of India, New Delhi, 2002 and onwards.
2.	Behrouz A. Fourouzan, "Cryptography and Network security" Tata McGraw-Hill, 2008 and
	onwards.
3.	AtulKahate," Cryptography and Network security", 2nd Edition, Tata McGraw-Hill, 2008 and
	onwards.
	Reference Books:

1.	H. Yang et al., Security in Mobile Ad Hoc Networks: Challenges and Solution, IEEE Wireless
	Communications, 2004 and onwards.
2.	Cyber Security Operations Handbook – by J.W. Rittiag house and William M.Hancok –
	Elsevier's.
	E-resources (NPTEL/SWAYAM Any Other)- mention links
1.	https://onlinecourses.nptel.ac.in/noc22_cs90/preview

Cours	Course delivery methods		Assessment methods		
1.	Chalk and Talk	1.	IA tests		
2.	PPT and Videos	2.	Assignment- Open/Industry/Certification		
3.	Flipped Classes	3.	Course Project		
4.	Online classes	4.	Semester End Examination		

	Course Outcome (COs)			
	At the end of the course, the student will be able to (Highligh	t the action	verb represent	ing the
	learning level.)			
Lea	rning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning		
An -	Analysis; Ev - Evaluate; Cr - Create	Level	PO(s)	PSO(s)
	Identify and describe different techniques in modern		1,2,5,6,10,12	1
1.	cryptography & Employ the modular arithmetic	Ар		
	fundamentals to cryptography.			
	Describe, recognize and use the principles of Public key		1,2,5,6,10,12	1
2.	cryptosystems for various applications including data	Ар		
	networks.			
3.	Analyze the security issues related to internet and	An	1,2,5,6,10,12	1, 2
	networks.			

Components	Addition of two IA Two Assignments – (Open C		Course project (CP)/ Case	Total	
components	tests /Industry/Certification		ו etc) study etc		
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100	
defined by BO	S) can be considered		course (1 course of atleast 8 arded maximum of 10 marks		

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for  $\ensuremath{\mathsf{SEE}}$ 

Sch	Scheme of Semester End Examination (SEE):				
1.	It will be conducted for 100 marks of 3 hours duration.				
2.	Minimum marks required in SEE to pass: Score should be $\geq$ 35%, however overall score of				
	CIE + SEE should be $\geq$ 40%.				

3. Question paper contains three parts **A,B and C**. Students have to answer

1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.

2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each Question Carries 10 Marks.

3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

				C	О-РО	Mappi	ng (Pla	nned)						PSO Ma (Planne	
<u> </u>	РО	РО	PO	РО	РО	PO	РО	РО	РО	РО	PO	PO	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓			✓	✓				✓		✓	✓		
2	✓	✓			✓	✓				✓		✓	✓		
3	✓	✓			✓	✓				✓		✓	✓		
4	✓	✓			✓	✓				✓		✓	✓		
5	✓	✓			✓	✓				✓		✓	✓	<ul> <li>✓</li> </ul>	
Tick	mark	the CC	), PO a	nd PSC	) mapp	oing	<u> </u>		<u> </u>						

# **Requirements Engineering**

Course Code	22EC548	Course type	PEC	Credits L-T-P	3 – 0 - 0
Hours/week: L - T- P	3-0-0		Total credits	3	
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	CIE Marks	100		
Flipped Classes content	5 Hours			SEE Marks	100

	Course learning objectives					
1.	To understand the significance of Requirements Engineering and the impact of					
	Requirements Engineering in business development					
2.	To comprehend the types of requirements and stakeholders involved					
3.	To study requirements elicitation, documentation and validation techniques					

Unit – I	Contact Hours = 8 Hours				
Introduction: Definition of Requirements, Why do I need Requirements, Requirements Engineering,					
problems with requirements, Product/System Development Life C	ycle and various approaches, Project				
management, The business case, Terms of Reference / Project Initiation Document / Project Charter -					
business objectives, project objectives, scope, constraints (budget, timescale, standards), sponsor					
(authority), Framework for Requirements Engineering, Actors/ Ro	les during requirements work.				

#### Activity:

1. Study the PID for any project and write a summary of the same. Develop an alternate PID for the same and justify why/how the new document is better than the studied one.

Unit – II	Contact Hours = 8 Hours				
Types of requirements and Stakeholders : Building the hierarchy	through decomposition of				
requirements, Categories of requirements within the hierarchy, G	eneral business requirements,				
including legal and business policy, Technical policy requirements	, Functional requirements, Non-				
functional requirements, including performance, usability, access,	security, archiving, backup and				
recovery, availability, robustness, Stakeholders, Types of stakehold	ders and their role and contribution				
to the requirements engineering process, The Requirements Proce	255.				
Case Study: Study the Ice Breaker Project (text 2).					
Activity:					
1. Identify the stakeholders of the project. Develop the list of stakeholders for any project you					
identify. Identify their roles and contributions.					
2. Build the list of functional and non-functional requirements for any project you identify.					

Requirements Elicitation: Knowledge types – tacit and non-tacit (explicit), Elements of tacit knowledge that cause problems, Elicitation techniques : Interviews, Workshops, Observation: Formal/informal, Shadowing, Focus groups, Prototyping, Scenarios, Document Analysis Use of models in Requirements Engineering: The purpose of modelling requirements, Modelling the business context for the system, Developing a model to represent the system processing requirements, Interpreting a data model.

#### Activity:

1. Conduct interviews/workshops on the requirements identified for a idea/project. Summarize the outcomes.

2. Develop Prototypes, Scenarios, documents and conduct document analysis for the requirements listed in the above idea/project

Unit – IV	Contact Hours = 8 Hours				
Requirements Analysis: Organizing requirements, requirements Filters for ensuring well-formed					
requirements					
Requirements Documentation: The importance of Documentation, Structure of Requirements					
Document, Requirements catalogue, hierarchy of requirements, Documenting a Requirement-					
Characteristics of an individual requirement.					
Activity:					
1. Prepare a requirements document for any identified idea/project.					

Unit – V	Contact Hours = 8 Hours
Requirements Validation: Agreeing the requirements docu	ment, Representatives of the review
group, Outcomes of a review	
Requirements Management: Dealing with changing require	ements, The importance of traceability,
Traceability and ownership, Elements of Requirements man	agement, Requirements Engineering
support tools.	
Activity:	
1. Trace the changes of a requirement identified based on t	the reviews.

#### Flipped Classroom Details

Unit No.	I	11	III	IV	V
No. for Flipped Classroom Sessions	1	1	1	1	1

Unit No.	Self-Study Topics
1	Project Initiation document (PID)
2	Study Of Ice Breaker Project
3	Elicitation technique-Interview
4	Characteristics of an individual requirement
5	Requirements Engineering Support tools

	Books
	Text Books:
1.	Debra Paul, Donald Yeates and James Cadle, Business Analysis, 2nd Edition, BCS Publisher,
	2010 and onwards
2.	Suzanne Robertson and James Robertson, "Mastering the Requirements Process", Addison
	Wesley, 1999 and onwards.
3.	James Cadle, Debbie Paul and Paul Turner, "Business Analysis Techniques: 72 Essential Tools
	for Success", BCS.
	Reference Books:
1.	Gerald Kotonya and Ian Sommerville, "Requirements Engineering: Processes and Techniques",
	John Wiley & Sons.
2.	Alistair Cockburn, "Writing Effective Use Cases", Addison-Wesley, 2000 and onwards.
	E-resources (NPTEL/SWAYAM Any Other)- mention links
1.	https://www.phpkb.com/kb/article/tacit-knowledge-what-is-it-and-how-you-can-promote-it-
	<u>293.html</u>
2.	https://www.lucidchart.com/pages/uml-use-case-diagram
3.	https://www.knowledgetrain.co.uk/project-management/business-cases/how-to-write-a-
	business-case
4.	https://openclassrooms.com/en/courses/4544631-learn-the-fundamentals-of-agile-
	estimation/5371006-discover-the-benefits-of-planning-releases-and-the-pitfalls-of-estimation

Course delivery methods			Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Assignment- Open/Industry/Certification
3.	Flipped Classes	3.	Course Project
4.	Online classes	4.	Semester End Examination

	Course Outcome (COs)						
At t	At the end of the course, the student will be able to (Highlight the <b>action verb</b> representing the learning						
	level.)						
Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)			
An -	Analysis; Ev - Evaluate; Cr - Create	Level	10(3)	1 30(3)			
1.	Understand the relevance of requirements engineering in	Un	2,6,10,11,12	2,3			
1.	business development	011					
	Develop a model and analyze the use of a range of		2,6,10,11,12	2,3			
2.	requirements elicitation and documentation techniques and	An					
	the relevance of the techniques to business situations						
3.	Analyze the performance of requirements management		2,6,10,11,12	2,3			
٦.	process and apply them to manage business requirements.	An					

Componente	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case	Total
Components	tests	/Industry/Certification etc)	study etc	Marks

Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100
			14 6 11 101	

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks. -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. -Lack of minimum score in IA test will make the student Not Eligible for SEE -Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Scheme of Semester End Examination (SEE):

1.	It will be conducted for 100 marks of 3 hours duration.

2. Minimum marks required in SEE to pass: Score should be  $\geq$  35%, however overall score of CIE + SEE should be  $\geq$  40%.

3. Question paper contains three parts **A,B and C**. Students have to answer

1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.

2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each Question Carries 10 Marks.

3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

	CO-PO Mapping (Planned)						CO-PSO Mapping (Planned)								
~	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		$\checkmark$				$\checkmark$				$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$
2		$\checkmark$				$\checkmark$				$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$
3		$\checkmark$				$\checkmark$				$\checkmark$	$\checkmark$	$\checkmark$		$\checkmark$	$\checkmark$
Tick	ck mark the CO, PO and PSO mapping														

### Data Analysis and Visualization with Python

Course Code	22EC549	Course type	PCC	Credits L-T-P	2-0-1
Hours/week: L - T- P	2 - 0 - 2	2-0-2			3
Total Contact Hours	L = 30 Hrs; T = Hr Total = 50 Hrs	rs; P = 20 Hrs	CIE Marks	100	
Flipped Classes content	10 Hours		SEE Marks	100	

	Course learning objectives
1.	Develop proficiency in interpreting datasets and visualizing trends and patterns.
2.	Effectively apply data cleaning techniques for data preparation.
3.	To critically analyze and evaluate machine learning models for optimal performance.
4.	Apply data analysis techniques to ensure accurate analysis and effective problem-solving.

**Pre-requisites:** Fundamentals of mathematics, Python programming with OOPS concepts.

Unit – I

**Contact Hours = 8 Hours** 

#### Introduction to statistics and EDA:

Understanding importance of EDA, ecosystem of data science, Understanding data types, statistical analysis: Central tendancy, variance, standard deviation, correlation (mathematical definition with example), Measures of Shape(Skewness, Kurtosis).

Unit – II	Contact Hours = 8 Hours		
Data Cleaning and Preprocessing: Handling missing data and outliers, data normalization and			
standardization, data transformation techniques, and feature engineering for better analysis.			

Unit – III	Contact Hours = 8 Hours		
Univariate Analysis: Descriptive statistics, data visualization using histograms, box plots, and bar			
charts, probability distributions, and their applications in EDA.			
Bivariate and Multivariate Analysis: Correlation analysis, data visualization techniques for bivariate			
analysis, and multivariate analysis using scatter plots, pair plots, and heatmaps.			

Unit – IV	Contact Hours = 8 Hours			
Supervised Learning: Linear regression, logistic regression, naïve bayes, k nearest neighbour (knn),				
decision tree(DT), random forest(RF), support vector machine(SVM)				

Unit – V	Contact Hours = 8 Hours		
Unsupervised Learning: clustering techniques: centroid based clustering, hierarchical clustering,			
density based cluster			

## List of Experiments

Unit No.	No. of Experiments	Topic(s) related to Experiment		
1	1	Data loading and preprocessing: Case study		
2	1	Applying data preprocessing and feature engineering techniques to a real-world dataset.		
3	1	Visualizing univariate, bivariate and multivariate hypothesis		
4	1	Implement linear regression and logistic regression		
	1	Implement knn algorithm		
	1	Implement naïve bayes algorithm		
	1	Implement decision tree algorithm		
	1	Implement random forest algorithm		
	1	Implement SVM algorithm		
5	1	Implement k-means clustering algorithm		

Unit No.	Self-Study Topics			
1	Exploratory Data Analysis Summary			
2	Applications, Basics, and Computing of Exploratory Data Analysis			
3	Exploratory Data Analysis (EDA) and Repression			
5 Hands-On Exploratory Data Analysis with Python				
Flipped Classroom Details				

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

	Books				
	Text Books:				
1	Mukhiya, Suresh Kumar, and Usman Ahmed. Hands-On Exploratory Data Analysis with Python: Perform EDA techniques to understand, summarize, and investigate your data. Packt Publishing Ltd, 2020.				
2.	Ken Black, Applied business Statistics, Wiley India pvt Ltd.				
	Reference Books:				
1	Atwan, Tarek A. Time Series Analysis with Python Cookbook: Practical recipes for exploratory data analysis, data preparation, forecasting, and model evaluation. Packt, 2022.				
	E-resourses (NPTEL/SWAYAM Any Other)- mention links				
1.	Python for Data Science, By Prof. Ragunathan Rengasamy, IIT Madras https://onlinecourses.nptel.ac.in/noc22_cs32/preview				

Course delivery methods			Assessment methods		
1.	Chalk and Talk	1.	IA tests		
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)		

3.	Flipped Classes	3.	Open Book Tests (OBT)
4.	Online classes	4.	Course Seminar
5.	Mini Project	5.	Semester End Examination

At t	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning level.)							
	ning Levels: Re - Remember; Un - Understand; Ap - Apply; Analysis; Ev - Evaluate; Cr - Create	Learning Level	PO(s)	PSO(s)				
1.	<b>Understand</b> machine learning concepts and their applications.	Un	1,2,12	1,2				
2.	<b>Apply</b> supervised learning algorithms for classification and regression tasks.	Ар	1,2,12	1,2				
3.	<b>Analyze</b> and implement deep learning techniques for complex pattern recognition and image analysis tasks.	An	1,2,12	1,2,3				
4.	<b>Evaluate</b> and compare machine learning models, addressing overfitting challenges.	Εv	1,2,6,7,9,12	1,2,3				

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test **(COMPULSORY)** will be part of the CIE. **No SEE for Lab**.

THEORY	(40 marks)	ks) PROJECT (60 marks)					
IA test (Theory)	IA test (Lab)	Project Phase 1	Project Phase 2	Project report	Total		
25 marks	15 marks	25 marks	25 marks	10 marks	100 marks		

-Theory IA test should be of one-hour duration.

-Lab IA test should be of two/three-hour duration.

-Project batch will ideally consist of 2 students (maximum of 3).

-Project Phase 1 presentation will be conducted after 6 weeks and Project Phase 2 presentation will be conducted after 13 weeks from the start of the semester.

-Submission of Project report is compulsory.

#### Eligibility for SEE:

- 1. 40% and above (16 marks and above) in theory component
- 2. 40% and above (24 marks and above) in project component
- 3. Not eligible in any one of the two components will make the student **Not Eligible** for SEE

#### Semester End Examination (SEE):

1.	It will be conducted for 100 marks having 3 hours duration.				
	Lab Open ended program/problem/experiment	FO marks			
2	Write-up & execution (1 open ended expt)- (20 marks write-up + 20 marks algorithm/flowchart + 10 marks execution)	50 marks			
2.	Project evaluation		100 marks		
	d. Initial write up stating the objectives, methodology and the outcome	10 marks			

	e.	<ul><li>Hardware project: Exhibiting and demonstration of working of project.</li><li>Software project: Demonstration of the programming capabilities by writing flowchart, algorithm and codes related</li></ul>	30 marks			
	f.	to a section of the project. Viva-voce	10 marks			
3.	Mir	<b>imum marks required in SEE to pass:</b> Score should be $\geq$ 35%, ho	wever overa	all score of		
	CIE + SEE should be $\geq$ 40%.					
4.	SEE will be conducted in project batches by Internal & External examiners together.					

Sch	cheme of Semester End Examination (SEE):					
1.	It will be conducted for 100 marks of 3 hours duration.					
2.	Minimum marks required in SEE to pass: Score should be $\geq$ 35%, however overall score of					
	CIE + SEE should be $\geq$ 40%.					

3. Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7 questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2 questions in part C.

	CO-PO Mapping (Planned)									SO Map Planned					
~	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓			✓							✓	✓	✓	
2	✓	✓			✓							✓	✓	✓	
3	✓	✓			✓		✓	✓	✓	✓		✓	✓		
4	✓	✓			✓							✓	√	✓	✓

#### ARM MICROCONTROLLER

Course Code	22EC61	Course type	РСС	Credits L-T-P	3-0-0
Hours/week: L - T- P	3-0-0		Total credits	3	
Total Contact Hours	L = 45 Hrs; T = 0 H Total = 45 Hrs	rs; P = 0 Hrs		CIE Marks	100
Flipped Classes content	5 Hours		SEE Marks	100	

	Course learning objectives					
1.	To understand need and application of Microcontroller particularly ARM Processors in embedded system design.					
2.	To understand architecture and features of typical ARM7 Microcontroller and develop applications using ARM7 Microcontroller.					
3.	To learn interfacing of real-world input and output devices to ARM7 Microcontroller and develop applications involving sensors.					
4.	To study the assembly instructions of ARM Processor and program using assembly language.					

## Pre-requisites: Digital Electronic Circuits, C Programming

Unit – I	Contact Hours = 09 Hours			
Introduction to Microcomputer Architecture: Microcomputer Org	ganization (CPU, Memory, I/O			
Devices and Clock), Processor architecture (ALU, Register and Con	trol Unit), Bus Architecture,			
Processor characteristics, RISC and CISC architectures.				
ARM Embedded Systems: ARM Design philosophy, Embedded Sys	tem Hardware, Embedded System			
Software.				

ARM Processor Fundamentals: Registers, Program Status Register, Pipeline.

Unit – II	Contact Hours = 09 Hours
Architectural overview: Introduction, Features, Block Diagram of On-chip flash memory system, On-chip Static RAM (SRAM), Memo	•
connect Block, General Purpose Input Output (GPIO).	

Unit – III	Contact Hours = 09 Hours				
Peripherals -I: Phase Locked Loops (PLL), Timers, PWM and Watch	Dog Timer of LPC2148. Embedded				
'C' Programming examples.					
Exception and Interrupts: External Interrupt and Vector Interrupt	Controller (VIC). Embedded 'C'				
Programming examples.					

Unit – IV	Contact Hours = 09 Hours			
LPC2148 Peripherals -II: Universal Asynchronous Receiver Transmitter (UART), ADC, and DAC.				
Embedded 'C' Programming examples				

Unit – V	Contact Hours = 09 Hours
----------	--------------------------

**Introduction to the ARM assembly programming:** Structure of assembly module, Directives, Data processing instructions, Data transfer instructions, Control flow instructions, Writing basic assembly language programs.

#### Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	1	1	1	1	1

Unit No.	Self-Study Topics
1	Survey of various microcontrollers, their specifications, use cases and applications
2	Communication of LPC2148 to the external world through GPIO's using sensors, actuators and display devices
3	Traffic light monitoring system
4	Power management in ARM processors
5	Analysis of assembly vs C programming for code optimization for the given application.

	Books
	Text Books:
1.	Andrew Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide – Designing and Optimizing System Software", ELSEVIER
2.	Steve Furber, "ARM System- on-Chip Architecture" LPE, Second Edition
3.	UM10139 LPC214x User manual
	Reference Books:
1.	William Hohl, "ARM Assembly Language fundamentals and Techniques" CRC press, 2009
2.	Insider's guide to Philips ARM7 based microcontrollers. hitex.co.uk
	E-resources (NPTEL/SWAYAM Any Other)- mention links
1.	NPTEL course - Embedded System - <u>https://nptel.ac.in/courses/108102045/5</u>
2.	NPTEL course - ARM Based Development - <u>https://nptel.ac.in/courses/117106111</u>

	Course delivery methods	Assessment methods				
1.	Chalk and Talk	1. IA tests				
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)			
3.	Flipped Classes	3.	Open Assignment (OA)/ Certification			
4.	Online classes	4.	Course Project			
		5.	Semester End Examination			

Course Outcome (COs)						
At the end of the course, the student will be able to (Highlight the action verb representing the learning						
level.)	level.)					
Learning Levels: Re - Remember; Un - Understand; Ap - Apply; Learning						
An - Analysis; Ev - Evaluate; Cr - Create	Level	PO(s)	PSO(s)			

1.	<b>Identify</b> a suitable ARM microprocessor based on the features and architecture for the development of an embedded application.	Un	1,2,3,7,12	1
2.	<b>Develop</b> the assembly/C program for the given problem/application, and compare the code optimization through the case studies.	Ар	1,2,3,7,9,10,12	1
3.	<b>Understand</b> the on-chip peripherals of a microcontroller and <b>demonstrate and analyse</b> their interfacing for a given application using ARM7 development boards and Keil simulator.	An	1,2,3,7,9,10,12	1

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification etc)		Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

• Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

- Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.
- Lack of minimum score in IA test will make the student Not Eligible for SEE
- Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Schei	Scheme of Semester End Examination (SEE):						
1.	It will be conducted for 100 marks of 3 hours duration.						
2.	Minimum marks required in SEE to pass: Score should be $\geq$ 35%, however overall score of						
	CIE + SEE should be $\geq$ 40%.						
3.	Question paper contains three parts A,B and C. Students have to answer						
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.						
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each						
	Question Carries 10 Marks.						
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.						

	CO-PO Mapping (Planned)									SO Map Planned					
со	PO							PSO	PSO	PSO					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓	✓				✓					✓	✓		
2	✓	✓	✓		✓		✓		✓	√		✓	√		
3	3 1 1 1 1 1 1 1 1 1 1 1								✓						
	Tick mark the CO, PO and PSO mapping														

## **Digital Communication**

Course Code	22EC62	Course type	IPCC	Credits L-T-P	3 - 0 - 1
Hours/week: L - T- P	3 - 0 - 2		Total credits	4	
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 60 Hrs	rs; P = 20 Hrs	CIE Marks	100	
Flipped Classes content	10 Hours			SEE Marks	100

Course learning objectives			
1.	To understand fundamentals of communication channels		
2.	2. To demonstrate application of digital modulation techniques		
3.	To analyze the communication system performance for error free transmission		

## Required Knowledge of: Principles of Communication Systems

Unit – I	Contact Hours = 8 Hours	
Baseband Transmission: Discrete PAM signals, Properties of Line codes, Power Spectral Density of		
Unipolar, Polar, Bipolar and Manchester RZ and NRZ, ISI in band limited channels, Zero-ISI condition-		
the Nyquist criterion, Solution for zero ISI, Raised cosine filters, Correlative Coding.		

Unit – II	Contact Hours = 8 Hours	
Digital Modulation: Geometric Representation of signals, Generation, detection, BER of Coherent		
BPSK, BFSK, QPSK, QAM, Carrier Synchronization, Structure of Non-coherent Receivers, Principle of		
DPSK, Introduction to GMSK, MIMO, OFDM and SDR		
Activity: Analysis of signal space diagram for different modulation techniques		

Unit – III	Contact Hours = 8 Hours		
Spread spectrum signals for digital communication: Model of spread spectrum digital communication			
system, Direct sequence spread spectrum signals, Frequency hopped spread spectrum signals, CDMA,			
Time hopping SS, Synchronization of SS systems			
Activity: Study the effect of signal jamming			

Unit – IV	Contact Hours = 8 Hours
Review of Information Theory: Review of communication systems	, Discrete Communication channels,
Channel Matrix, Joint probability matrix, Special channels, Syst	em Entropies. Mutual Information,
Channel Capacity.	

Unit – V	Contact Hours = 8 Hours

**Linear Block codes:** Matrix Description of LBC, Encoding, Decoding and Syndrome circuits, Error calculation.

**Binary Cyclic Codes:** Properties, Encoding using (n-k) shift registers, Syndrome calculation.

**Convolutional Encoding:** Convolutional encoder representation in time and transform domain

Case Study: Application of Convolutional Coding In MB-OFDM using AI/ML

#### **Flipped Classroom Details**

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	1	1	1	1	1

#### List of Experiments

Unit No.	No. of Experiments	Topic(s) related to Experiment	
1	3	Developing and Testing Building Blocks of Communication Systems	
		PSD of line codes Unipolar, Polar and Bipolar	
		Demonstration of line codes	
2	4	Transmission and reception of data using PSK modulation using RF link	
		Probability of error and signal space diagram of BPSK, BFSK	
		DPSK Transmission & reception with Constellation Plot	
		Demonstration of QPSK	
3	1	Generation of PN Sequence (SW)	
4	1	Determine entropy of communication channel and channel capacity	
5	2	Linear and Cyclic code generation	
		Syndrome calculation of LBC, Cyclic codes	

Unit No.	Self-Study Topics		
1	Gram Schmidt orthogonalization		
2	tructure of Non-coherent Receivers		
3	Synchronization of SS systems		
4	System Entropies		
5	Transform domain		

	Books			
	Text Books:			
1.	Simon Haykin, "Digital Communications", John Wiley, 2021 and onwards.			
2.	Shu Lin, Daniel J. Costello, "Error Control Coding", PHI, 2nd Edition, and onwards			
3.	George Kennedy, Bernard Davis, SRM Prasanna "Electronics Communication Systems", 5th			
	edition, McGraw Hill Education (India) Pvt. Ltd			

	Reference Books:				
1.	B. Sklar, "Digital Communication Fundamentals and Applications", 2nd Edition, Pearson				
	Education, 2009 and onwards.				
2.	B. P. Lathi, "Modern Digital and Analog Communication Systems" 3rd Edition, Oxford				
	University Press 2007 and onwards.				
	E-resourses (NPTEL/SWAYAM Any Other)- mention links				
1.	Introduction to Digital Communication, Prof. Prof. Bikash Kumar Dey, IIT Bombay				
	https://nptel.ac.in/courses/117101051				

Course delivery methods		Assessment methods		
1.	Chalk and Talk	1. IA tests		
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project	
3.	Flipped Classes	3.	Lab Test	
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination	
5.	Virtual Labs ( if present)			

	Course Outcome (COs)							
Lear	Learning Levels:							
	Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create							
At the end of the course, the student will be able to Level PO(s) PSO(								
1.	To understand communication system performance	L2	1,2,4,5,10,12	1, 3				
2.	Assess channel coding techniques and error detection methods	L3	1,2,4,5,10,12	1, 3				
3.	Analyze digital modulation techniques and applications	L4	1,2,4,5,10,12	1,3				

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test

## (COMPULSORY) will be part of the CIE. No SEE for Lab.

THEORY (60 mar	ks)	LAB (40 marks)	LAB (40 marks)			
IA test 1	IA test 2	Conduction	Lab test	Total		
30 marks	30 marks	10 marks	30 marks	100 marks		
IA Test:						
1. No objective p	art in IA questio	n paper				
2. All questions of	lescriptive					
Conduct of Lab:						
1. Conducting th	e experiment an	d journal: 5 marks				
2. Calculations, r	esults, graph, co	nclusion and Outcome	e: 5 marks			
Lab test: (Batchwise with 15 students/batch)						
1. Test will be co	1. Test will be conducted at the end of the semester					
2. Timetable, Batch details and examiners will be declared by Exam section						
3. Conducting the experiment and writing report: 5 marks						
4. Calculations, results, graph and conclusion: 15 marks						
5. Viva voce: 10 marks						

Eligibility for SEE:

1. Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. Lack of minimum score in IA test will make the student Not Eligible for SEE

2. Student should score minimum 40% of 30 marks (i.e. 12 marks) in Lab test & should score 40% of 40 marks (i.e. 16 marks) in Lab component.

3. Lab test is COMPULSORY

4. Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

5. Not eligible in any one of the two components will make the student Not Eligible for SEE

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be ≥35 &, however overall score of
	CIE+SEE should be $\geq$ 40%.
3.	Question paper contains three parts A,B and C. Students have to answer
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each
	Question Carries 10 Marks.
	3. From Part C answer 1 out of 2 guestions, each Question Carries 20 Marks.

	CO-PO Mapping (planned)							SO Map plannec							
~~~	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓		✓					✓	✓		✓	✓		✓
2	✓	✓		✓					✓	✓		✓	✓		✓
3	✓	✓		✓					✓	√		✓	✓		✓
	Use tick mark(✓)														

Employability Skills II

Course Code	22AECEC66 Course type AEC		Credits L-T-P	1-0-0	
Hours/week: L - T- P	1-0-0	Total credits	1		
Total Contact Hours	L = 30 Hrs; T = 0 Hrs;	P = 0 Hrs			100
Total Contact Hours	Total = 30 Hrs			CIE Marks	100

	Course learning objectives
1.	Skill development is/are personal attributes that influence how well an individual works or
	interacts with others.
2.	These skills make it easier to form relationships with people, create trust and dependability,
	and lead teams.
3.	In essence, they are essential for individual success in the workplace, their company's success,
	and their personal life also

Pre-requisites :

Unit – I	Contact Hours = 4 Hours		
Quantitative Aptitude: Ratios, Proportions and Variations (2 Hours), Partnership (1 Hour),			
Time and Work (2 Hours)			
Logical Reasoning: Seating Arrangement (1 Hour)			

Unit – II	Contact Hours = 4 Hours		
Quantitative Aptitude: Time, Speed and Distance (2 Hours),	Trains, Boats and Streams (2		
Hours)			
Verbal Ability: Reading Comprehension (2 Hours)			

Unit – III	Contact Hours = 4 Hours		
Quantitative Aptitude: Permutation and Combination (2 Hours), Ages (1 Hour)			
<i>Logical Reasoning:</i> Data Arrangement (1 Hour)			
Soft Skills: Interview Skills (1 Hour), Resume Building (1 Hour).			

Unit – IV	Contact Hours = 4 Hours		
Quantitative Aptitude: Probability (2 Hours)			
Logical Reasoning: Clocks and Calendars (2 Hours), Syllogisms (2 Hours)			

Unit – V	Contact Hours = 4 Hours		
Quantitative Aptitude: Data Interpretation (2 Hours)			
Logical Reasoning: Data Sufficiency (2 Hours)			
Verbal Ability: Ordering of Sentences (1 Hour), Critical Reasoning (1 Hour)			

	Books
	Text Books:
1.	The Aptitude Triad , BIZOTIC
2.	How to prepare for Quantitative Aptitude for CAT & other Management Examinations, Arun
	Sharma, McGraw Hill Education(India) Private Limited, 4 th Edition, 2018.
3.	How to prepare for Logical Reasoning for CAT & other Management Examinations, Arun Sharma,
	McGraw Hill Education(India) Private Limited, 8 th Edition, 2018.
4.	How to prepare for Verbal Ability and Reading Comprehension for CAT & other Management
	Examinations, Arun Sharma, McGraw Hill Education(India) Private Limited, 8 th Edition, 2018.
5.	How to prepare for Data Interpretation for CAT & other Management Examinations, Arun
	Sharma, McGraw Hill Education(India) Private Limited, 5 th Edition, 2018.

	Course delivery methods	Assessment methods				
1.	Chalk and Talk	1.	IA tests			
2.	PPT and Videos	2.	Online Quizzes			
		3.	Assignments			
		4.	Seminar			

	Course Outcome (COs)										
	At the end of the course, the student will be able to (Highlight the action verb representing the										
	learning level.)										
Lear	Learning Levels: Re - Remember; Un - Understand; Ap - Apply; Learning PSO										
An -	Analysis; Ev - Evaluate; Cr - Create	Level	PO(s)	s)							
1.	Clear the Aptitude round of recruiters during placements	L2	10,12								
2.	Perform confidently during the Interview process	L2	10,12								
3.	Develop resumes that are grammatically correct and written in	12	10,12								
5.	Business English	LZ									
4.	Develop behaviors that are appropriate for a professional	L2	10,12								

Components	Addition of two IA tests	Online Quiz	Addition of two Assignments	Total Marks
Marks	30+30 = 60	20	10+10 =20	100
•	ests are compulsory d score minimum 40		pass the course.	<u> </u>

	CO-PO Mapping (Planned)											SO Map Planned			
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1										✓		~			

2										\checkmark	\checkmark		
3										~	~		
4										\checkmark	✓		
	Tick mark the CO, PO and PSO mapping												

ARM MICROCONTROLLER LAB

Course Code	22ECL68	Course type	PCCL	Credits L-T-P	0 - 0 - 1
Hours/week: L - T- P	0 - 0 - 2		Total credits	1	
Total Contact Hours	L = 0 Hrs; T = 0 Hr Total = 20 Hrs	s; P = 20 Hrs	CIE Marks	50	
				SEE Marks	50

	Course learning objectives								
1.	To acquaint students with the fundamentals of ARM processors.								
2.	To provide hands on experience to analyze, design and test the programs.								
3.	To introduce to the ARM7 microcontroller architecture and its peripherals								
4.	To enable the students to design applications and verify the expected outcomes as per the								
	given specifications using ARM7 microcontroller.								

Required Knowledge of : Digital Electronic Circuits, C-Programming

Lab Experiment – I	Contact Hours = 2 Hours				
LED and buzzer interface					
Lab Experiment – 2	Contact Hours = 2 Hours				
Seven Segment display Interfacing					
Lab Experiment – 3	Contact Hours = 2 Hours				
Stepper Motor and DC Motor Interfacing					
Lab Experiment – 4	Contact Hours = 2 Hours				
LCD Interfacing					
Lab Experiment – 5	Contact Hours = 2 Hours				
On-chip timer and PWM programming					
Lab Experiment – 6	Contact Hours = 2 Hours				
DAC interfacing to generate waveforms					
Lab Experiment – 7	Contact Hours = 2 Hours				
Temperature Sensor Interfacing using ADC					
Lab Experiment – 8	Contact Hours = 2 Hours				
UART Programming					
Lab Experiment – 9	Contact Hours = 2 Hours				
LED and switch interfacing using interrupt					
Lab Experiment – 10	Contact Hours = 2 Hours				
Interrupt based programming/interfacing					

	Books									
	Text Books:									
1.	Andrew Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide – Designing and Optimizing System Software", ELSEVIER									
2.	Steve Furber, "ARM System- on-Chip Architecture" LPE, Second Edition									
3.	UM10139 LPC214x User manual									
	E-resources (NPTEL/SWAYAM Any Other)- mention links									
1.	NPTEL course - Embedded System - <u>https://nptel.ac.in/courses/108102045/5</u>									
2.	NPTEL course - ARM Based Development - <u>https://nptel.ac.in/courses/117106111</u>									

	Course delivery methods	Assessment methods				
1.	Practice session/Demonstrations in Labs		Conduction of Experiments			
2.	Virtual Labs (if present)	2.	Journal writing			
3.	Chalk and Talk	3.	Lab project/ Open ended experiment			
4.		4.	Lab Test			
5.		6.	Semester End Examination			

	Course Outcome (COs)										
Lea	Learning Levels:										
	Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create										
At th	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)							
1.	Experiment with the programming of external input/output devices and sensors to ARM7 microcontroller using embedded 'C' programming language.	L3	1,2,3,5,7,9,10,12	1							
2.	Experiment with the on-chip peripherals of ARM7 microcontroller using embedded 'C' programming language.	L3	1,2,3,5,7,9,10,12	1							
3.	Design, analyse, and develop applications using ARM7 microcontroller.	L4	1,2,3,5,7,9,10,12	1							

Conduction of experiments & viva-voce	Journal	Lab project/ Open ended expt	Lab Test	Total
20 marks	5 marks	10 marks	15	50 marks

Conduct of Lab:

- 4. Conduction of the experiment: 15 marks + Viva voce: 5 marks
- 5. Calculations, results, graph, conclusion and Outcome recorded in Journal: 5 marks
- 6. Lab project/ Open ended expt: 10 marks
- 3. Lab Test: 15 marks

Eligibility for SEE:

- 2. 40% and above (20 marks and above)
- 2. Lab test is COMPULSORY

Sch	Scheme of Semester End Examination (SEE):								
1.	It will be conducted for 50 marks of 2/3 hours duration.								
2.	Minimum marks required in SEE to pass: Score should be ≥35% , however overall score of								
	CIE+SEE should be ≥40%.								
2.	One or Two experiments to be conducted.								
3.	Minimum marks required in SEE to pass: 20 out of 50								
	Initial write up	10 marks							
4	Conduct of experiments, results and conclusion	20 marks	50 marks						
4.	One mark question	10 marks	SUMARS						
	Viva- voce 10 marks								
5.	Viva-voce shall be conducted for individual student and not in a group.								

	CO-PO Mapping (planned)											SO Map planned			
~	РО	РО	РО	РО	PO	РО	PSO	PSO	PSO						
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓	✓				✓					✓	✓		
2	✓	✓	✓		✓		✓		✓	√		✓	√		
3	✓	✓	✓		✓		✓		✓	√		✓	√		
	Tick mark the CO, PO and PSO mapping														

Linear Integrated Circuits Design Lab

Course Code	22ECL69	Course type	PCCL	Credits L-T-P	0 - 0 - 1
Hours/week: L - T- P	0-0-2		Total credits	1	
Total Contact Hours	L = 0 Hrs; T = 0 Hrs Total = 20 Hrs	s; P = 20 Hrs	CIE Marks	50	
				SEE Marks	50

	Course learning objectives									
1.	To apply the principles of operational amplifiers in various analog signal processing and wave									
	shaping applications.									
2.	To analyze and evaluate the performance of various operational amplifier-based signal									
	processing and wave shaping circuits.									
3.	To design and develop specific linear integrated circuits tailored for particular analog signal									
	processing and wave shaping applications.									

Requires Knowledge of: Analog Electronic Circuits

Lab Experiment – 0	Contact Hours = 2 Hours								
Introduction to operational amplifiers: ideal and practical (Op-Amps), uA-741 – study of datasheet,									
Inverting and noninverting amplifier and infinite gain amplifier (comparator) and unity gain buffer.									
Lab Experiment – 1Contact Hours = 2 Hours									
Mathematical operations using Op-Amps – I: Summing, Scaling, Average and Difference amplifiers.									
Lab Experiment – 2	Contact Hours = 2 Hours								
Mathematical operations using Op-Amps – II: Active Integrator a	ind differentiator.								
Lab Experiment – 3	Contact Hours = 2 Hours								
2 nd order Active Butterworth Low Pass and High Pass filter design	n.								
Lab Experiment – 4	Contact Hours = 2 Hours								
2 nd order Active Chebyshev-I Low Pass and High Pass filter design	n. (Simulation/Spectrum analyser								
demo)									
Lab Experiment – 5	Contact Hours = 2 Hours								
Signal conversion circuits: Current to voltage converter and volta	age to current converters.								
Lab Experiment – 6	Contact Hours = 2 Hours								
Timing Circuits: Op-amp based Astable and Monostable multi-vi	brator design.								
Bi-stable multi-vibrator design (using simulation).									
Lab Experiment – 7	Contact Hours = 2 Hours								
Oscillator: RC phase shift oscillator.									
Lab Experiment – 8	Contact Hours = 2 Hours								
Data Conversion Circuits – I: Analog to digital converter (ADC) – Flash ADC 3 bit (Simulation)									

Lab Experiment – 9

Contact Hours = 2 Hours

Data Conversion Circuits – II: 4 bit R-2R ladder digital to analog converter (DAC)

	Books								
	Text Books:								
1.	D. A. Bell, Operational Amplifiers and Linear ICs, Oxford Publications, 2015 onwards.								
2.	S. Salivahanan and V. S. K. Bhaskaran, Linear Integrated Circuits, McGraw-Hill Publications,								
	2017 onwards.								
	Reference Books:								
1.	Ramakant A. Gayakwad, Op-Amps and Linear Integrated Circuits, Pearson Education; Fourth								
	edition, 2015 onwards.								
2.	R. F. Coughlin and F. F. Driscoll, Operational Amplifiers and Linear Integrated Circuits, Prentice								
	Hall India, 2000 onwards.								
	E-resources (NPTEL/SWAYAM Any Other)- mention links								
1.	Integrated Circuits and Applications by Prof. Shaik Rafi Ahamed, IIT Guwahati, link:								
	https://onlinecourses.nptel.ac.in/noc24_ee73/preview								

	Course delivery methods	Assessment methods				
1.	1. Practice session/Demonstrations in Labs		Conduction of Experiments			
2.	Virtual Labs	2.	Journal writing			
3.	Chalk and Talk	3.	Lab project/ Open ended experiment			
		4.	Lab Test			
		7.	Semester End Examination			

	Course Outcome (COs)											
Lea	Learning Levels:											
	Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create											
At th	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)								
1.	Apply design techniques to develop linear integrated circuit based analog signal processing and wave shaping applications.	Ар	1,2,3,5,10	1,2								
2.	Analyze and evaluate the performance of various op-amp based signal processing and wave shaping circuits	Ev	1,2,3,5,10	1,2								
3.	Develop appropriate linear integrated circuits for a specific analog signal processing and wave shaping application.	Cr	1,2,3,5,10,11	1,2,3								

Scheme of Continuous Internal Evaluation (CIE):

Conduction of experiments & viva-voce	Journal	Lab project/ Open ended expt	Lab Test	Total	
20 marks	5 marks	10 marks	15	50 marks	

Conduct of Lab:

- 7. Conduction of the experiment: 15 marks + Viva voce: 5 marks
- 8. Calculations, results, graph, conclusion and Outcome recorded in Journal: 5 marks
- 9. Lab project/ Open ended expt: 10 marks
- 3. Lab Test: 15 marks

Eligibility for SEE:

- 3. 40% and above (20 marks and above)
- 2. Lab test is COMPULSORY

Sch	heme of Semester End Examination (SEE):							
1.	It will be conducted for 50 marks of 2/3 hours duration.							
2.	Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of CIE+SEE should be \geq 40%.							
2.	One or Two experiments to be conducted.							
3.	Minimum marks required in SEE to pass: 20 out of 50							
	Initial write up	10 marks						
4	Conduct of experiments, results and conclusion	20 marks	50 m entre					
4.	One-mark question	50 marks						
	Viva- voce 10 marks							
5.	Viva-voce shall be conducted for individual student and not in a group.							

	CO-PO Mapping (planned)											SO Map planned			
~	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓	✓		✓					✓			✓	✓	
2	✓	✓	✓		✓					✓			✓	✓	
3	✓	✓	✓		✓					✓	✓		✓	✓	✓
	Tick (✓) mark the CO, PO and PSO mapping														

Electric, Hybrid and Fuel Cell Based Vehicles (EHFCV)

			•	<u>.</u>	
Course Code	22EC63A	Course type	PEC	Credits L-T-P	3 – 0 - 0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = (Hrs) Hrs; P = 0 H To t	CIE Marks	100	
Flipped Classes Content	08 Hours			SEE Marks	100

	Course Learning Objectives
1.	To build basics concepts related to vehicle dynamics, transmission characteristics and various transmission techniques for fossil fuel based vehicles, electric vehicles and hybrid vehicles.
2.	To comprehend the basic concepts related to hybrid braking, regenerative braking and their
	significance in EV and HEV design and performance.
3.	To compare and contrast various energy sources and propulsion systems for EV, HEV, and FCEV.
4.	To analyze various design and control parameters of electric vehicles, hybrid electric vehicles
	and fuel cell based vehicles under Indian and global scenarios.

Pre-requisites: Fundamentals of engineering physics, and basic electrical engineering.

Unit I – Basic Vehicular Dynamics, Propulsion & Power Transmission	Contact Hours = 8	
General descriptions of vehicle movements, vehicle dynamics, brake performance, fuel economy,		
basics of SI, CI and natural gas engines, vehicle transmission characteristics for ICEV & EV, manual and		
automatic transmissions, torque converter, automated manual dual clutch transmission (AMT and DCT)		

Unit II – Electrical Energy Sources and Propulsion Systems	Contact Hours = 8	
Principal Energy Sources (PES) and Peaking Power Sources (PPS) – steady and dynamic components of		
load power, batteries, hydrogen based PEM fuel cell, ultracapacitors, and ult	ra-high-speed flywheels	
Propulsion Systems – motor principle, functioning and speed control of DC	motor, induction motor,	
brushless DC motors (BLDC) and switched reluctance motors (SRM), functioning	ng of rotor position sensor	

Unit III – Electrical and Hybrid EV Basics, & Regenerative Braking	Contact Hours = 8	
EV – configuration, performance graph, tractive effort in normal driving, energy consumption, concept		
of HEV, PHEV, MHEV drivetrains		
Regenerative Braking – braking energy consumed in urban driving, braking energy and brake power		
comparison with various parameters, brake system for EV, HEV and FCV		
Case Study – Toyota Prius, Honda Civic, Ford Escape hybrid architectures		

Unit IV – Series, Parallel and other HEV Architectures	Contact Hours = 8
Concept and architecture of hybrid electric drivetrain, series hybrid (electric	ically coupled) drivetrain,
parallel hybrid (mechanically coupled) drivetrain, max SoC of PPS and ther	mostat control for series
hybrid drivetrains, series-parallel (torque-speed) control	
Case Study - GM 2 mode, Dual-Clutch and Penault mode hybrid transmission	

Case Study – GM 2 mode, Dual-Clutch and Renault mode hybrid transmission

Unit V – FCHEV Drivetrain Design and Vehicular Energy Management

Contact Hours = 8

Fuel Cell Based HEV – PEMFC characteristics, PEMFC sub-systems, configuration of fuel cell hybrid electric drivetrain design, control strategy, design of motor power, PPS and energy capacity for FCHEV Case study – Vehicular Power Control Strategy & Energy Management : A generic framework, definition and need, methodologies for optimization, cost function optimization, benefits of energy management

Flipped Classroom Details

Unit No.	I	Π	III	IV	v
No. for Flipped Classroom Sessions			3	3	2

	Books and Resources				
	Text Books:				
1.	Mehrdad Ehsani, Yimin Gao, Stefano Longo, and Kambiz Ebrahimi, "Modern Electric, Hybrid				
	Electric and Fuel Cell Vehicles," 3 rd Edition, CRC Press, Taylor & Francis Group, 2002.				
2.	Chris Mi, M. Abul Masrus, David W. Gao, "Hybrid Electric Vehicles – Principles and Applications				
	with Practical Perspectives," 2 nd Edition, Wiley, 2017.				
3.	Allen E. Fuhs, "Hybrid Vehicles and the future of Personal Transportation," 2 nd Edition, CRC				
	Press, Taylor and Francis Group, NW, 2009.				
	Reference Books:				
1.	John G. Hayes, G. Abas Goodarzi, "Electric Powertrain – Energy Systems, Power Electronics and				
	Drives for Hybrid, Electric and Fuel Cell Vehicles"				
	E- Resources:				
1.	Fundamentals of Electric Vehicles – Technology and Economics - IITM NOC				
	https://www.youtube.com/watch?v=UgtjRob5qMg&list=PLyqSpQzTE6M9spod-				
	UH7Q69wQ3uRm5thr&index=1 by Prof. Ashok Jhunjhunwala, IIT Madras				
2.	How Do Electric Vehicles Work? Working Principles of EV-Certified EV Crash Course, 3 Hour				
	video YouTube Link - https://www.youtube.com/watch?v=qIfjibyt6pY				

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Offline Quizzes
3.	Flipped Classes	3.	Open Assignment
4.	Online Classes	4.	Course Seminar
5.	Industry Visit	5.	Semester End Examination

	Course Outcome (COs)					
	At the end of the course, the student will be able to					
Learning Levels: Re - Remember; Un - Understand; Ap - Apply; Learning				PSO(s)		
An	- Analysis; Ev - Evaluate; Cr - Create	Level	PO(s)	P30(S)		
1	explain the specific requirements of EV, HEV and FCV for a cleaner environment and compare it with pollution caused by ICEV	Un 1,3,6,		1,3		
1.	environment and compare it with pollution caused by ICEV	011	7,8,12	1,5		

2.	identify the importance of various propulsion systems and energy sources & also justify the need of infrastructure development for fuel cell based vehicles (FCV) in India	Un	1,2,6, 9,10	1
3.	develop sound knowledge related to regenerative braking, hybrid braking & hybrid propulsion systems for modern day vehicles	Ар	1,3,6, 7,8,12	1,3
4.	distinguish among the critical design and control parameters for EV, HEV and FCV	An	1,2,3, 5,6,7,12	1,2,3

Components	Addition of two IA tests	Two Aassignments – (Open /Industry/Certification etc)		Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of at least 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks. -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	Scheme of Semester End Examination (SEE):						
1.	It will be conducted for 100 marks of 3 hours duration.						
2.	Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of						
	CIE+SE	CIE+SEE should be \geq 40%.					
3.	Questio	on paper contains three parts A, B, and C. Students have to answer					
	1.	From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.					
	2.	2. From Part B answer 5 out of 10 question choosing any one full question from each unit,					
		each Question Carries 10 Marks.					
	3.	From Part C answer 1 out of 2 Questions, each Question Carries 20 Marks.					

3.	From Part C answer 1	out of 2 Questions, each Question Carries 2	0 Marks.
----	----------------------	---	----------

	CO-PO Mapping (Planned)										SO Map Planned				
c o	PO 1	РО 2	PO 3	PO 4	РО 5	РО 6	РО 7	РО 8	РО 9	Р О 10	Р О 11	Р О 12	PSO 1	PSO 2	PSO 3
1	✓		✓			✓	✓	✓				✓	~		✓
2	✓	✓				✓			✓	✓			\checkmark		
3	✓		✓			✓	✓	✓				✓	✓		✓
4	✓	✓	✓		✓	✓	✓					✓	\checkmark	\checkmark	✓

Low Power Architecture

Course Code	22EC63B	Course type	PEC	Credits L-T-P	3-0-0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	rs; P = 0 Hrs	CIE Marks	100	
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives				
1.	1. Understand the fundamentals of low-power VLSI design				
2.	. Familiarity with low-power design techniques and methodologies				
3.	3. Analyze power consumption in CMOS circuits.				
4.	Apply low-power techniques in system-level design.				

Pre-requisites : Digital System Design, Analog Electronics

Unit – I	Contact Hours = 8 Hours					
Introduction, Technology and circuit design levels: Device and Technology impact on low power						
electronics, introduction, dynamic dissipation in CMOS, effects of UN on speed, constraints on						
reduction, transistor sizing and optimal Gate oxide thickness, impact of technology scaling,						
technology and device innovations.						

Contact Hours = 8 Hours						
Low power circuit techniques: Introduction, power consumption in circuits, flip flops and latches,						
logic, high capacitance notes Low power clock distribution: Power distribution in clock distribution,						
driver vs distributed buffers, buffer and device sizing under process variation						

Contact Hours = 8 Hours					
Logic synthesis for low power: Introduction, power estimation techniques, power minimization					
techniques, Low power memory design: Introduction, sources and reductions of power dissipation in					
memory subsystem.					

Unit – IV	Contact Hours = 8 Hours				
Low power microprocessor design: System Power management support, architectural tradeoff for					
power, choosing the supply voltage, low-power clocking, implementation options for low power,					
Power and performance, Comparing microprocessors.					

Optimization, architectural level, Estimation and synthesis.

Case Study: Study of QAM block in communication systems.

Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	1	1	1	1	1

Unit No. Self-Study Topics				
1	Problems on Dynamic and static power dissipation			
2	Clock Distribution schemes			
3	Power dissipation in memory subsystem.			
4	Comparing microprocessors			
5	Study of QAM block in communication systems.			

	Books
	Text Books:
1.	Jan M. Rabaey and Massoud Pedram, "Low-power-design-Methodology", The Springer
	International Series in Engineering and Computer Science, 1995 and onwards.
2.	Kaushik Roy and Sharat C Prasad, "Low-Power CMOS VLSI Circuit Design", John Wiley Pvt. Ltd.,
	2008 and onwards.
	Reference Books:
1.	Gary Yeap and Kluwer, "Practical Low Power Digital VLSI Design", Academic Publications, 1998
	and onwards.
2.	
	E-resources (NPTEL/SWAYAM Any Other)- mention links
1.	https://nptel.ac.in/courses/106105034 by Prof. Ajit Pal
2.	https://onlinecourses.nptel.ac.in/noc24_ee80/preview

Course delivery methods			Assessment methods		
1.	Chalk and Talk	1.	IA tests		
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)		
3.	Flipped Classes	3.	Open Assignment (OA)/ Certification		
4.	Online classes	4.	Course Project		
		5.	Semester End Examination		

Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning level.)

	ning Levels: Re - Remember; Un - Understand; Ap - Apply; Analysis; Ev - Evaluate; Cr - Create	Learning Level	PO(s)	PSO(s)
1.	Understand the fundamentals of low-power VLSI design.	L2	1	1
2.	Evaluate power-performance trade-offs and understand their impact on circuit design.	L3	2,3	1
3.	Evaluate the suitability of advanced low-power techniques for different design scenarios.	L4	3,12	1

Components	Addition of two IA tests	Two Aassignments – (Open /Industry/Certification etc)		Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of at least 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	cheme of Semester End Examination (SEE):							
1.	It will	It will be conducted for 100 marks of 3 hours duration.						
2.	Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of							
	CIE+SEE should be \geq 40%.							
3.	Question paper contains three parts A, B, and C. Students have to answer							
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.							
	2. From Part B answer 5 out of 10 question choosing any one full question from each unit,							
		each Question Carries 10 Marks.						
	3.	From Part C answer 1 out of 2 Questions, each Question Carries 20 Marks.						

	CO-PO Mapping (Planned)								SO Map Planned						
~~~	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓												✓		
2		✓	✓										✓		
3			✓									✓	✓		
	Tick mark the CO, PO and PSO mapping														

#### **Digital System Design on FPGA**

Course Code	22EC63C	Course type	Integrated Project based	Credits L-T-P	2-0-1
Hours/week: L - T- P	2-0-2		Total credits	3	
Total Contact Hours	L = 30 Hrs; T Total = 50 H	= 0 Hrs; P = 20 rs	CIE Marks	100	
Flipped Classes content	3Hours			SEE Marks	100

	Course learning objectives					
1.	Explain ASIC methodologies, data path elements, logical effort.					
2.	Understand and implementing programmable IP flow and also customize the IP.					
3.	Analyse back-end physical design flow, including partitioning, floor-planning, placement and					
	routing for area power and timing optimization.					
4.	Validate the designs for specific timing and power constraints.					

Required Knowledge of : Digital System Design , CMOS VLSI Design, HDL

Unit – IContact Hours = 6 HoursState-of-the-Art Programmable Logic: Introduction, The Evolution of Programmable Logic, Current<br/>Applications for FPGAs, Application Level System Architectures,FPGA Architecture, System on Chip.

Unit – II	Contact Hours = 6 Hours		
IP Flows: Overviews, IP Catalog, IP Customization, IP Constraints, IP-Upgrade Decisions, IP			
Simulation.			
Processor Options : Introduction, Computing on FPGAs, Proces	sors on FPGAs, Tool Chains,		

Beyond Traditional System Design

Unit – III	Contact Hours = 6 Hours					
Synthesis: Introduction, Designs Migrating from ASIC, Getting the Most of Device Primitives,						
Attributes / Directives to Control Synthesis Behavior, Synthesis vs. Simulation Mismatch:						
Common Cases, Guidelines to Get Best Results Out of Synthesis.						
C-Based Design: C Simulation, Arbitrary Precision Data Types.						

Unit – IV

Contact Hours = 6 Hours

**Simulation:** Introduction, Setting Up Design for Simulation, Simulation and Observing Results. Clocking: Clocking in FPGA Designs, Choice of Clock Frequency, Number of Clocks, Optimizing Clock Networks to Improve Internal Timing.

Unit – V	Contact Hours = 6 Hours			
Power Analysis and Optimization: Introduction, Xilinx Power Estimator (XPE), Vivado Report				
Power, Vivado Power Optimization,				
<b>Emulation Using FPGAs:</b> Introduction to Emulation, Emulation Using FPGAs.				

Flipped Classroom Details

Unit No.	I	II	III	IV	v		
No. for Flipped		2	1				
Classroom Sessions							

#### List of Experiments

Unit No.	No. of Experiments	Topic(s) related to Experiment
1	1	Types of Vivado Programmable Logic, HDL/IP based programs (2
		Experiments)
2	3	IP Customization blocks. (2 Experiments)
3	5	RTL design and analysis
4	6	Synthesizing the code, Simulation and adding constraints
5	7	Generating timing reports
5	8 Generating power reports	
5	10	Power Analysis and Power estimation (2 Experiments)

Unit No.	Self-Study Topics			
1	Problems on Dynamic and static power dissipation			
2	Clock Distribution schemes			
3	Power dissipation in memory subsystem.			
4	Comparing microprocessors			
5	Study of QAM block in communication systems.			

	Books					
	Text Books:					
1.	Jan M. Rabaey and Massoud Pedram, "Low-power-design-Methodology", The Springer					
	International Series in Engineering and Computer Science, 1995 and onwards.					
2.	Kaushik Roy and Sharat C Prasad, "Low-Power CMOS VLSI Circuit Design", John Wiley Pvt.					
	Ltd.,					
	2008 and onwards.					
	Reference Books:					
1.	Gary Yeap and Kluwer, "Practical Low Power Digital VLSI Design", Academic Publications,					
	1998 and onwards.					
	E-resourses (NPTEL/SWAYAM Any Other)- mention links					
1.	https://nptel.ac.in/courses/106105034 by Prof. Ajit Pal					
2.	https://onlinecourses.nptel.ac.in/noc24_ee80/preview					

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests- Theory & Lab based	
2.	PPT and Videos	2.	Project phase 1 & 2	
3.	Flipped Classes	3.	SEE- Project evaluation	
4.	Practice session/Demonstrations in Labs	4.	SEE- Solving an Open ended problem	
5.	Virtual Labs ( if present)			

_			
Learn	ing L	.eve	s:

Course Outcome (COs)

#### Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create

At th	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)
1.	Understand the fundamentals of low-power VLSI design.	L2	1	1
2.	Evaluate power-performance trade-offs and understand their impact on circuit design.	L3	2,3	1
3.	Evaluate the suitability of advanced low-power techniques for different design scenarios.	L4	3,12	1

Scheme of Continuous Internal Evaluation (CIE):

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test **(COMPULSORY)** will be part of the CIE. **No SEE for Lab**.

THEORY	(40 marks)	F			
IA test (Theory)	IA test (Lab)	Project Phase 1	Project Phase 2	Project report	Total
25 marks	15 marks	25 marks	25 marks	10 marks	100 marks

Theory IA test should be of one-hour duration.

Lab IA test should be of two/three-hour duration.

Project batch will ideally consist of 2 students (maximum of 3).

Project Phase 1 presentation will be conducted after 6 weeks and Project Phase 2 presentation will be conducted after 13 weeks from the start of the semester.

Submitting Project report is compulsory.

#### **Eligibility for SEE:**

- 1. 40% and above (16 marks and above) in theory component
- 2. 40% and above (24 marks and above) in project component
- 3. Not eligible in any one of the two components will make the student **Not Eligible** for SEE

#### Semester End Examination (SEE):

1.	It will be conducted for 100 marks having 3 hours duration.							
	Lab	Lab Open ended program/problem/experiment						
	Write-up & execution (1 open ended expt)- (20 marks write-up + 50 marks							
	20 marks algorithm/flowchart + 10 marks execution)							
	Pro	ject evaluation						
	g. Initial write up stating the objectives, methodology and the 10 marks							
2.	outcome 100 marks							
	h. Hardware project: Exhibiting and demonstration of working of							
	project. Software project: Demonstration of the programming							
	Software project: Demonstration of the programming capabilities by writing flowchart, algorithm and codes related							
	to a section of the project.							
	i.	Viva-voce	10 marks					
3.	Minimum marks required in SEE to pass: Score should be > 35%, however overall score of							
	CIE + SEE should be $\geq$ 40%.							
4.	SEE	will be conducted in project batches by Internal & External exar	niners toget	her.				

(planned) (planned)	CO BO Manning (planned)	CO-PSO Mapping
	CO-PO Mapping (planned)	(planned)

со	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓												✓		
2	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									✓					
3	3 1								✓						
	Tick mark the CO, PO and PSO mapping														

#### **Robotics & Automation**

Course Code	22EC63D	Course type	PEC	Credits L-T-P	3 – 0- 0
Hours/week: L-T-P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 H	rs; P = 0 Hrs	CIE Marks	100	
	Total = 40 Hrs			100	
Flipped Classes content	3 Hours		SEE Marks	100	

	Course learning objectives						
1.	Explain fundamentals of industrial automation and robotics						
2.	Identify the faults in the system and troubleshoot them thus learning the complete cycle of						
	building a robot.						
3.	Analyze different types of actuators, motors, grippers used in robot drive system and control						
	systems.						

**Pre-requisites :** Digital Electronics, Microcontrollers.

Unit – I	Contact Hours = 8 Hours
Fundamentals of Robot: Introduction, industrial robot, robot, law	s of robotics, types of robots, robot
specification, benefits of robot, need for robot, manufacturing	applications of robot, the future of
robotics	

**Case Study:** Conduct a survey on Non-manufacturing robotic applications.

Unit – II	Contact Hours = 8 Hours
Robot Drive Systems and End Effectors: Introduction, actuator	s, types of actuators or drives, DC
servomotor, types of D.C. motors, A.C. motors, stepper motor,	selection of motors, comparison of
pneumatic, hydraulic electrical drives, end-effectors, grippers, cla	ssification of grippers, drive system
for grippers, types of grippers, hooks scoops, other miscelland	eous devices, selection and design
considerations of gripper.	
Case Study: Study the control of a two-wheeled robot	

Unit – III Contac	ct Hours = 8 Hours
Sensors and Machine Vision: Sensors, requirements of sensors, classif	fication of sensors, position
sensors, velocity sensor, acceleration sensors, force sensors, external semachine vision.	nsors, acquisition of images,

Case Study: Identify an application that uses machine vision for obstruction detection.

Unit – IV	Contact Hours = 8 Hours
Control Methods: Performance objectives, electrical power, s	servo-controlled robots, non servo-
controlled robots, actuators, controllers, programmable controlle	ers.

**Robot Programming**: Introduction, methods for robot programming, defining a robot program, method of defining position in space, motion interpolation, basic programming commands in work-cell control, branching, robot programming languages / textual programming, structure of robot language, VAL programming.

Case Study: Development of robotic arm control system.

Unit –V	Contact Hours = 8 Hours

**Uses for Robots**: Performance objectives, loading and unloading, materials handling, fabricating, assembling, painting, welding, inspecting and testing, the future of flexible automation, objectives of CIM, the future of robots, social impact of robots, new uses and new forms.

**Troubleshooting and Maintenance:** Performance objectives, preventive maintenance, maintenance of small electric motors, motor problems, common motor problems and their causes, troubleshooting aids, power-supply disturbances, motors with squirrel-cage rotors, testing the centrifugal switch in a single-phase motor, testing for short circuits between run and start windings, capacitor testing, using meters to check for problems, troubleshooting guide.

**Case Study:** Design a simple automation system that employs the knowledge of sensors and actuators.

	Flipp	ed Classroom De	tails		
Unit No.	I	II	III	IV	v
No. for Flipped Classroom Sessions	-	2	1	-	-

	Books
	Text Books:
1.	Ramachandran S., "Robotics", AIRWALK PUBLICATIONS (2017), ISBN: 978-9384893-69-9
2.	Rex Miller, Mark R. Miller - Robots and Robotics_ Principles, Systems, and Industrial
	Applications-McGraw-Hill Education (2017)
3.	Mike Wilson - Implementation of Robot Systems_ An introduction to robotics,
	automation, and successful systems integration in manufacturing-Butterworth Heinemann
	(2014)
	Reference Books:
1.	Lina J. Karam, Naji Mounsef - Introduction to Engineering_ A Starter's Guide with Hands-on
	Digital and Robotics Explorations (Synthesis Lectures on Engineering)
2.	John J. Craig - Introduction to Robotics Mechanics and Control 3rd edition-Pearson
	Education, Inc. (2005)
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	https://nptel.ac.in/courses/108/105/108105063/

	Course delivery methods	Assessment methods			
1.	Chalk and Talk	1. IA tests			
2.	PPT and Videos	2. Online Quizzes (Surprise and Schedule			
3.	Flipped Classes	3. Open Book Tests (OBT)			
4.	Online classes	4. Course Seminar/Project			
		5.	Semester End Examination		

At t	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning							
	level.)							
Lear	ning Levels: Re - Remember; Un - Understand; Ap -	Learning	PO(s)	PSO(s)				
Арр	ly; An - Analysis; Ev - Evaluate; Cr - Create	Level	PO(3)	P30(3)				
1.	Explain the fundamentals of Robotics.	Un	1,9,10,11,12	1				
2.	Compare and identify the appropriate actuators and sensors required for the robotic application.	Ар	2,3,9,10,11,12	1				
3.	Analyze and program a controller to sense from sensors and control the actuators.	An	5,9,10,11,12	1				

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification etc)		Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks. -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. -Lack of minimum score in IA test will make the student Not Eligible for SEE

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be $\geq$ 35%, however overall score of
	CIE + SEE should be $\geq$ 40%.
3.	Question paper contains three parts A,B and C. Students have to answer
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each
	Question Carries 10 Marks.
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

	CO-PO Mapping (Planned)							CO-PSO Mapping(Planned)							
	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	0	11	12	1	2	3
1	✓											✓	1		
2		✓	~										1		
3					✓						✓			1	
	Use tick mark(✓)														

#### **BIO MEDICAL IMAGE UNDERSTANDING AND ANALYSIS**

Course Code	22EC63E	Course type	PEC	Credits L-T-P	3-0-0
Hours/week: L-T-P	3 - 0 - 0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	rs; P = 0 Hrs		CIE Marks	100
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives
1.	Identify applications of different Radiological modalities for solving real time problems
2.	Appreciate the use and applications of transforms in extraction of features from objects
3.	Appreciate the evolution of Deep Neural Network from ANN
4.	Design and deploy simple Convolution Neural Network (CNN) model for Biomedical Image
	classification and identification for specific Radiological Modalities.

Required Knowledge of: Linear Algebra, Statistics and Probability

Unit – I	Contact Hours = 8 Hours	
Introduction to Biomedical Image Processing		
Digital Image Processing, Biomedical Image Processing, System, Medical Image modalities, Image		
Algebra, Image transform (FT, DCT, DWT, HOUGH, KL) Image Enhancement in spatial and frequency		
domain, Image Restoration, Medical applications of Imaging, Frontiers of Image processing in Medicine.		
Privacy and Ethics in Handling Clinical Data for Experiments: Ensuring privacy and ethics in handling		
clinical data for experiments is essential to protect patient confidentiality and uphold ethical standards.		
Practical Session : Introduction to Mathwork Matlab and Image Processing Toolbox / Python coding		
Case study review on Image Morphology, Image Fusion, Image Super Resolution		

Unit – II	Contact Hours = 8 Hours	
Artificial Neural Networks and Evolutions of Deep Learning		
Over view of Biological Neural Networks (BNN), McCulloch-Pitts N	Neuron Model of Biological Neuron,	
Artificial Neuron Basic Element and its structure, Different activa	tion function, Training, Testing and	
Validation, Forward and Back propagation with example, Single layer Feed forward network, Multi-		
layer Feed forward network, classification of learning algorithms, Limitations of Artificial Neural		
Networks (ANN), Evolutions of Deep Learning.		
Practical Session: Introduction to Mathwork Matlab Deep Learning	ng Toolbox/ Python coding	
Case study review on Artificial Neural Networks and Biomedical I	mage applications	

Unit – III	Contact Hours = 8 Hours
Convolution Neural Networks and Applications	
Introduction to Convolutional Neural Networks (CNNs / Con-	vNets), architecture overview and
terminologies of CNN, motivation behind CNN, study of architect	ture and comparisons of pretrained
CNN (limited to only LeNet-5,ResNet -34 and ResNet -50).	

Case study review on to Convolutional Neural Networks (CNNs / ConvNets)and Biomedical Image applications

Practical Session: Introduction to Mathwork Matlab Deep Learning Toolbox/ Python coding

Unit – IV	Contact Hours = 8 Hours

#### Deep Learning Medical Image Segmentation

Introduction to Digital Image Segmentation, operators - filters for edge and line detection, simple segmentation algorithms, significance of Image Segmentation in Medical Image, classification of digital image segmentation algorithms, automatic image segmentation, Architecture of U-Net and V-net segmentation.

# Practical Session: Introduction to Mathwork Matlab Deep Learning Toolbox/ Python coding Case study review on Biomedical Image Segmentation

#### Unit –V

Contact Hours = 8 Hours

## Deep Learning Medical Image Classification, Analysis and Visualization

Features, Features reduction using Principal Component Analysis (PCA), feature reduction using Image Transforms (DWT), Pre trained CNN Model for feature extraction (only **ResNet -50**), Example and demonstration of CNN pretrained model for image classification and Identification.

Practical Session: Introduction to Mathwork Matlab Deep Learning Toolbox/ Python coding Case study review on Pre trained CNN Model

#### Flipped Classroom Details

Unit No.	I	II	=	IV	v
No. for Flipped Classroom Sessions	2	2	2	2	2

Unit No.	Self-Study Component
1.	Linear algebra and probability
2.	Learning algorithms and intelligence in algorithm
3.	LeNet -5 CNN Architecture for number classification
4.	Semantic Segmentation and nnU-net
5.	Clustering algorithm for image classification in Biomedical Imagery applications

	Books
	Text Books:
1.	Geoff Dougherty, "Digital Image Processing for Medical Applications", Cambridge University
	Press, 2nd Edition, 2013.
2.	Kevin Zhou, Medical Image Recognition, Segmentation and Parsing: Machine Learning and
	Multiple Object Approaches, 1st Edition, Elsevier Science, 2015
	Reference Books:

1.	Kevin Zhou, Hayit Greenspan and Dinggang Shen, Deep Learning for Medical Image Analysis
	Elsevier Science, 2017
2.	Anil K. Jain, Fundamentals of Digital Image Processing, Prentice Hall, 1989
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	Debdoot Sheet, Indian Institute of Technology Kharagpur, MEDICAL IMAGE ANALYSIS, NPTEL
	course
	Link: https://nptel.ac.in/courses/108/105/108105091/

	Course delivery methods	Assessment methods	
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project
3.	Flipped Classes	3.	Lab Test
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination
5.	Mini Project		

	Course Outcome (COs)				
Lear	ning Levels:				
	Re - Remember; Un - Understand; Ap - Apply; An - Analys	sis; Ev - Eval	uate; Cr - Crea	te	
At th	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)	
1.	Apply knowledge of deep learning algorithms to solve real life problems related to health care and radiology.	Ар	1,2,12	1,2	
2.	2. Analyze the state of art techniques applied in deep learning research		1,2,12	1,2	
<ul><li>Evaluate the effectiveness of deep learning models in</li><li>healthcare classification and identification using suitable datasets.</li></ul>		Ev	1,2,3,5,6,8,12	1,2,3	
4.	Analyze different deep learning models for different applications of Diseases detection and identification using Computed tomography (CT) and Magnetic Resonance Imaging (MRI ).	An	1,2,3,5,6,8,12	1,2,3	

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification etc)	Course project (CP)/ Case study etc	Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100
by BOS) can be -Student shou -Lack of minir	-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks. -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. -Lack of minimum score in IA test will make the student Not Eligible for SEE -Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.			

Sch	Scheme of Semester End Examination (SEE):		
1.	It will be conducted for 100 marks of 3 hours duration.		
2.	Minimum marks required in SEE to pass: Score should be $\geq$ 35%, however overall score of		
	CIE + SEE should be $\geq$ 40%.		
3.	Question paper contains three parts A,B and C. Students have to answer		
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.		
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each		
	Question Carries 10 Marks.		
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.		

CO-PO Mapping (Planned)													CO-PSO Mapping (Planned)		
со	PO	PO	РО	РО	PO	РО	PSO	PSO	PSO						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓			✓							✓	✓	✓	
2	✓	✓			✓							✓	✓	✓	
3	✓	✓		✓	✓	✓		✓	✓	√		✓	✓	✓	✓
4	~	✓		✓	✓	✓		✓				✓	✓	✓	✓

# Adaptive Digital Signal Processing

Course Code	22EC63F	Course type	PEC	Credits L-T-P	3-0-0
Hours/week: L - T- P	3-0-0		Total credits	3	
Total Contact Hours	L = 45 Hrs; T = 0 Hrs; P = 0 Hrs Total = 45 Hrs			CIE Marks	100
Flipped Classes content	05 Hours			SEE Marks	100

	Course learning objectives				
1.	Understand meaning of "adaption" in terms of signal processing and geometrical terms.				
2.	Analyze basic non-recursive adaptive filter, that is, the adaptive linear combiner.				
3.	Understand performance or error surface under stationary and non-stationary conditions.				
4.	Understand LMS algorithms and other types of adaptive algorithms.				
5.	Understand adaptive modelling and system identification; inverse adaptive modelling,				
	deconvolution and equalization.				

Pre-requisites: Signals and Systems, Digital Signal Processing,

9 Hours
- adaptive linear
um mean square
g-orthogonality –
I

Unit - II	9 Hours
Searching performance surface-stability and rate of convergence: learning curve-g	radient search -
Newton's method - method of steepest descent - comparison - gradient estimation	n - performance
penalty - variance - excess MSE and time constants – misadjustments. (Text 1)	

Unit - III	9 Hours
LMS algorithm convergence of weight vector: LMS/Newton algorithm - properti	ies - sequential
regression algorithm - adaptive recursive filters - random-search algorithms - lat	tice structure -
adaptive filters with orthogonal signals. (Text 1)	

	9 Hours
Applications-adaptive modelling:	
Multipath communication channel, geophysical exploration, FIR digital filter synthesis. (	(Text 2)

		Unit - V					9 Hou	rs
System	identification-adaptive	modelling:	Inverse	adaptive	modelling,	equ	ualization,	and
deconvolution adaptive equalization of telephone channels-adapting poles and zeros for IIR digital filter								
synthesis	s. (Text 2)							

#### **Flipped Classroom Details**

Unit No.	I	II	111	IV	v
No. for Flipped Classroom Sessions	1	1	1	1	1

	Books
	Text Books:
1.	Simon Haykin, "Adaptive Filter Theory", Pearson Education, 2003.
2.	Bernard Widrow and Samuel D. Stearns, "Adaptive Signal Processing", Person Education,
	2005.
	Reference Books:
1.	John R.Treichler, C.Richard Johnson, Michael G.Larimore, "Theory and Design of Adaptive
	Filters", Prentice-Hall of India,2002
2.	S.Thomas Alexander, "Adaptive Signal Processing-Theory and Application", Springer-Verlag.
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	Introduction To Adaptive Signal Processing by Prof. Mrityunjoy Chakraborty, IIT Kharagpur
	Link: https://onlinecourses.nptel.ac.in/noc23_ee138/preview_

# **Course delivery methods**

- 1. Blackboard Teaching
- 2. Presentations

### Assessment methods

- 1. Internal Assessment
- 2. Assignment
- 3. Activity

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Tests (OBT)
4.	Online classes	4.	Course Seminar
		5.	Semester End Examination

	Course Outcome (COs)						
At t	At the end of the course, the student will be able to (Highlight the <b>action verb</b> representing the learning						
	level.)						
Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)			
An -	n - Analysis; Ev - Evaluate; Cr - Create Lev		PO(S)	F30(3)			
1.	Design optimal minimum mean square estimators and in	۸n	1,2,3,5,10	1,2			
1.	particular linear estimators.	s. Ap					
2.	Implement adaptive filters (FIR, IIR, non-causal, causal) and	۸n	1,2,3,5,10	1,2			
Ζ.	evaluate their performance.	Ар					
3.	Identify applications in which it would be possible to use the	An	1,2,3,5,10	1,2			
5.	different adaptive filtering approaches.	All					

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification etc)		Total Marks				
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100				
-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 bours defined								

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

## Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration.

- 2. Minimum marks required in SEE to pass: Score should be  $\geq$  35%, however overall score of CIE + SEE should be  $\geq$  40%.
- 3. Question paper contains three parts **A,B and C**. Students have to answer

1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.

2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each Question Carries 10 Marks.

3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

	CO-PO Mapping (Planned)								SO Map Planned						
~	PO					PSO	PSO	PSO							
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓		✓										✓		
2	✓		✓										✓		
3	✓	✓	✓										✓	✓	✓
	Tick mark the CO, PO and PSO mapping														

# Internet of Things and Cyber Physical Systems

Course Code	22EC63G	Course type	PEC	Credits L-T-P	3 – 0 - 0
Hours/week: L - T- P	<b>Hours/week: L - T- P</b> 3-0-0				3
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	CIE Marks	100		
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives						
1.	Students will be able to define the Internet of Things (IoT), describe its key characteristics, and						
1.	differentiate it from Machine-to-Machine (M2M) communication.						
2.	Students will gain an understanding of smart objects, sensors, actuators, and the criteria for						
Ζ.	connecting these objects within IoT frameworks.						
	Students will understand the key design drivers, quality attributes, and high-confidence						
3.	attributes of Cyber-Physical Systems, particularly in energy, medical, and transportation						
	applications.						
4.	Students will explore the architecture, node connectivity, networking, and security aspects of						
4.	Wireless Sensor Networks (WSN).						
	Students will investigate various IoT applications across different industries, understand basic						
5.	and advanced cybersecurity techniques, and identify open challenges in securing Cyber-						
	Physical Systems.						

# Pre-requisites : Basics of Electronics and Embedded System

Unit – I	Contact Hours = 8 Hours
Defining IoT, Characteristics of IoT, Physical design of IoT, Logical of	lesign of IoT, Functional blocks
of IoT, Communication models & APIs, Machine to Machine, Differ	ence between IoT and M2M
Smart Objects: The "Things" in IoT, Sensors, Actuators, and Smart	Objects, Sensor Networks,
Connecting Smart Objects, Communications Criteria, IoT Access Te	chnologies.

Unit – II	Contact Hours = 8 Hours
Motivation and examples of CPS e.g. Energy, Medical and Transpo	rtation cyber physical systems;
Key design drivers and quality attributes of CPS. Attributes of high	confidence CPS.
Case Study: Identify an application and analyze its performance u	using any two-network models.

Unit – III	Contact Hours = 8 Hours
Wireless Sensor Networks:	
WSN Architecture, the node, connecting nodes, Networking Node	s, Securing Communication WSN
specific IoT applications, challenges: Security	
Case Study- Survey on real time challenges with respect to Secur	ity in WSN.

Unit – IV	Contact Hours = 8 Hours				
Security of Cyber-Physical Systems:					
Basic Techniques Cyber Security Requirements, Attack Model, Countermeasures, Advanced					
Techniques, System Theoretic Approaches.					
Case Study: Open Challenges / Problems of CPS					

Unit – V

**Contact Hours = 8 Hours** 

IoT and CPS Applications:

IoT for Retailing Industry, IoT For Oil and Gas Industry, Data Aggregation for the IoT in Smart Cities, Agriculture: Smart Irrigation

Case Study: IOT in Autonomous Cars and Transportation

Unit No.	I	II	III	IV	v
No. for Flipped				2	2
<b>Classroom Sessions</b>					

	Books
	Text Books:
1	Kamal, R., (2017), Internet of Things - Architecture and Design Principles, 1st Edition, Mcgraw
	Hill onwards
2	R. Rajkumar, D. de. Niz and M. Klein, (2017), Cyber Physical Systems, addisionwesely onwards.
•	R. Rajkuniar, D. de. Niz and W. Rien, (2017), Cyber Physical Systems, addisionwesely onwards.
	Reference Books:
1	E.A.Lee and S A Shesia, (2018), Embedded system Design: A Cyber-Physical Approach, Second
	Edition, MIT Press onwards.
2	A.Platzer, (2017), Logical Foundations of Cyber Physical Systems, Springer.
	A.Flatzer, (2017), Logical Foundations of Cyber Friysical Systems, Springer.
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1	https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=8d242f72a43188a1258b1332
	a3c9bf90f26db103

	Course delivery methods		Assessment methods		
1.	Chalk and Talk	1.	IA tests		
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)		
3.	Flipped Classes	3.	Open Book Tests (OBT)		
4.	Online classes	4.	Course Seminar		
		5.	Semester End Examination		

At t	<b>Course Outcome (COs)</b> At the end of the course, the student will be able to (Highlight the <b>action verb</b> representing the learning level.)						
Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)			
An -	Analysis; Ev - Evaluate; Cr - Create	Level	FO(3)	F 30(3)			
1.	Understand fundamental IoT and CPS concepts, including design	L2	1,2,4,5	1			
1.	and functional differences between IoT and M2M.						
2.	Design and implement sensor networks, and analyze CPS	L3	1,2,4,5	1			
Ζ.	performance in practical applications.		1,2,4,3				
3.	Identify WSN and CPS security challenges and develop advanced	L3	1,2,4,5	1			
5.	security strategies through case studies.		1,2,1,3				

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification	Course project (CP)/ Case study etc	Total Marks			
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100			
-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.							

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	Scheme of Semester End Examination (SEE):					
1.	It will be conducted for 100 marks of 3 hours duration.					
2.	Minimum marks required in SEE to pass: Score should be $\geq$ 35%, however overall score of					
	CIE + SEE should be $\geq$ 40%.					
3.	Question paper contains three parts A,B and C. Students have to answer					
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.					
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each					
	Question Carries 10 Marks.					
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.					

	CO-PO Mapping (Planned)							CO-PSO Mapping (Planned)							
~	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓	✓	✓	✓							✓	✓		
2	✓	✓	✓	✓	✓					✓	✓	✓	✓		
3	✓	✓	✓	✓	✓					✓	✓	✓	√		
	Use tick mark(√)														

#### **Computational Intelligence and Applications**

Course Code	22EC63H	Course type	PEC	Credits L-T-P	3 – 0 - 0	
Hours/week: L - T- P	3-0-0		Total credits	3		
Total Contact Hours	L = 40 Hrs; T = 0 H	rs; P = 0 Hrs	CIE Marks	100		
	Total = 40 Hrs					
Flipped Classes content	10 Hours			SEE Marks	100	

	Course learning objectives
1.	Develop a comprehensive understanding of computational intelligence, fuzzy logic, and neural
	networks.
2.	Explore and analyse various neural network architectures and their applications.
3.	Acquire in-depth knowledge of the fundamental principles, concepts, and operations of fuzzy
	logic.
4.	Design and implement effective fuzzy logic systems, including creating rule bases, defining
	membership functions, and implementing fuzzy inference mechanisms.

Pre-requisites : Mathematical fundaments and set theory, fundamentals of Linear Algebra

## Introduction to Computational Intelligence

Overview of computational intelligence and its applications, Introduction to neural networks, fuzzy logic, evolutionary computation, swarm intelligence, and machine learning.

Case study on Energy Management in Smart Grids using computational intelligence.

Unit – II	Contact Hours = 8 Hours
Fundamentals of Artificial Neural Network	

Perceptron, artificial neuron, artificial neuron implementation, different activation functions for binary and multilabelled classification. Logic development using simple perceptron, single layer perceptron, multilayer perceptron, artificial neural learning, forward propagation and back propagation algorithm and application.

## Applications of Artificial Neural Networks (ANNs)

Image and Speech Recognition, Natural Language Processing, Time Series Prediction, Pattern Recognition and Classification.

Case study on Fraud Detection in Financial Transactions using computational intelligence.

Unit – III	Contact Hours = 8 Hours			
Fuzzy Set theory and Fuzzy System				
Fuzzy set theory: Introduction to Fuzzy Set, Membership, Operations, Properties, Fuzzy Relation.				
Fuzzy system: Introduction, FL, Fuzzification, Fuzzy Inference, F Rule Based System, Defuzzification.				
Applications of fuzzy system:				

Fuzzy rule-based traffic signal optimization, Fuzzy logic-based medical diagnosis systems, Fuzzy logicbased power system stability analysis, Fuzzy rule-based decision support systems for financial risk assessment.

Case study on Medical Diagnosis and Treatment using computational intelligence.

Unit – IV	Contact Hours = 8 Hours

### **Associative Memory**

Fuzzy Associative Memory, - Fuzzy associative memories (FAMs) pattern recognition and retrieval in fuzzy logic systems and Associative Neural Memory.

**Applications of Associative Memory:** Efficient data storage and retrieval in large-scale databases, Image and video processing for object recognition and tracking, Speech recognition and natural language processing, financial forecasting and time series analysis, Fault diagnosis and anomaly detection in complex systems.

Case study on Autonomous Vehicle Navigation using computational intelligence.

Unit – V	Contact Hours = 8 Hours

## **Applications of Neuro-Fuzzy**

Neuro-Fuzzy System Fundamentals, Neuro-Fuzzy Modeling, Neuro-Fuzzy Pattern Recognition application, Neuro-Fuzzy Time Series Prediction and analysis, Neuro-Fuzzy Fault Diagnosis and Neuro-Fuzzy Applications in Healthcare.

## Case study on Predictive Maintenance in Manufacturing using computational intelligence.

Unit No.	Self-Study Topics
1	Exponential models, Time series models.
2	Multiple linear regression, Multivariate linear regression, Generalized linear models.
3	Machine learning and compressed sensing.
5	Sparse signal representation, kernel and sparse kernel

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions Mini -Project and Case Study in each Unit	2	2	2	2	2

	Books
	Text Books:
1.	Andries P. Engelbrecht, "Computational Intelligence: An Introduction, Second Edition", Wiley,
	2007.
2.	Simon Haykin, "Neural Networks and Learning Machines", 3rd Edition, Pearson, 2008.
	Reference Books:

1.	Nikola K. Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge
	Engineering", MIT Press, 1996.
2.	Bart Kosko, "Neural Networks and Fuzzy Systems", Prentice Hall, 1992.
3.	Bart Kosko, "Fuzzy Engineering", Prentice Hall, 1997.
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	Approximate Reasoning Using Fuzzy Set Theory, By Prof. Balasubramaniam Jayaram, IIT
	Hyderabad
	https://onlinecourses.nptel.ac.in/noc23_ma60/preview
2.	Introduction To Fuzzy Set Theory, Arithmetic And Logic, By Prof. Niladri Chatterjee, IIT Delhi
	https://onlinecourses.nptel.ac.in/noc23_ma73/preview
3.	Deep Learning for Computer Vision, By Prof. Vineeth N Balasubramanian, IIT Hyderabad
	https://onlinecourses.nptel.ac.in/noc21_cs93/preview

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1. IA tests		
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)	
3.	Flipped Classes	3.	Open Book Tests (OBT)	
4.	Online classes	4.	Course Seminar	
5.		5.	Semester End Examination	

	Course Outcome (COs)					
At t	he end of the course, the student will be able to (Highlight the <b>actio</b>	<b>n verb</b> repre	senting th	ne learning		
	level.)					
Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)		
An -	Analysis; Ev - Evaluate; Cr - Create	Level	FO(3)	F 50(5)		
	Understand the foundational principles and concepts of		1,2,	1,2		
1.	computational intelligence, including neural networks and fuzzy	Re	12			
	logic.					
2.	Apply computational intelligence techniques effectively to solve	۸n	1,2,	1,2		
Ζ.	complex problems.	Ар	12			
3.	Analyze and evaluate computational intelligence algorithms and	٨٣	1,2,12	1,2,3		
3.	models critically.	An				
Λ	Design and implement innovative computational intelligence	۸n	1,2,12	1,2,3		
4.	solutions for real time application.	An				

Components	Addition of two	Two Assignments – (Open	Course project (CP)/ Case	Total
	IA tests	/Industry/Certification	study etc	Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks. -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. -Lack of minimum score in IA test will make the student Not Eligible for SEE -Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	Scheme of Semester End Examination (SEE):						
1.	It will be conducted for 100 marks of 3 hours duration.						
2.	Minimum marks required in SEE to pass: Score should be $\geq$ 35%, however overall score of						
	CIE + SEE should be $\geq$ 40%.						
3.	Question paper contains three parts A,B and C. Students have to answer						
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.						
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each						
	Question Carries 10 Marks.						
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.						

	CO-PO Mapping (Planned)								CO-PSO Mapping (Planned)						
~~~	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓										✓	✓		
2	✓	✓										✓	✓		
3	✓	✓					✓					✓	✓	✓	✓
4	✓	✓										✓	✓	✓	✓
	Tick mark the CO, PO and PSO mapping														

Database Management System

Course Code	22EC63I	Course type	PEC	Credits L-T- P	3 – 0 - 0
Hours/week: L - T- P	3-0-0	Total credits	3		
Total Contact Hours	L = 40 Hrs; T = 0 H	CIE Marks	100		
Total Contact Hours	Total = 40 Hrs		100		
Flipped Classes content	5 Hours	SEE Marks	100		

	Course learning objectives
1.	To understand the fundamental concepts of database management systems, including data
	models, schema design, and relational algebra.
2.	To develop proficiency in querying databases using Structured Query Language (SQL).
3.	To Explore advanced topics in DBMS, such as transaction management, concurrency control.
4.	To study the concepts of database normalization.

Pre-requisites : Basic Computer Knowledge

Unit – I	Contact Hours = 8 Hours				
Introduction: Characteristics of database, Advantages of using DBM	AS approach, when not to use a				
BMS, Types of databases, A brief history of database applications, Data models, Schemas and					
instances, Three-schema architecture and data independence					

Unit – II	Contact Hours = 8 Hours					
Entity-Relationship model: Using high-level conceptual data models for database design, an example						
database application, Entity types, Entity sets, Attributes and keys, Relationship types, Relationship						
Sets, Roles and structural constraints, Weak entity types, ER diagrams, Naming conventions and						
design issues. Develop a ER model for COMPANY database						

Unit – III	Contact Hours = 8 Hours				
Relational model and relational algebra: Relational model concepts, Relational model constraints and					
relational database schemas, Update operations, Unary relational operations: SELECT and PROJECT,					
Relational algebra operations from set theory, Examples of queries in relational algebra.					

Unit – IV	Contact Hours = 8 Hours		
SQL:SQL data definition and data types, Specifying basic constraints in SQL, Schema change			
statements in SQL, Basic queries in SQL, more complex SQL queries.			

Unit – V	Contact Hours = 8 Hours
Database design: Informal design guidelines for relation schemas,	Functional dependencies, Normal
forms 1NF, 2NF and 3NF, Boyce-Codd normal form.	

Introduction to transaction processing concepts and theory: Transaction and system concepts. Introduction to concurrency control techniques.

Unit No.	I	11	111	IV	V
No. for Flipped Classroom Sessions	1	1	1	1	1

Unit No.	Self-Study Topics			
1	Actors/Roles involved in using database			
2	Refining the ER design			
3	Binary relational operations: JOIN and DIVISION;			
4	SQL queries			
5	Concurrency control techniques			

Book	s
	Text Books:
1.	Elmasri and Navathe, "Fundamentals of Database Systems", 7th Edition, Pearson Education,
	2007and onwards
	Reference Books:
1.	Silberschatz, Korth and Sudharshan, "Data base System Concepts", 6th Edition, Mc-GrawHill,
	2010and onwards.
2.	C. J. Date, A. Kannan andS. Swamynatham, "An Introduction to Database Systems", 8th
	Edition, Pearson Education, 2006and onwards.
	E-resources (NPTEL/SWAYAM Any Other)- mention links
1.	https://onlinecourses.nptel.ac.in/noc22_cs91/preview (Data Base Management System)
2.	https://nptel.ac.in/courses/106104135 (Data Base Management System)

Course delivery methods			sment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Assignment- Open/Industry/Certification
3.	Flipped Classes	3.	Course Project
4.	Online classes	4.	Semester End Examination

Course Outcome (COs)					
At the end of the course, the student will be able to (Highlight the action verb representing the					
learning level.)					
Learning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning		PSO(s)		
An - Analysis; Ev - Evaluate; Cr - Create	Level	PO(s)	P30(S)		

1.	Develop a foundation in the core principles and building blocks of DBMS. This includes understanding how data is organized,	Un	1,2,3, 5	1
	Gain insights into concurrency control mechanisms, which are		1,2,3,	1
2.	essential for maintaining data consistency when multiple users	Un	5,12	
	access the database simultaneously.			
	Apply DBMS concepts to write queries using a Structured Query		1,2,3,	1
3.	Language (SQL), the industry standard for interacting with	Ар	5,12	
	relational databases.			
	Analyze normalization techniques, a set of rules for structuring		1,2,3,	1
4.	database tables to minimize redundancy and improve data	An	5,12	
	integrity.			

Components	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case	Total
Components	tests	/Industry/Certification etc)	study etc	Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be > 35%, however overall score of
	CIE + SEE should be \geq 40%.
3.	Question paper contains three parts A,B and C. Students have to answer
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each
	Question Carries 10 Marks.
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

CO-F	CO-PO Mapping (Planned)						CO-PSO Mapping (Planned)								
~~~	РО	РО	PO	PO	PO	РО	PO	PO	PO	РО	РО	PO	PSO	PSO	PSO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓	✓		✓								✓		
2	✓	✓	✓		✓							✓	✓		
3	✓	✓	✓		✓							✓	✓		
4	✓	✓	✓		✓							✓	✓		
Tick	mark	the CC	, PO a	nd PSC	mapp	oing	1	1		1					

#### **Digital Forensics**

Course Code	22EC63J	Course type	PEC	Credits L-T-P	3 – 0 - 0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	L = 40 Hrs; T = 0 Hrs; P = 0 Hrs Total = 40 Hrs			100
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives						
1.	To understand the key aspects of Digital Forensics.						
2.	To study the nature of a typical digital forensics case, the correct procedures for searching and						
	seizing evidence and evaluation of a case.						
3.	To study the E-mail and Social Media Investigations related to Digital Forensics.						
4.	To comprehend the Mobile Device Forensics and Cloud Forensics.						

## **Pre-requisites :** Introduction to cyber security

Unit – I	Contact Hours = 8 Hours
Understanding the digital forensics profession and investigation preparing for digital investigations, maintaining professional cort	nduct, preparing a digital forensics
investigation, procedures for private-sector high-tech investigat workstations and software, conducting an investigation.	ions, understanding data recovery
Data acquisition: understanding storage formats for digital evidenmethod, contingency planning for image acquisitions, using acquise	
Case Study: Study of Redundant Array of Independent Disks (RAID	) Data Acquisition from a computer.

Unit – IIContact Hours = 8 HoursProcessing crime and incident scenes: identifying digital evidence, collecting evidence in private sector<br/>incident scenes, processing law enforcement crime scenes, preparing for a search, securing a computer<br/>incident or crime scene, seizing digital evidence at the scene, storing digital evidence, obtaining a<br/>digital hash, reviewing a case.

Case Study: Study of Secure Hashing-1, Message Digest 5 algorithms and parameters

Unit – III	Contact Hours = 8 Hours
Working with windows and Command Line Interface systems	understanding file systems, exploring
Microsoft file structures, examining NTFS disks, understanding w	hole disk encryption, understanding the
windows registry, understanding virtual machines.	

Digital forensics analysis: determining what data to collect and analyze, addressing data-hiding techniques.

Case study: Understanding bootstrap loader sequence in a computer.

Unit – IV	Contact Hours = 8 Hours
E-mail and social media investigations: exploring the role of e-mail i	n investigations, exploring the roles

of the client and server in e-mail, investigations, exploring the role of e-mail minvestigations, exploring the roles servers, using specialized e-mail forensics tools, applying digital forensics to social media. Case Study:

1. Study of "Elephant in the Room: Case Studies of Social Media in Civil and Criminal Cases," Mark Lanterman, http://blog.x1discovery.com/2014/06/10/elephantin-the-room-case-studies-of-social-media-in-civil-and-criminal-cases/, June 2014.

2. Demonstrate the use of Forensic Toolkit (for Face book by Afentis Software) to discover friends and other information of a public profile.

Unit – V	Contact Hours = 8 Hours
Mobile device forensics: understanding mobile device forensics, un	derstanding acquisition procedures
for mobile devices, process of mobile device forensics.	
Cloud forensics: an overview of cloud computing, legal challe	nges in cloud forensics, technical
challenges in cloud for ansies, acquisitions in the cloud, conducting	a cloud investigation, tools for cloud

challenges in cloud forensics, acquisitions in the cloud, conducting a cloud investigation, tools for cloud forensics

Case Study: Study of SIM Manager tool to read the sim card messages. And benefits and challenges of mobile device forensics.

Unit No.	I	II		IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

Unit No.	Self-Study Topics							
1	Redundant Array of Independent Disks (RAID)							
2	Digital forensics analysis							
3	Develop a code for implementing simple hash function.							
4	Using OS Forensics to Recover E-mail							
5	SIM Manager tool to read the sim card messages							

	Books
	Text Books:
1.	Bill Nelson, Amelia Phillips, Christopher Steuart, "Guide to Computer Forensics and
	Investigations: Processing Digital Evidence", Fifth Edition, Cengage Learning, 2015 and
	onwards.
2.	Cory Altheide, Harlan Carvey, "Digital Forensics with Open Source Tools", Elsevier, Syngress
	publications, 2011 and onwards.
	Reference Books:
1.	John R. Vacca, "Computer Forensics: Computer Crime Scene Investigation", Second Edition,
	ISBN 1-58450-389-0, 2005 and onwards.
	E-resources (NPTEL/SWAYAM. Any Other)- mention links
1.	https://onlinecourses.nptel.ac.in/

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Assignment- Open/Industry/Certification
3.	Flipped Classes	3.	Course Project
4.	Online classes	4.	Semester End Examination

	Course Outcome (COs)									
At t	At the end of the course, the student will be able to (Highlight the <b>action verb</b> representing the learning									
	level.)									
Lear	Learning Levels: Re - Remember; Un - Understand; Ap - Apply; Learning PO(s) PSO(s)									
An -	Analysis; Ev - Evaluate; Cr - Create	Level	FO(3)	P30(5)						
1.	Understand the basic concepts of digital forensics and study	APP	1,3,4,5,6,8	1						
1.	the forensic tools.	AFF								
2.	Analyze the forensic data acquired from an electronic	An	1,3,4,5,6,8	1						
2.	system.	All								
3.	Analyze the e-mail and social media digital forensics and	An	1,3,4,5,6,8	1						
5.	document.	All								
4	Understand the digital forensics applied to mobile and cloud	Un	1,3,4,5,6,8	1						
4.	scenario.									

Components	Addition of two IA testsTwo Assignments – (Open /Industry/Certification etc)			Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of at least 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for  $\ensuremath{\mathsf{SEE}}$ 

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	eme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours' duration.
2.	Minimum marks required in SEE to pass: Score should be $\geq$ 35%, however overall score of
	CIE + SEE should be $\geq$ 40%.
3.	Question paper contains three parts A, B and C. Students have to answer
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each
	Question Carries 10 Marks.
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

	CO-PO Mapping (Planned)									CO-PSO Mapping (Planned)					
~	PO								PSO	PSO	PSO				
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓		✓	✓	✓	✓		✓					✓		
2	✓		✓	✓	✓	✓		✓					✓		
3	✓		✓	✓	✓	✓		✓					✓		
4	✓		✓	✓	✓	✓		✓					✓		
	Tick mark the CO, PO and PSO mapping														

#### **Human Computer Interaction**

Course Code	22EC641	Course type	OEC	Credits L-T-P	3-0-0
Hours/week: L - T- P	3-0-0		Total credits	3	
Total Contact Hours	L = 40 Hrs; T = 0 Hrs; P = 0 Hrs Total = 40 Hrs		CIE Marks	100	
Flipped Classes content	2 Hours		SEE Marks	100	

	Course learning objectives				
1.	Learn the basics of human-computer interaction, interactivity, interaction styles, models of				
	interaction and framework of human-computer interaction.				
2.	Study how software engineering and the design process relate to interactive system design				
	and understand the design rules to develop an effective design process and a universal design.				
3.	Learn the programming support tools available for implementing interactive systems and				
	improve the abstraction by use of toolkits. Study the evaluation techniques and design of user				
	support systems.				
4.	Study the implementation and applications of groupware, ubiquitous computing and				
	augmented realities applied to interactive systems.				

### Pre-requisites : Nil

Unit – I	Contact Hours = 8 Hours		
Foundation:			
Introduction to human and computer, The Interaction: Models of interaction, Frameworks and HCI,			
Ergonomics, Interaction styles, Elements of WIMP interface, Interactivity.			
Case Study: Paradigms for interaction			

Unit – II	Contact Hours = 8 Hours

## The Design Process:

Interaction design basics: the process of design, user focus, scenarios, navigation design, screen design and layout, iteration and prototyping. HCI in software process: software life cycle, usability engineering, iterative design and prototyping, design rationale. Design rules: principles, standards, guidelines, golden rules and heuristics, HCI patterns. Universal design: Universal design principles, Multi-modal interaction.

Case Study: Designing for diversity

Unit – III	Contact Hours = 8 Hours

## Models of Interactive Systems:

Standard formalism, Cognitive models: Goal and task hierarchies, Linguistic models, challenge of display-based systems, Physical and device models, and Cognitive architectures. Interaction models, modeling rich interaction.

Case Study: Socio-organizational issues and stakeholder requirements

Unit – IV	Contact Hours = 8 Hours
Implementation and Evaluation:	
Implementation support: Elements of windowing systems, Program	nming the application, using toolkits,
User interface management systems. Evaluation techniques: Goa	ls of evaluation, Evaluation through
expert analysis, choosing an evaluation method. User support	t: Requirements of user support,
Approaches to user support, Adaptive help systems, Design of use	r support systems.
<b>Case Study:</b> Evaluation through user participation	

Case Study: Evaluation through user participation

### Unit – V

### Interactive System Applications:

Groupware: Groupware systems, Computer-mediated communication, Meeting and decision support systems, Shared applications and artifacts, Frameworks for groupware, implementing synchronous groupware. Ubiquitous computing and augmented realities: Ubiquitous computing applications research, Virtual and augmented reality, Information and data visualization.

**Contact Hours = 8 Hours** 

Case Study: Hypertext, Multimedia and the World Wide Web

	•	•			
Unit No.	I	I	III	IV	v
No. for Flipped Classroom Sessions	0	0	1	1	0

	Books				
	Text Books:				
1.	Alan Dix, Janet E. Finlay, Gregory D. Abowd and Russell Beale, "Human-Computer Interaction",				
	3rd Edition, Pearson Education Limited, 2004.				
	Reference Books:				
1.	Preece, J., Rogers, Y., & Sharp, H., "Interaction design: Beyond human-computer interaction",				
	4th Edition, John Wiley & Sons Limited, 2015.				
	E-resourses (NPTEL/SWAYAM Any Other)- mention links				
1.	https://www.hcibook.com/e3/online/				

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Tests (OBT)
		4.	Course Seminar
		5.	Semester End Examination

	Course Outcome (COs)					
At	At the end of the course, the student will be able to (Highlight the action verb representing the learning level					
Learn	Learning Levels: Re - Remember; Un - Understand; Ap - Apply; An - Learning PO(s) PSO(s)					
Analy	Analysis; Ev - Evaluate; Cr - Create		PO(S)	P30(S)		
1.	Understand the basic elements of human-computer interaction.	Un	1,6,8,9,10,11,12	1,3		

2.	Analyze different models of interactive systems and their implementation and evaluation.	An	1,2,6,8,9,10,11,12	2,3
3.	Apply groupware, ubiquitous computing and augmented reality technologies in an interactive system.	Ар	1,2,6,8,9,10,11,12	1,3

Components	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case	Total
	tests	/Industry/Certification etc)	study etc	Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of at least 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks. -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. -Lack of minimum score in IA test will make the student Not Eligible for SEE

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	Scheme of Semester End Examination (SEE):				
1.	It will be conducted for 100 marks of 3 hours' duration.				
2.	Minimum marks required in SEE to pass: Score should be $\geq$ 35%, however overall score of				
	CIE + SEE should be $\geq$ 40%.				
3.	Question paper contains three parts A, B and C. Students have to answer				
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.				
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each				
	Question Carries 10 Marks.				
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.				

	CO-PO Mapping (Planned)							CO-PSO Mapping (Planned)							
~	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓					✓		✓	✓	✓	✓	✓	✓		✓
2	✓	✓				✓		✓	✓	√	✓	✓		✓	✓
3	✓	✓				✓		✓	✓	✓	✓	✓	✓		✓
	Use tick mark(✓)														

#### EMBEDDED SYSTEMS WITH ARDUINO

Course Code	22EC642	Course type	OEC	Credits L-T-P	3-0-0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	Total Contact HoursL = 40 Hrs; T = 0 Hrs; P = 0 HrsTotal = 40 Hrs			CIE Marks	100
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives					
1.	Identify the embedded system devices from the real world.					
2.	Make use of Arduino software/hardware platform and explain the basics of Arduino platform					
3.	Define robotics, its terminologies and basic sensors used in robotics					
4.	Build a simple robot using Arduino considering real world problems					

# Pre-requisites: Microcontroller

Unit – I	Contact Hours = 8 Hours				
Embedded system: History, Block diagram, Comparison with general purpose computers, classification,					
applications.					

Case study: Washing Machine, traffic light controller and microwave oven(functional diagram level)

Unit – II	Contact Hours = 8 Hours			
Arduino: IDE, I/O Functions, Looping Techniques, Decision Making Techniques Designing of 1st sketch				
Programming of an Arduino (Arduino ISP), Arduino Boot loader, Serial Protocol (serial port Interfacing),				
Initialization of Serial Port using Functions, Basic Circuit for Arduin	0			

Unit – III	Contact Hours = 8 Hours			
Basic Interfacing and I/O Concept Interfacing of: LED, Switch, keypad, LM35, Motor Driver L293D, IR				
Sensor, Interfacing L293D with Arduino with relevant program and connection diagram.				

Unit – IV	Contact Hours = 8 Hours
History of robots, Classification of robots, Present status and future	trends. Basic components of robotic
system.	
Basic terminology- Accuracy, Repeatability, Resolution, Degree of	of freedom. Specifications of robot.
Definition of Forward and Reverse Kinematics	

Unit – V	Contact Hours = 8 Hours

Sensors in robot – Touch sensors, Tactile sensor, Proximity and range sensors, Robotic vision sensor, Force sensor, Light sensors, Pressure sensors.

Case Study: Implementation of small project demonstration of robot (line follower robot, robotic arm) using Arduino

Unit No.	I	II	111	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

	Books
	Text Books:
1.	Introduction to Embedded Systems, Shibu K. V., Tata McGraw Hill Education Private Limited,
	2009, ISBN: 10: 0070678790
2.	Rex Miller, Mark R. Miller - Robots and Robotics_ Principles, Systems, and Industrial
	Applications-McGraw-Hill Education (2017)
3.	Arduino-Based Embedded Systems: By Rajesh Singh, Anita Gehlot, Bhupendra Singh, and
	Sushabhan Choudhury.
4.	Mike Cheich," Arduino book for beginners", Programming electronics academy, 2021
5.	Jeremy Blum, "Exploring Arduino: Tools and Techniques for Engineering, Wiley, 2013
	Reference Books:
1.	Neeparaj Rai, " arduino projects for beginners", BPB Publications
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	https://onlinecourses.swayam2.ac.in/aic20_sp04/preview (Arduino, IIT Bombay)

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)	
3.	Flipped Classes	3.	Open Book Tests (OBT)	
4.	Online classes	4.	Course Seminar/Course Project	
		5.	Semester End Examination	

At t	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning level.)							
	Learning Levels: Re - Remember; Un - Understand; Ap - Apply;LearningPO(s)PSO(s)An - Analysis; Ev - Evaluate; Cr - CreateLevelPO(s)PSO(s)							
1.	Explain and distinguish the components of embedded system with the help of applications	Un	2,9,10,11,12	1				
2.	Apply the concepts of software & hardware structure of the Arduino and interface peripherals	Ар	2,5,9,10,11,12	1				

ĺ	2	Apply the knowledge of embedded concepts and Arduino to	۸n	5,9,10,11,12	2
	5.	design embedded robotic systems.	AII		

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification etc)		Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of at least 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Scheme of Semester End Examination	(SEE):

1. It will be conducted for 100 marks of 3 hours' duration.

2. Minimum marks required in SEE to pass: Score should be  $\geq$  35%, however overall score of CIE + SEE should be  $\geq$  40%.

3. Question paper contains three parts **A**, **B** and **C**. Students have to answer

1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.

2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each Question Carries 10 Marks.

3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

	CO-PO Mapping (Planned)										'SO Map Planned				
~~~	РО	PO	PO	PO	PO	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		✓							✓	~	√	✓	✓		
2		✓			✓				✓	✓	✓	✓	✓		
3					✓				✓	✓	✓	✓		✓	
	Use tick mark(✓)														

Digital Image Processing

Course Code	22EC643	Course type	OEC	Credits L-T- P	3-0-0
Hours/week: L - T- P	3-0-0	Total credits	3		
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	CIE Marks	100		
Flipped Classes content	10 Hours	SEE Marks	100		

Cours	Course learning objectives					
1.	To explore fundamental image processing system					
2.	To study the techniques used for quality enhancement of image					
3.	To comprehend image retrieval techniques					

Pre-requisites: Signals and systems, Engineering mathematics

Unit – I Introduction to Digital Image Processing	Contact Hours = 8 Hours				
Introduction to Digital Image Processing Examples of fields that use DIP, Fundamental Steps in Digital					
Image Processing, Components of an Image Processing System, Elements of Visual Perception, Image					
Sensing and Acquisition, Image Sampling and Quantization, Some Basic Relationships Between Pixels.					
Self-study topics: Arithmetic and Logical operations					
Demo of MATLAB programs on Basic Relationships Between Pixels	5.				

Unit – II Spatial Domain image processing	Contact Hours = 8 Hours		
Basic Intensity Transformation Functions, Histogram Processing, Fundamentals of Spatial Filtering,			
Smoothing Spatial Filters, Sharpening Spatial Filters			
Demo of MATLAB programs on Intensity Transformation Functions, Histogram, Spatial domain filters			

Unit – III Frequency Domain image processing	Contact Hours = 8 Hours			
Basics of Filtering in the Frequency Domain, Image Smoothing and Image Sharpening Using Frequency				
Domain Filters.				
Color Image Processing: Color Fundamentals, Color Models, Pseudo-color Image Processing.				

Unit – IV Image Restoration	Contact Hours = 8 Hours				
A model of the Image Degradation/Restoration Process, Noise models, Restoration in the Presence of					
Noise Only using Spatial Filtering and Frequency Domain Filtering, Inverse Filtering, Minimum Mean					
Square Error (Wiener) Filtering.					
Demo of MATLAB programs on image restoration					

Unit – V Color Image Processing	Contact Hours = 8 Hours
Color Fundamentals, Color Models, Pseudo-color Image Processin	g. Basics of Full-Color Image

Processing, Color Transformations, Color Image Smoothing and Sharpening Demo of MATLAB programs on Pseudo-color Image Processing

Bool	KS
	Text Books:
1.	Digital Image Processing- Rafael C Gonzalez and Richard E Woods, PHI, 3rd Edition, 2010.
	Reference Books:
2.	Digital Image Processing- S Jayaraman, S Esakkirajan, T Veerakumar, Tata McGraw Hill, 2014.
	E-resources (NPTEL/SWAYAM Any Other
1.	NPTEL Course, Introduction to Digital Image Processing, IIT Kharagpur, Prof. P.K. Biswas
	https://nptel.ac.in/courses/117105079
2.	Computer Vision and Image Processing, IIT Guwahati, Prof. M. K. Bhuyan
	https://nptel.ac.in/courses/108103174
3.	On ramp course: Image Processing and Computer Vision – Matlab and Simulink,
	https://in.mathworks.com/solutions/image-video-processing.html

Course delivery methods		Asses	sment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Assignment (OA)/ Certification
4.	Online classes	4.	Course Project
		5.	Semester End Examination

	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the					
<u> </u>	learning level.)					
Lea	rning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)		
	An - Analysis; Ev - Evaluate; Cr - Create	Level				
1.	Understand image formation and visualization in digital	2	1,2,3,5,9,10,12	1		
1.	domain.	2				
2.	Understand image segmentation and analyze restoration	2	1,2,3,5,9,10,12	1		
Ζ.	methods used in digital image processing	2				
2	Apply the image quality enhancement techniques to		1,2,3,5,9,10,12	1		
3.	different types of images	3				

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA Two Assignments – (Open tests tests /Industry/Certification etc		Course project (CP)/ Case study etc	Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of at least 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks. -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. -Lack of minimum score in IA test will make the student Not Eligible for SEE -Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Scheme of Semester End	Examination (SEE):
------------------------	--------------------

- 1. It will be conducted for 100 marks of 3 hours' duration.
- Minimum marks required in SEE to pass: Score should be > 35%, however overall score of CIE + SEE should be > 40%.
- 3. Question paper contains three parts **A**, **B** and **C**. Students have to answer

1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.

2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each Question Carries 10 Marks.

3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

CO-	PO Ma	pping	(Plann	ed)									CO-PS (Plani	SO Map ned)	oing
~~	РО	PO	РО	PO	РО	РО	РО	PO	РО	РО	PO	PO	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓	✓		✓				✓	✓		✓	✓		
2	✓	✓	✓		✓				✓	✓		✓	✓		
3	✓	✓	✓		✓				✓	✓		✓	✓		
Tick	mark	the CC), PO a	nd PSC) mapp	oing									

Requirements Engineering

Course Code	22EC644	Course type	OEC	Credits L-T-P	3 - 0 - 0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	CIE Marks	100		
Flipped Classes content	5 Hours			SEE Marks	100

	Course learning objectives
1.	To understand the significance of Requirements Engineering and the impact of
	Requirements Engineering in business development
2.	To comprehend the types of requirements and stakeholders involved
3.	To study requirements elicitation, documentation and validation techniques

Unit – I	Contact Hours = 8 Hours					
Introduction: Definition of Requirements, Why do I need Requirements, Requirements Engineering,						
problems with requirements, Product/System Development Life C	problems with requirements, Product/System Development Life Cycle and various approaches, Project					
management, The business case, Terms of Reference / Project Initiation Document / Project Charter -						
business objectives, project objectives, scope, constraints (budget, timescale, standards), sponsor						
(authority), Framework for Requirements Engineering, Actors/ Ro	les during requirements work.					

Activity:

1. Study the PID for any project and write a summary of the same. Develop an alternate PID for the same and justify why/how the new document is better than the studied one.

Jnit – II Contact Hours = 8 Hours						
Types of requirements and Stakeholders : Building the hierarchy through decomposition of						
requirements, Categories of requirements within the hierarchy, Go	eneral business requirements,					
including legal and business policy, Technical policy requirements	, Functional requirements, Non-					
functional requirements, including performance, usability, access, security, archiving, backup and						
recovery, availability, robustness, Stakeholders, Types of stakehold	ders and their role and contribution					
to the requirements engineering process, The Requirements Proce	255 .					
Case Study: Study the Ice Breaker Project (text 2).						
Activity:						
1. Identify the stakeholders of the project. Develop the list of stakeholders for any project you						
identify. Identify their roles and contributions.						
2. Build the list of functional and non-functional requirements for any project you identify.						

Requirements Elicitation: Knowledge types – tacit and non-tacit (explicit), Elements of tacit knowledge that cause problems, Elicitation techniques : Interviews, Workshops, Observation: Formal/informal, Shadowing, Focus groups, Prototyping, Scenarios, Document Analysis Use of models in Requirements Engineering: The purpose of modelling requirements, Modelling the business context for the system, Developing a model to represent the system processing requirements, Interpreting a data model.

Activity:

1. Conduct interviews/workshops on the requirements identified for a idea/project. Summarize the outcomes.

2. Develop Prototypes, Scenarios, documents and conduct document analysis for the requirements listed in the above idea/project

Unit – IV	Contact Hours = 8 Hours				
Requirements Analysis: Organizing requirements, requirements Filters for ensuring well-formed					
requirements					
Requirements Documentation: The importance of Documentation, Structure of Requirements					
Document, Requirements catalogue, hierarchy of requirements, Documenting a Requirement-					
Characteristics of an individual requirement.					
Activity:					
1. Prepare a requirements document for any identified idea/project.					

Unit – V	Contact Hours = 8 Hours
Requirements Validation: Agreeing the requirements docu	ument, Representatives of the review
group, Outcomes of a review	
Requirements Management: Dealing with changing requir	rements, The importance of traceability,
Traceability and ownership, Elements of Requirements ma	nagement, Requirements Engineering
support tools.	
Activity:	
1. Trace the changes of a requirement identified based on	the reviews.

Unit No.	I	11	Ш	IV	V
No. for Flipped	1	1	1	1	1
Classroom Sessions					

Unit No.	Self-Study Topics				
1	Project Initiation document (PID)				
2	Study Of Ice Breaker Project				
3	Elicitation technique-Interview				
4	Characteristics of an individual requirement				
5	Requirements Engineering Support tools				

	Books
	Text Books:
1.	Debra Paul, Donald Yeates and James Cadle, Business Analysis, 2nd Edition, BCS Publisher,
	2010 and onwards
2.	Suzanne Robertson and James Robertson, "Mastering the Requirements Process", Addison
	Wesley, 1999 and onwards.
3.	James Cadle, Debbie Paul and Paul Turner, "Business Analysis Techniques: 72 Essential Tools
	for Success", BCS.
	Reference Books:
1.	Gerald Kotonya and Ian Sommerville, "Requirements Engineering: Processes and Techniques",
	John Wiley & Sons.
2.	Alistair Cockburn, "Writing Effective Use Cases", Addison-Wesley, 2000 and onwards.
	E-resources (NPTEL/SWAYAM Any Other)- mention links
1.	https://www.phpkb.com/kb/article/tacit-knowledge-what-is-it-and-how-you-can-promote-it-
	<u>293.html</u>
2.	https://www.lucidchart.com/pages/uml-use-case-diagram
3.	https://www.knowledgetrain.co.uk/project-management/business-cases/how-to-write-a-
	business-case
4.	https://openclassrooms.com/en/courses/4544631-learn-the-fundamentals-of-agile-
	estimation/5371006-discover-the-benefits-of-planning-releases-and-the-pitfalls-of-estimation

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Assignment- Open/Industry/Certification
3.	Flipped Classes	3.	Course Project
4.	Online classes	4.	Semester End Examination

	Course Outcome (COs)							
At t	At the end of the course, the student will be able to (Highlight the action verb representing the learning							
	level.)							
Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)				
An -	Analysis; Ev - Evaluate; Cr - Create	Level	10(3)	1 50(3)				
1.	Understand the relevance of requirements engineering in	Un	2,6,10,11,12	2,3				
1.	business development	011						
	Develop a model and analyze the use of a range of		2,6,10,11,12	2,3				
2.	requirements elicitation and documentation techniques and	An						
	the relevance of the techniques to business situations							
3.	Analyze the performance of requirements management	An	2,6,10,11,12	2,3				
٦.	process and apply them to manage business requirements.	AII						

Componente	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case	Total
Components	tests	/Industry/Certification etc)	study etc	Marks

Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100			

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks. -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. -Lack of minimum score in IA test will make the student Not Eligible for SEE -Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Scheme of Semester End Examination (SEE):

1.	It will be conducted for 100 marks of 3 hours duration.

2. Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of CIE + SEE should be \geq 40%.

3. Question paper contains three parts **A,B and C**. Students have to answer

1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.

2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each Question Carries 10 Marks.

3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

	CO-PO Mapping (Planned)								CO-PSO Mapping (Planned)						
~	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		\checkmark				\checkmark				\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
2		\checkmark				\checkmark				\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
3	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									\checkmark	\checkmark				
Tick	ck mark the CO, PO and PSO mapping														

Modern Vehicular Technology (MVT)

Course Code	22EC645 Course type OEC		OEC	Credits L-T-P	3 - 0 - 0
Hours/week: L - T- P	3-0-0		Total credits	3	
Total Contact Hours	L = 40 Hrs; T = 0 Total = 40 Hrs	0 Hrs; P = 0 H	rs	CIE Marks	100
Flipped Classes content	08 Hours			SEE Marks	100

	Course Learning Objectives					
1.	To build basics concepts related to vehicle dynamics, transmission characteristics and various					
	transmission techniques for fossil fuel based vehicles, electric vehicles and hybrid vehicles.					
2.	To comprehend the basic concepts related to hybrid braking, regenerative braking and their					
	significance in EV and HEV design and performance.					
3.	To compare and contrast various energy sources and propulsion systems for EV, HEV, and FCEV.					
4.	To analyze various design and control parameters of electric vehicles, hybrid electric vehicles					
	and fuel cell based vehicles under Indian and global scenarios.					

Pre-requisites: Fundamentals of engineering physics, basic electrical engineering.

Unit I – Basic Vehicular Dynamics, Propulsion & Power Transmission	Contact Hours = 8
General descriptions of vehicle movements, brake performance, fuel econ	omy, basics of SI, CI and
natural gas engines, vehicle transmission characteristics for ICEV & EV,	manual and automatic
transmissions, torque converter, automated manual dual clutch transmission	(AMT and DCT)

Unit II – Electrical Energy Sources and Propulsion Systems	Contact Hours = 8				
Electrical Energy Sources for EVs - steady and dynamic components of load power, batteries, hydro					
based PEM fuel cell, ultracapacitors, and ultra-high-speed flywheels					
Propulsion Systems – DC motor, induction motor, brushless DC motors, swite	hed reluctance motors				

Unit III – Electrical and Hybrid EV Basics, & Regenerative Braking	Contact Hours = 8						
Electric Vehicles - configuration, performance graph, tractive effort in	normal driving, energy						
consumption, concepts of HEV, PHEV, MHEV drivetrains							
Regenerative Braking – braking energy consumed in urban driving, braking	energy and brake power						
comparison with various parameters, brake system for EV, HEV and FCV							

Unit IV – Series, Parallel and other HEV Architectures	Contact Hours = 8
Concept and architecture of hybrid electric drivetrain, series hybrid and paral	lel hybrid drivetrains, max
SoC of PPS control and thermostat control for series hybrid drivetrains, series	es-parallel (torque-speed)
control, GM 2 mode, dual-clutch and Renault mode hybrid transmission	

Unit V – FCHEV Drivetrain Design and Vehicular Energy Management Contact Hours = 8

Fuel Cell Based HEV – PEMFC characteristics, PEMFC sub-systems, configuration of fuel cell hybrid electric drivetrain design, control strategy, design of motor power, PPS and energy capacity for FCHEV Vehicular Power Control Strategy and Energy Management – a generic framework, definition and need, methodologies for optimization, cost function optimization, benefits of energy management

Unit No.	I	II	III	IV	v
No. for Flipped Classroom Sessions			3	3	2

	Books and Resources					
	Text Books:					
1.	Mehrdad Ehsani, Yimin Gao, Stefano Longo, and Kambiz Ebrahimi, "Modern Electric, Hybrid					
	Electric and Fuel Cell Vehicles," 3 rd Edition, CRC Press, Taylor & Francis Group, 2002.					
2.	Chris Mi, M. Abul Masrus, David W. Gao, "Hybrid Electric Vehicles – Principles and Applications					
	with Practical Perspectives," 2 nd Edition, Wiley, 2017.					
3.	Allen E. Fuhs, "Hybrid Vehicles and the future of Personal Transportation," 2 nd Edition, CRC					
	Press, Taylor and Francis Group, NW, 2009.					
	Reference Books:					
1.	John G. Hayes, G. Abas Goodarzi, "Electric Powertrain – Energy Systems, Power Electronics and					
	Drives for Hybrid, Electric and Fuel Cell Vehicles"					
	E- Resources:					
1.	Fundamentals of Electric Vehicles – Technology and Economics - IITM NOC					
	https://www.youtube.com/watch?v=UgtjRob5qMg&list=PLyqSpQzTE6M9spod-					
	UH7Q69wQ3uRm5thr&index=1 by Prof. Ashok Jhunjhunwala, IIT Madras					
2.	How Do Electric Vehicles Work? Working Principles of EV-Certified EV Crash Course, 3 Hour					
	video YouTube Link - https://www.youtube.com/watch?v=qIfjibyt6pY					

	Course delivery methods	Assessment methods				
1.	Chalk and Talk	1.	IA tests			
2.	PPT and Videos	2.	Offline Quizzes			
3.	Flipped Classes	3.	Open Assignments			
4.	Online Classes	4.	Course Seminar			
5.	Industry Visit	5.	Semester End Examination			

	Course Outcome (COs)						
	At the end of the course, the student will be able to						
Lea	rning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)			
An	- Analysis; Ev - Evaluate; Cr - Create	Level	PO(S)	P30(S)			
1.	explain the specific requirements of EV, HEV and FCV for a cleaner	Un	1,3,6,	1,3			
1.	environment and compare it with pollution caused by ICEV	011	7,8,12	1,5			
	identify the importance of various propulsion systems and energy						
2.	sources & also justify the need of infrastructure development for	Un	1,2,6	1			
	fuel cell based vehicles (FCV) in India						

3.	develop sound knowledge related to regenerative braking, hybrid braking & hybrid propulsion systems for modern day vehicles	Ар	1,3,6, 7,8,12	1,3
4.	distinguish among the critical design and control parameters for EV, HEV and FCV	An	1,2,3, 5,6,7,12	1,2,3

Components	Addition of two IA tests	Two Aassignments – (Open /Industry/Certification etc)		Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of at least 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	Scheme of Semester End Examination (SEE):							
1.	It will be conducted for 100 marks of 3 hours duration.							
2.	Minim	um marks required in SEE to pass: Score should be \geq 35%, however overall score of						
	CIE+SE	E should be <u>></u> 40%.						
3.	Questi	on paper contains three parts A, B, and C. Students have to answer						
	1.	From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.						
	2.	From Part B answer 5 out of 10 question choosing any one full question from each unit,						
		each Question Carries 10 Marks.						

3. From Part C answer 1 out of 2 Questions, each Question Carries 20 Marks.

	CO-PO Mapping (Planned)										'SO Map Planned				
с о	PO 1	PO 2	РО 3	PO 4	РО 5	РО 6	РО 7	РО 8	РО 9	Р О 10	Р О 11	Р О 12	PSO 1	PSO 2	PSO 3
1	~		✓			✓	✓	✓				✓	\checkmark		✓
2	✓	✓				✓							\checkmark		
3	✓		✓			✓	✓	✓				~	✓		\checkmark
4	✓	\checkmark	✓		✓	✓	✓					✓	\checkmark	√	✓

Communication Networks

Course Code	22EC71	Course type	IPCC	Credits L-T-P	3 - 0 - 1
Hours/week: L - T- P	3 - 0 - 2		Total credits	4	
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 60 Hrs	rs; P = 20 Hrs	CIE Marks	100	
Flipped Classes content	10 Hours		SEE Marks	100	

Course learning objectives						
1.	To familiarize with the working model of OSI and TCP/IP protocol suite, and to discuss reliable					
	data communication methods					
2.	To explain the working of networking resources and channel access techniques					
3.	To compare the different methods of switching and to understand the challenges in IP					
	addressing.					
4.	To understand the significance of TCP and UDP in computer communications networks and					
	investigate the network performance.					

Required Knowledge of: Principles of Communication system					
Unit – I	Contact Hours = 8 Hours				
Data Communications: Components, Representations, Data Flow, Networks: Physical Structures					
Network Types: Switching, Transmission time, Latency, throughput, delay bandwidth product, Jitter.					
TCP/IP Protocol Suite: Layered Architecture, Description of layers, Addressing. The OSI Model: OSI					
Versus TCP/IP. Case Study: Protocols and Standards					

Unit – IIContact Hours = 8 HoursData Link Control: LLC layer: Framing, Flow and Error Control, Noiseless Channels and Noisy Channels,
HDLC. Data Link Layer Protocols: Reliable Transmission, Simplex Protocol, Stop and Wait protocol,
Sliding Window, selective repeat, Piggybacking. Case Study: Different error control implementation
schemes in LLC layer.

Unit – III	Contact Hours = 8 Hours				
Media Access Control: Random Access, ALOHA, slotted aloha, CSMA, CSMA/CD, CSMA/CA. Controlled					
Access: Reservation, Polling, Token Passing. ATM networks, BISDN reference model, ATM layer. Virtual					
LANs: Membership, Configuration, Communication between Switches, Advantages. Case Study:					
Demonstration of LAN configuration and it's working					

Unit – IV	Contact Hours = 8 Hours
Network Layer services: Packetizing, Switching and forwarding,	Datagram, Virtual Circuit Switching,
Source Routing. IPV4 Addresses: Classful Addressing, classless a	addressing, DHCP, Network Address
Resolution and Border Gateway Protocols (BGP), Embedding IPv4 A	Addresses in IPv6 For Transition. Case
Study: Simulating of LAN and study of packet transfer using packet	t tracer tool.

Transport Layer: Introduction, Transport Layer Services, Connectionless and Connection oriented Protocols. User Datagram Protocol: User Datagram, UDP Services, UDP Applications, TCP congestion control. Application Layer: SMTP, MIME, IMAP, HTTP, SNMP, Real-time Transport Protocol (RTP) and Applications of blockchain in computer networks.

Case Study: With help of research papers document the various network working scenarios in which TCP/UDP are preferable

Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

List of Experiments

Unit No.	No. of	Tonic(c) related to Experiment		
Unit NO.	Experiments	Topic(s) related to Experiment		
1	1	Study of networking devices, NIC card and cable crimping process needed for		
		network deployment		
1	1	Design a local area network, configure the nodes, switches and illustrate the data		
		flow using packet tracer tool.		
2	1	Simulate the different network topologies using CISCO packet tracer.		
2	1	Simulate Routing Information Protocol (RIP) algorithm using CISCO packet tracer.		
3	1	Configure the server to implement DHCP and ARP services.		
3	1	Configure and simulate the network to implement SMTP services		
4	1	Design and implement smart garden system using remote terminal and wireless		
		links		
4	1	Design and implement virtual LAN		
5	1	Configure and simulate to study the functionality and working of a Border		
		Gateway Protocol and virtual LAN		
5	1	Simulation of Wi-Fi using virtual Lab.		

Unit No.	Self-Study Topics		
1	Numerical on Performance parameters		
2	Numerical on LLC layer protocols.		
4	Numerical on IP addressing		

Books				
	Text Books:			
1.	Behrouz A Forouzan, "Data Communication and Networking", Tata McGraw-Hill publishing Company			
	Limited, Indian Edition, 2006 and onwards.			
2.	Alberto Leon Garcia, "Communication Networks", McGraw-Hill, 2010			

	Reference Books:			
1.	Larry L. Peterson and Bruce S. Devie, Computer Networks, Morgan Kaufmann Publications,			
	5thEdition and onwards.			
2.	William Stallings, "Data and Computer Communications", Prentice-Hall, 2007			
	E-resourses (NPTEL/SWAYAM Any Other)- mention links			
1.	Course Title: Computer Communications Specialization			
	https://www.coursera.org/specializations/computer-communications#courses			

Course delivery methods		Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project	
3.	Flipped Classes	3.	Lab Test	
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination	
5.	Virtual Labs (if present)			

	Course Outcome (COs)					
Lear	Learning Levels:					
	Re - Remember; Un - Understand; Ap - Apply; An - Anal	ysis; Ev - Evalu	ate; Cr - Cre	ate		
At th	e end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)		
	Compare the various data flow control methods with respect		1,2	1		
1.	to general data network communication. Compare and	Understand				
	contrast the OSI model and TCP/IP architecture suite					
2.	Analyze the relevance of networking components and	Apply	2,3,5	1		
Ζ.	methods of channel access techniques	Apply				
	Compare and analyze the relevance of Transport Control		1,2,5,10,12	1		
3.	Protocol and User datagram protocol to design congestion	Analysis				
	free network.					
4.	Design and analyze the network addresses using the	Evaluate	2,3,5,12	1		
4.	knowledge of data switching and IPV4 addressing.	Evaluate				

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test **(COMPULSORY)** will be part of the CIE. **No SEE for Lab**.

THEORY (60 marks)		LAB (40 marks)		Total
IA test 1	IA test 2	Conduction	Lab test	TULAI
30 marks	30 marks	10 marks	30 marks	100 marks
IA Test:				
1. No objective part in IA question paper				
2. All questions descriptive				
Conduct of Lab:				
1. Conducting the experiment and journal: 5 marks				
2. Calculations, results, graph, conclusion and Outcome: 5 marks				
Lab test: (Batchwise with 15 students/batch)				

- 1. Test will be conducted at the end of the semester
- 2. Timetable, Batch details and examiners will be declared by Exam section
- 3. Conducting the experiment and writing report: 5 marks
- 4. Calculations, results, graph and conclusion: 15 marks

5. Viva voce: 10 marks

Eligibility for SEE:

1. Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. Lack of minimum score in IA test will make the student Not Eligible for SEE

2. Student should score minimum 40% of 30 marks (i.e. 12 marks) in Lab test & should score 40%

of 40 marks (i.e. 16 marks) in Lab component.

- 3. Lab test is COMPULSORY
- 4. Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.
- 5. Not eligible in any one of the two components will make the student **Not Eligible** for SEE

Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration.

 Minimum marks required in SEE to pass: Score should be ≥35 &, however overall score of CIE+SEE should be ≥40%.

3. Question paper contains three parts **A,B and C**. Students have to answer

1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.

2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each Question Carries 10 Marks.

3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

	CO-PO Mapping (planned)						CO-PSO Mapping (planned)								
~	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Un	~	✓	✓										✓		
Ар			✓										✓		
An	~	✓	✓			✓			✓				✓		
Ev										✓	✓	✓	✓		
	Use tick mark(✓)														

Microwave and Antenna Engineering

Course Code	22EC72	Course type	IPCC	Credits L-T-P	3 - 0 - 1
Hours/week: L - T- P 3 - 0 - 2		Total credits	4		
Total Contact HoursL = 40 Hrs; T = 0 Hrs; P = 20 HrsTotal = 60 Hrs		CIE Marks	100		
Flipped Classes content	5 Hours		SEE Marks	100	

	Course learning objectives					
1.	To understand the fundamental concepts of microwave propagation circuits and devices.					
2.	To analyze microwave propagation circuits and devices on the basis of available data.					
3.	To design microwave propagation circuits and devices for a specific application.					

Required Knowledge of: Electromagnetic Field Theory, Antenna Basics

Unit – I	Contact Hours = 8 Hours				
Microwave Transmission Lines: Microwave Frequencies and b	and designations (IEEE microwave				
frequency bands), Microwave devices, Microwave Systems, Transmission Line equations and solutions					
(quantitative analysis only), Reflection Coefficient and Transmission Coefficient, Standing Wave and					
Standing Wave Ratio, Smith Chart, Single Stub matching, double st	tub matching.				

Unit – II	Contact Hours = 8 Hours		
Microwave Network theory:			
S matrix representation of Multi-Port Networks, Properties of S matrix, S parameters of a two-port			
network with mismatched load.			
Microwave Passive Devices: Coaxial Connectors and Adapters, Atte	enuators, Phase Shifters, Waveguide		

Tees: E-plane, H-plane and Magic Tee, Isolators, Circulators, and Directional couplers.	

Unit – III	Contact Hours = 8 Hours				
Microwave Tube Devices: - Introduction; Conventional Vacuum Triode, Tetrode and Pentode; Klystrons,					
Multicavity Klystrons Amplifiers, Reflex Klystrons; Magnetron: Introduction, Magnetron Oscillators.					
Microwave Active Devices: Transferred Electron Device (TED), Gunn Diode, RWH Theory, Modes of					
Gunn Operation; Avalanche Transit Time Devices: READ Diode.					

Unit – IV	Contact Hours = 8 Hours			
Point Sources and Arrays: Introduction, Point Sources, Power P	atterns, Power Theorem, Radiation			
Intensity, Field Patterns, Phase Patterns, Arrays of Two Isotropic Point Sources, Pattern Multiplication,				
Linear Arrays of n – <i>Isotropic</i> point sources of equal Amplitude a	nd Spacing			

Unit – V	Contact Hours = 8 Hours			
Loop, Horn and Helical Antenna: The Loop Antenna General Case, Far-field Patterns of Circular Loop				
Antenna with Uniform Current, Radiation Resistance of Loops, Directivity of Circular Loop Antennas				
with Uniform Current, Horn antennas, Rectangular Horn Antennas.				
Helical Antenna: Introduction, Helical Geometry, modes of Helix o	peration.			

Flipped Classroom Details

Unit No.	I	II		IV	V
No. for Flipped Classroom Sessions	1	1	1	1	1

List of Experiments

Unit No.	No. of Experiments	Topic(s) related to Experiment		
1	2	1.Impedance matching using Lumped parameters.		
1	Z	2.Impedance matching using distributed parameters.		
		1. Develop S-matrix of E plane tee.		
2	4	2. Develop S-matrix H E plane tee.		
2	4	3. Develop S-matrix Magic tee.		
		4. Develop S-matrix Directional Coupler.		
3	2	1. Guide wavelength, VSWR, frequency measurement for microwave source.		
5	Z	2.Gunn Diode Characteristics.		
4	1 1.Yagi-Uda antenna radiation Characteristics			
5	2	1. Horn antenna radiation Characteristics.		

Unit No.	Self-Study Topics
1	Applications of Smith chart.
2	Applications of Magic Tee.
3	Oscillators and Amplifiers; Semiconductor device physics basics; IMPATT, TRAPPAT, BARITT.
4	Review of Antenna Basic Parameters; EM fields of: - short dipole antenna, ($\lambda/2$) antenna.
5	Applications of Loop, Horn and Helical Antenna.

	Books						
	Text Books:						
1.	John D. Krauss, "AntennasandWavePropagation",4thEdition, McGraw-Hill International, 2010 and onwards.						
2.	Samuel Liao, "Microwave Devices and circuits", Pearson Education.						
	Reference Books:						
1.	Annapurna Das and Sisir K Das, "Microwave Engineering", TMH Publication, 2nd Edition, 2010 and onwards.						
2.	Matthew N. O. Sadiku, "Elements of Electromagnetics", Oxford University Press, 6th Edition, 2014 and onwards.						
	E-resourses (NPTEL/SWAYAM Any Other)- mention links						
1.	Dr. Ratnajit Bhattacharjee, IIT Guwahati, "Microwave Engineering", https://nptel.ac.in/courses/108103141						
2	Dr. Amitabha Bhattacharya, IIT Kharagpur, "Analysis and Design Principles of Microwave Antennas", <u>https://nptel.ac.in/courses/108105114</u>						

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project	
3.	Flipped Classes	3.	Lab Test	
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination	
5.	Virtual Labs (if present)			

	Course Outcome (COs)							
Lea	rning Levels:							
	Re - Remember; Un - Understand; Ap - Apply; An - A	Analysis;	Ev - Evaluate; Cr - Cre	eate				
At tl	ne end of the course, the student will be able to	Learning	PO(s)	PSO(s)				
	Understand the requirement of microwave devices	Level	1,2,10,12	1, 2				
1.	and circuit for various applications	Un	1,2,10,12	1, 2				
2.	Analyze the parameters of the various components	An	1,2,3,4,5,9,10,11,12	1, 2				
2.	for the given criteria.	All						
3.	Design and develop circuits for the specific	Ev	1,2,3,4,5,9,10,11,12	1, 2				
5.	requirements of applications.	EV						

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test **(COMPULSORY)** will be part of the CIE. **No SEE for Lab**.

(COMPULSORY) WI	ll be part of the CIE	. No SEE for Lab.					
THEORY (60 marks	s)	LAB (40 marks)		– Total			
IA test 1	IA test 2	Conduction	Lab test	TOTAL			
30 marks	30 marks	10 marks	30 marks	100 marks			
IA Test:							
1. No objective pa	irt in IA question pa	aper					
2. All questions de	escriptive						
Conduct of Lab:							
1. Conducting the	experiment and jo	urnal: 5 marks					
2. Calculations, re	sults, graph, conclu	ision and Outcome: 5 i	marks				
Lab test: (Batchwi	Lab test: (Batchwise with 15 students/batch)						
1. Test will be con	1. Test will be conducted at the end of the semester						
2. Timetable, Bato	h details and exam	iners will be declared	by Exam section				
3. Conducting the	experiment and w	riting report: 5 marks					
4. Calculations, re	sults, graph and co	nclusion: 15 marks					
5. Viva voce: 10 m	narks						
Eligibility for SEE:							
		=	marks) in IA tests. Lack o	f minimum			
score in IA test will make the student Not Eligible for SEE							
2. Student should score minimum 40% of 30 marks (i.e. 12 marks) in Lab test & should score 40%							
of 40 marks (i.e. 16 marks) in Lab component.							
3. Lab test is COMPULSORY							
4. Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.							

5. Not eligible in any one of the two components will make the student **Not Eligible** for SEE

Scheme of Semester End Examination (SE	E):
--	-----

1.	It will be conducted for 100 marks of 3 hours duration.
----	---

2.	Minimum marks required in SEE to pass: Score should be ≥35 &, however overall score of
	CIE+SEE should be ≥40%.
3.	Question paper contains three parts A,B and C. Students have to answer
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each
	Question Carries 10 Marks.

3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

	CO-PO Mapping (planned)									SO Map plannec					
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓								✓		✓	✓	✓	
2	✓	✓	✓	✓	~				✓	✓	✓	✓	✓	✓	
3	✓	✓	✓	✓	✓				✓	✓	✓	✓	✓	✓	
	Use tick mark (√)														

Wireless Communication

Course Code	22EC73	Course type	PCC	Credits L-T-P	3-0-0
Hours/week: L - T- P	3-0-0		Total credits	3	
Total Contact Hours	L = 40 Hrs; T = 0 H	lrs; P = 00 Hr	CIE Marks	100	
	Total = 40 Hrs			100	
Flipped Classes content10 Hours				SEE Marks	100

	Course learning objectives							
1.	To understand cellular system components, modulation and multiple-access techniques used							
	in wireless communication							
2.	To analyze wireless channel characteristics in the design of channel propagation models							
3.	To apply emerging wireless technologies and their functionalities in mobile communication							

Pre-requisites: Digital communication

Unit – I	Contact Hours = 8 Hours				
Tele-traffic Engineering Fundamentals: Introduction, Service level, Traffic usage, Traffic measurement					
units, Call Capacity, Traffic types, Blocking formulas- Erlang B, Erlang C, Poison's , Binomial formula.					

Unit – II	Contact Hours = 8 Hours					
Fundamentals of cellular communications: Introduction, Cellular systems, Hexagonal cell geometry,						
Co-channel interference ratio and its reduction, n-cell reuse pattern, Cell splitting, Adjacent channel						
interference, Segmentation, typical wireless cellular network components, numbering schemes,						
mobility and handoff management.						

Unit – III	Contact Hours = 8 Hours										
Transmission techniques:											
Modulation techniques: Introduction, QPSK, OQPSK, M-PSK,	QAM, M-ary FSK, GMSK , GFSK,										
Synchronization, Equalization.											
•	QAM, M-ary FSK, GMSK , GFSK										

Multiple Access Techniques: TDMA, FDMA, CDMA, CSMA, MIMO, OFDM.

Unit – IV	Contact Hours = 8 Hours
Radio Propagation Path-Loss Models:	
Introduction, Free-space attenuation, Attenuation over reflecting	surface, Effect of Earth's curvature,
Radio wave propagation, Wireless channel characteristics, Signal	fading statistics, Level crossing rate

and average fade duration, Fade margin, Link margin, Outdoor and indoor propagation models.

Unit – V	Contact Hours = 8 Hours

Applications of wireless technologies:

Bluetooth, RFID, Zigbee, Near Field Communication (NFC), Wi-Fi, Wi-MAX, Wireless Access Point (WAP), Software Defined Radio/Cognitive Radio.

Unit No.	I	II	III	IV	v
No. for Flipped Classroom Sessions	1	1	1	1	1

	Books							
	Text Books:							
1.	Vijay K. Garg, Wireless Communications and Networking, Elsevier, 2 nd Edition, 2018.							
2.	Gary J. Mullet, Introduction to wireless telecommunications systems and networks, Cengage							
	Learning, 2016.							
	Reference Books:							
1.	Jochen Schiller, Mobile Communications, Pearson Education, 2 nd Ed, 2014.							
2.	Theodore S. Rappaport, Wireless Communications- Principles and Practice, Pearson, 2 nd Ed,							
	2016.							
	E-resources (NPTEL/SWAYAM Any Other)- mention links							
1.	Wireless Communication, Prof. Ranjan Bose, IIT Delhi https://nptel.ac.in/courses/117102062							
2.	Fundamentals of MIMO Wireless Communication, Prof. Suvra Sekhar Das, IIT Kharagpur							
	https://nptel.ac.in/courses/117105132							

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)	
3.	Flipped Classes	3.	Open Book Assignments (OBA)	
		4.	Course Activity	
		5.	Semester End Examination	

At t	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning level.)									
	ning Levels: Re - Remember; Un - Understand; Ap - Apply; Analysis; Ev - Evaluate; Cr - Create	Learning Level	PO(s)	PSO(s)						
1.	Understand the fundamental concepts of wireless mobile communication for cellular component system	Un	1, 2, 6	1						
2.	Apply suitable modulation and multiple access techniques for wireless and mobile communication.	Ар	1, 2, 5	1, 2						

	Analyze the	performance	of	wireless	communication		1, 5	1
3.	channel/medi	um for a given	indoor	and outd	oor propagation	An		
	scenario.							

Components	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case	Total
	tests	/Industry/Certification etc)	study etc	Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks. -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. -Lack of minimum score in IA test will make the student Not Eligible for SEE

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	Scheme of Semester End Examination (SEE):								
1.	It will be conducted for 100 marks of 3 hours duration.								
2.	Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of								
	CIE + SEE should be \geq 40%.								
3.	Question paper contains three parts A, B and C. Students have to answer								
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.								
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each								
	Question Carries 10 Marks.								
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.								

SO Manning

	CO-PO Mapping (Planned)										SO Map Planned				
~	РО	РО	РО	РО	РО	PO6	РО	РО	РО	РО	РО	РО		PSO	PSO
со	1	2	3	4	5	P06	7	8	9	10	11	12	PSO1	2	3
1	✓	✓	✓			✓				✓		✓	✓		√
2	✓	✓	✓			✓				✓		✓	✓		✓
3	✓	✓	✓			✓				✓		✓	✓		~

٦

Indian Knowledge System

Course Code	22AECEC77	77 Course type AEC Credits L-T-F			
Hours/week: L – T- P	1-0-0	Total credits	1		
Total Contact Hours	L = 15Hrs; T = 0 Hr	s; P =0 Hrs	CIE Marks	100	
	Total = 15 Hrs				
Flipped Classes content	03 Hours	SEE Marks			

Course learning objectives							
1.	To understand the importance of ancient knowledge to a society and familiarize with vedas and						
	vedangas						
2.	To understand the concepts of science and technology in ancient India						

Pre-requisites: Nil

Unit – I	Contact Hours = 5 Hours
Importance of ancient knowledge and IKS. IKS corpus – a classification	ation framework, history and unique
aspects of IKS. Introduction to vedas and vedangas, vedic li	fe. Indian philosophical systems –
development and unique features, vedic schools of philosophy. Pa	anchatantra – puranas and itihasa as
a source of wisdom.	

Unit – II	Contact Hours = 5 Hours			
Foundational concepts for science and technology – importance 8	role of Sanskrit in Natural language			
processing, stages of speech in Sanskrit vocabulary, number s	ystem in India, salient features of			
numerical system- measurement for time, distance & weight.				

Unit – III	Contact Hours = 5 Hours					
Science, Engineering and Technology in IKS – unique aspects of Indian Mathematics and astronon						
functions in Mathematics, historical development of astronomy, elements of Indian calendar.						
The rise and fall of great Indian technology, mining, metal working, alloys in India						
Irrigation practices and architecture in India						

Unit No.	I	II	III
No. for Flipped Classroom Sessions	1	1	1

	Books
	Text Books:
1.	B. Mahadevan, V. R. Bhat and R. N. Nagendra Pavana, "Introduction to Indian Knowledge system
	- Concepts and Applications", PHI, 2023

	Course delivery methods	Assessment methods				
1.	Chalk and Talk	1.	IA tests			
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)			
3.	Flipped Classes	3.	Open Assignments (OA)			
4.	Online classes	4.				

	Course Outcomes (Cos)								
	Learning Levels:								
	Re – Remember; Un – Understand; Ap – Apply; An – Analysis; Ev	– Evaluate;	Cr – Creat	e					
At the end of the course, the student will be able to:									
1.	Understand the importance of ancient knowledge to a society and familiarize with vedas and vedangas	Un	6,7	1					
2.	Understand the fundamental concepts of science and technology in ancient India	Un	6,7	1					

Components	Addition of two IA tests Addition of two Ca		Case study/Activity	Total Marks				
Marks	30+30 = 60	10+10 =20	20	100				
- Writing 2 IA tests are compulsory.								

-Student should score minimum 40% of 100 marks to pass the course.

	CO-PO Mapping (Planned) [tick mark relevant ones]										SO Map Plannec			
СО	CO PO								PSO	PSO	PSO			
	1 2 3 4 5 6 7 8 9 10 11 12							12	1	2	3			
1						\checkmark	\checkmark					\checkmark		
2						\checkmark	\checkmark					\checkmark		

Advanced Wireless Communication Lab

Course Code	22ECL78	Course type	PCCL	Credits L-T-P	0-0-1
Hours/week: L - T- P	0 - 0 - 2		Total credits	1	
Total Contact Hours	L = 0 Hrs; T = 0 Hrs Total = 20 Hrs	s; P = 20 Hrs		CIE Marks	50
Flipped Classes content				SEE Marks	50

	Course learning objectives							
1.	To understand working principle data transmission and reception using modulation techniques							
2.	To analyze the working principle of multiple access methods							
3.	To assess the performance of antenna design for advanced wireless technology							

Required Knowledge of :

Lab Experiment – I	Contact Hours = 2 Hours
Tone generation and loopback with Time, Freque	ency and waterfall plot.
Lab Experiment – 2	Contact Hours = 2 Hours
Transmission and reception of data using GMSK	modulation using RF link
Lab Experiment – 3	Contact Hours = 2 Hours
Transmission and reception of data using GFSK n	nodulation using RF link
Lab Experiment – 4	Contact Hours = 2 Hours
OFDM Generation and reception over RF link.	
Lab Experiment – 5	Contact Hours = 2 Hours
CDMA transmission and reception over RF link	
Lab Experiment – 6	Contact Hours = 2 Hours
Set up SDR as a FM transmitter and receiver of st	tored signal.
Lab Experiment – 7	Contact Hours = 2 Hours
QPSK Generation with channel model	
a) Reception of QPSK with frequency offset and v	viewing constellation point
b) Reception of QPSK with phase offset and view	ing constellation point
c) Reception of QPSK with timing offset and view	ving Constellation point
Lab Experiment – 8	Contact Hours = 2 Hours
To design and analyse QAM	I

Contact Hours = 2 Hours		
Contact Hours = 2 Hours		
_		

	Books
	Text Books:
1.	Vijay K. Garg, Wireless Communications and Networking, Elsevier, 2 nd Edition, 2018.
2.	Gary J. Mullet, Introduction to wireless telecommunications systems and networks, Cengage
	Learning, 2016.
3.	Jochen Schiller, Mobile Communications, Pearson Education, 2 nd Ed, 2014.
4.	Theodore S. Rappaport, Wireless Communications- Principles and Practice, Pearson, 2 nd Ed,
	2016.
	E-resources (NPTEL/SWAYAM Any Other)- mention links
1.	Wireless Communication, By Prof. Ranjan Bose, IIT Delhi
	https://nptel.ac.in/courses/117102062 (
2.	Fundamentals of MIMO Wireless Communication, Prof. Suvra Sekhar Das, IIT Kharagpur
	https://nptel.ac.in/courses/117105132

	Course delivery methods		Assessment methods
1.	Practice session/Demonstrations in Labs	1.	Conduction of Experiments
2.	Virtual Labs (if present)	2.	Journal writing
3.	Chalk and Talk	3.	Lab project/ Open ended experiment
4.		4.	Lab Test
5.		8.	Semester End Examination

	Course Outcome (COs)							
Lear	ning Levels:							
	Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev	- Evaluate;	Cr - Crea	ate				
At th	e end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)				
1.	Understand working principles of wireless data transmission using modulation techniques.	Un	1, 2, 4, 5,	1				
	modulation techniques.		9, 12					
	Assess the performance of wireless multiple access techniques for		1, 2,	1, 2				
2.	RF communication	Ар	4, 5,					
	Ki communication		9, 12					
	Analyze design consideration for antenna and its performance in		1, 2,	1				
3.			4, 5,					
	advanced wireless technology		9, 12					

Conduction of experiments & viva-voce	Journal	Lab project/ Open ended expts	Lab Test	Total
20 marks	5 marks	10 marks	15	50 marks

Conduct of Lab:

- 10. Conduction of the experiment: 15 marks + Viva voce: 5 marks
- 11. Calculations, results, graph, conclusion and Outcome recorded in Journal: 5 marks
- 12. Lab project/ Open ended expt: 10 marks
- 3. Lab Test: 15 marks

Eligibility for SEE:

- 4. 40% and above (20 marks and above)
- 2. Lab test is COMPULSORY

Sch	cheme of Semester End Examination (SEE):						
1.	It will be conducted for 50 marks of 2/3 hours duration.						
2.	Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of CIE+SEE should be \geq 40%.						
2.	One or Two experiments to be conducted.						
3.	Minimum marks required in SEE to pass: 20 out of 50						
	Initial write up	10 marks					
4	Conduct of experiments, results and conclusion	20 marks	E0 marks				
4.	. One mark question 10 marks 50 marks						
	Viva- voce 10 marks						
5.	Viva-voce shall be conducted for individual student and not in a group.						

	CO-PO Mapping (planned)									SO Map planned					
~	РО	РО	РО	PO	PO	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓	✓		✓	✓				✓		✓	✓		✓
2	✓	✓	✓		✓	✓				√		✓	✓		✓
3	✓	✓	✓		✓	✓				✓		✓	✓		✓
	Tick mark the CO, PO and PSO mapping								1						

Advanced VLSI Design

Course Code	22EC74A	Course type	PEC	Credits L-T-P	3 – 0 - 0
Hours/week: L - T- P	3-0-0	Total credits	3		
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	CIE Marks	100		
Flipped Classes content	10 Hours	SEE Marks	100		

	Course learning objectives						
1.	To introduce integrated circuits manufacturing techniques and design methods.						
2.	To comprehend and apply VLSI design techniques to data path subsystems and memory units.						
3.	To understand the performance parameters design strategies and factors considered minimize						
	the implementation cost.						

Pre-requisites: CMOS VLSI Design, MOSFET ideal and non-ideal characteristics

Unit – I	Contact Hours = 8 Hours			
Digital Systems and VLSI: Importance of Integrated Circuits Design	n, Integrated Circuit, Manufacturing,			
CMOS Technology, Integrated Circuit Design Techniques, Hierarchical design, Design abstraction, IF				
Based Design.				
Case study: IR Components				

Case study: IP Components

Unit – II Contact	Hours = 8 Hours
Datapath Subsystems: Introduction, Addition/Subtraction, Single-Bit	Addition, Carry-Propagate
Addition, Subtraction, Multiple-Input Addition, Flagged Prefix Adders, C	Counters, Binary Counters,
Linear-Feedback Shift Registers, Barrel Shifter, Multiplication, Unsigned Arra	ay Multiplication.
Case study: Implementation of Column Addition, Fused Multiply-Add using	cadence tool.

Unit – III	Contact Hours = 8 Hours
Array subsystems: introduction, SRAM cell, 6T SRAM cell, Area, De	lay, and Power of RAMs and Register
Files, Dynamic RAMs (DRAMs), Subarray Architectures, Column Ci	rcuitry, 3T, 4T DRAM cell, Read Only
Memory, Flash memory.	

Case study: Simulation of memory cells using cadence tool

Unit – IV	Contact Hours = 8 Hours
Design and Economics: Introduction, Structured Design Strategies Example, Hierarchy, Regularity, Modularity Locality, ASIC design fla sheets and documentation.	

Unit –V	Contact Hours = 8 Hours
---------	-------------------------

DESIGN FOR MANUFACTURABILITY: Introduction, Process Variations, Basic Concepts and Definitions Design of Experiments and Performance Modeling, Parametric Yield Estimation, Parametric Yield Maximization, Worst-Case Analysis, Performance Variability Minimization.

Unit No.	I	II		IV	V
No. for Flipped Classroom Sessions	1	2	2	1	1

	Books
	Text Books:
1.	Wayne Wolfe, "Modern VLSI Design, System-On-Chip Design", Prentice Hall, 2002
	Onwards
2.	Neil Weste, and David Harris, "CMOS VLSI Design, A Circuits and System Perspective", 4 th
	Edition; Pearson Education, India.
3.	Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits, Analysis and
	Design", McGraw Hill Publications.
	Reference Books:
1.	Douglas Pucknell, and Kamran Eshraghian, "Basic VLSI Design", PHI Publications IndiPvt. Ltd.

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Tests (OBT)
4.	Online classes	4.	Course Seminar
		5.	Semester End Examination

	Course Outcome (COs)									
	At the end of the course, the student will be able to.									
Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	DO (a)							
An -	Analysis; Ev - Evaluate; Cr - Create	Level	PO(s)	PSO(s)						
1.	Understand integrated circuits manufacturing techniques and design methods	Un	1,2,12	1						
2.	Apply modeling methods to understand the performance parameters of integrated circuits.	An	1,2,5,11,12	1						
3.	Apply VLSI design techniques to design data path subsystems and analyze the speed of memory units.	Ар	1,2,11,12	1						

Components		Two Assignments – (Open /Industry/Certification etc)		Total Marks				
Marks 30+30 = 60		10 + 10 = 20	20 marks (with report & presentation)	100				
-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined								

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Scheme of Semester End Examination (SEE):	Scheme of	Semester	End Exam	ination (S	SEE):
---	-----------	----------	----------	------------	-------

1.	It will be conducted for 100 marks of 3 hours duration.
----	---

- 2. Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of CIE + SEE should be \geq 40%.
- 3. Question paper contains three parts **A,B and C**. Students have to answer

1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.

2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each Question Carries 10 Marks.

3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

	CO-PO Mapping (Planned)								CO-PSO						
								Mapp	oing(Pla	nned)					
~	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	0	11	12	1	2	3
1	1 🗸 🖌							✓							
2	✓	✓			✓						✓	✓	✓		
3	~	✓									✓	✓	✓		
	Use tick mark(✓)														

RF and Microwave Integrated Circuits

Course Code	22EC74B	Course type	PEC	Credits L-T-P	3 – 0 - 0
Hours/week: L - T- P	3-0-0	Total credits	3		
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	CIE Marks	100		
Flipped Classes content	10 Hours		SEE Marks	100	

	Course learning objectives						
1	To study the theoretical foundations, concepts and properties of RF microwave						
1.	circuits/components.						
2	To determine various parameters for evaluating the performance for RF/microwave						
Ζ.	circuits/components.						
3.	To learn the development of RF/microwave circuits/component frontend functional blocks.						

Pre-requisites : Engineering Mathematics; Electromagnetic Theory and Antenna Engineering; Microwave and Radar Engineering

Unit – IContact Hours = 8 HoursWave propagation in networks: Introduction, Reasons for using RF/Microwaves, Applications, RF
waves, RF and Microwave circuit design, Introduction to components basics, Analysis of simple circuit
phasor domain, RF impedance matching, Properties of waves, transmission media, Micro strip lines,
High frequency parameters, Formulation of S-parameters, Properties, transmission matrix, Generalized
S-parameters.

Unit – II Contact Hours = 8 Hours Passive circuit design: Introduction, Design of matching networks, Matching using lumped and distributed elements

Unit – III	Contact Hours = 8 Hours				
Basic consideration in active networks and design of amplifie	ers, oscillators and detector: Stability				
consideration, gain consideration, Noise consideration. Linear and nonlinear design: Introduction					
Types of amplifier, Design of different types of amplifiers, Multis	stage small signal amplifiers, Design of				
transistor oscillators, Detector losses, detector design					

 Unit – IV
 Contact Hours = 8 Hours

 Mixers, Phase shifters and RF and Microwave Control Circuit design: Mixer types, Conversion loss for SSB mixers, One diode mixer, Phase shifters, Digital phase shifters, Semiconductor phase shifters.

Unit – V Contact Hours = 8 Hours RF and microwave IC design: MICs, MIC materials, Types of MICs, Hybrid verses monolithic ICs, Chip materials.

Flipped Classroom Details

Unit No.	I	II	111	IV	v					
No. for Flipped Classroom Sessions	1	0	0	0	0					

	Books						
	Text Books:						
1.	Matthew M. Radmanesh, "RF and Microwave Electronics Illustrated", Pearson Education edition,						
	2004.						
2.	Reinhold Ludwig, and Pavel Bretchko, "RF circuit design theory and applications", Pearson						
	Education edition, 2004						
	Reference Books:						
1.	D. Pozar, Microwave Engineering, J. Wiley and Sons, 3rd Edition, 2004						
2.	K. Chang, I. Bahl, and V. Nair, RF and Microwave Circuit and Component Design for Wireless						
	Systems, J. Wiley & Sons, 2002						
3.	1. G. Gonzalez, Microwave Transistor Amplifiers, 2nd Edition, Prentice Hall, 1997.						
	E-resourses (NPTEL/SWAYAM)						
1.	Prof. Bratin Ghosh, IIT Kharagpur, RF and Microwave Networks:						
	https://nptel.ac.in/courses/108105189						
2.	Prof. Amitabha Bhattacharya, IIT Kharagpur, Design Principles of RF and Microwave Filters and						
	Amplifiers: https://nptel.ac.in/courses/117105138						

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Tests (OBT)
4.	Online classes	4.	Course Seminar
		5.	Semester End Examination

	Course Outcome (COs)									
Lea	Learning Levels: Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create									
	At the end of the course, the student will be able to Learning Level PO(s) PSO(s)									
1.	Understand the requirement of RF circuit for various applications.	Un	1,2,10,12	1,2						
2.	Analyze various components for the given criteria.	An	1,2,3,4,5,9, 10,11,12	1,2						
3.	Develop circuits for the required RF applications.	Ev	1,2,3,4,5,9, 10,11,12	1,2						

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case	Total
Components	tests	/Industry/Certification etc)	study etc	Marks

Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100						
-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.										

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for $\ensuremath{\mathsf{SEE}}$

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sche	eme of Semester End Examination (SEE):						
1.	It will be conducted for 100 marks of 3 hours duration.						
2.	2. Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of						
	CIE + SEE should be \geq 40%.						
3.	Question paper contains three parts A,B and C. Students have to answer						
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.						
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each						
	Question Carries 10 Marks.						
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.						

	CO-PO Mapping (planned)							CO-PSO Mapping (planned)							
60	РО	PO	РО	РО	РО	РО	РО	РО	PO	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓								✓		✓	✓	✓	
2	✓	✓	✓	✓	✓				✓	~	√	✓	✓	✓	
3	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								✓	✓					
	Use tick mark(✓)														

Biomedical System Design

Course Code	22EC74C	Course type	PEC	Credits L-T-P	3–0-0
Hours/week: L - T- P	3-0-0	L	Total credits	3	
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	rs; P = 0 Hrs	CIE Marks	100	
Flipped Classes content	10 Hours		SEE Marks	100	

	Course learning objectives				
1.	Understand basic concepts of semiconductor physics relevant to building circuit and device models.				
2.	Understand the process of modelling a Human Physiological System.				
3.	Describe and use physics-based devices and circuit models for biomedical applications.				
<u> </u>	Describe and use physics-based devices and circuit models for biomedical applications				

Pre-requisites: Engineering Mathematics, Applied Electronic Circuits(21EC32), Embedded system design.

Unit – I	Contact Hours = 8 Hours

Introduction to System Science: Notion of dynamic systems: modeling and simulation using Simulation tool, Biomedical systems as dynamic systems, Compartmental modeling of biological systems, Eye movement model, Muscle model, Classical system identification. Moral and ethical issues in developing Biomedical Systems Morality and ethics, Two moral norms: beneficence and nonmaleficence, Human experimentation, Regulation of medical device innovation, Ethical issues in feasibility studies, Ethical issues in treatment use **Case Study:** Baroreceptor Modeling: An Interactive Cardiovascular Simulation.

Contact Hours = 8 Hours					
Anatomy and Physiology: Introduction-Cellular organization – Tissues - Major organs and systems –					
Homeostasis, Bioelectric phenomena - Origin of bio-potentials - Notion of Hodgkin-Huxley and Soliton					
models - Biopotential measurements – ECG, EEG, EMG. Case Study: GE health care case study on					
a) GE Mac 2000 ECG Machine, 12-lead Resting ECG System					

Unit – IIIContact Hours = 8 HoursBiomedical Sensors: Chemical biosensors – Electrochemical sensors and chemical fibro-sensors -
Notion of ion selective field effect transistor (ISFET) and immunologically sensitive field effect transistor
(IMFET) - Fundamentals of light propagation in biological tissue – Biophysical measurement techniques
using light – photoplethysmography, Acoustic biosensors – phonocardiography – Photoacoustic bio-
signals – estimation of blood glucose.Case Study: Biosensors for Personal Mobile Health: A System Architecture Perspective.

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546526/)

Unit – IV	Contact Hours = 8 Hours
-----------	-------------------------

Bio-signal processing: Characterization of bio-signals – morphological, statistical and transform features - Frequency domain representation of bio-signals – Noise characteristics - Noise reduction by Ensemble Averaging and Linear Time Invariant A Posteriori - filtering techniques - Signal averaging – Wavelet transform - Compression of bio-signals - lossless and lossy compression.

Case Study: Neuro-Fuzzy Model for Arrhythmia Diagnostic System. https://pdfs.semanticscholar.org/591f/26b4940a59afa5762ea23a760f02ad152dbf.pdf

Biomedical embedded systems and computational intelligence techniques: Choice of embedded core, Notion of Internet of Things as extended to biomedicine, Embedded processing for disease diagnosis, Wearable biomedical embedded systems, Point of care testing devices, Diagnostic processing for detection and classification of diseases.

Computational intelligence techniques for disease diagnosis, Classification of cardiac, neuromuscular and neurological diseases.

Case Study: Memory management issues for diagnostic processing - Power reduction techniques in diagnostic systems.

Unit No.	I	II		IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

Unit No.	Self-Study Topics
1	Case Study: Baroreceptor Modeling: An Interactive Cardiovascular Simulation
2	Case Study: GE health care case study on a) GE Mac 2000 ECG Machine, 12-lead Resting ECG System
3	Case Study: Biosensors for Personal Mobile Health: A System Architecture Perspective
4	Case Study: Neuro-Fuzzy Model for Arrhythmia Diagnostic System

5	Case Study: Memory management issues for diagnostic processing - Power
	reduction techniques in diagnostic systems.

	Books					
	Text Books:					
1.	J. Enderle, S. Blanchard, J. Bronzino, "Introduction to Biomedical Engineering", Elsevier Academic Press, 2009.					
2.	R. Begg, D.T.H. Lai, M. Palaniswami, "Computational Intelligence in Biomedical Engineering", CRC Press, 2008.					
	Reference Books:					
1.	L. Sornmo, P. Laguna, "Bioelectrical Signal Processing in Cardiac and Neurological Applications", Elsevier Academic Press, 2005.					
2.	J.G. Webster, "Medical Instrumentation: Application and Design", John Wileyand Sons,2003.					
	E-resources (NPTEL/SWAYAM Any Other)- mention links					
1.	https://nptel.ac.in/courses/108108180					
2.						

	Course delivery methods		Assessment methods		
1.	Chalk and Talk	1.	IA tests		
2.	PPT and Videos	2.	Assignment- Open/Industry/Certification		
3.	Flipped Classes	3.	Course Project		
4.	Online classes	4.	Semester End Examination		

Course Outcome (COs)			
At the end of the course, the student will be able to (Highlight the action verb representing the learning			
level.)			
Learning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning		
An - Analysis; Ev - Evaluate; Cr – Create	Level	PO(s)	PSO(s)

1.	Understand the biomedical system design and apply for designing system model.	Un	1,2,4,8,12	1
2.	Understand and apply engineering concepts to describe many types of systems in biology and medicine. Systems include physiological systems (organs and systems level), bioelectronics systems, sensing and transducing systems, computational systems, etc	Ар	1,2,4,5,8,12	1
3.	Analyze physiological systems and design engineering systems to measure various pathophysiological parameters	An	1,2,4,5,8,12	1

Components	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case	Total
	tests	tests /Industry/Certification etc) study etc		Marks
Marks	30+30 = 60	10+10=20	20 marks (with report & presentation)	100

Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration.

2. Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of CIE + SEE should be \geq 40%.

3. Question paper contains three parts **A,B and C**. Students have to answer

1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.

2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each Question Carries 10 Marks.

3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

	CO-PO Mapping (Planned)						SO Map Planned								
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	?	?		?				?				?	?		
2	?	?		?	?			?				?	?		
3	?	?		?	?			?				?	?		
	Tick mark the CO, PO and PSO mapping														

Name & Signature of Faculty members involved in designing the syllabus

Name & Signature of Faculty members verifying/approving the syllabus

SI No	Skill & competence enhanced after undergoing the course	Applicable Industry Sectors & domains	Job roles students can take up after undergoing the course
1	Academic competence	GE Healthcare	Sales Executive/Engineer
2	ability to work as a part of a multidisciplinary team	Siemens	Research and development
3		Cardiac Labs	Service Engineer

Satellite Communication Technique

Course Code	22EC74D	Course type	PE	Credits L-T-P	3-0-0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	rs; P = 0 Hrs		CIE Marks	100
Flipped Classes content	8 Hours			SEE Marks	100

	Course learning objectives
1.	Understand the fundamental concepts and principles of satellite communication systems, and analyze satellite communication links.
2.	Gain knowledge of different satellite communication techniques, to effectively design and optimize satellite communication systems.
3.	Develop skills in the analysis and design of satellite communication link budgets to ensure reliable and efficient satellite communication links.
4.	Acquire knowledge of satellite communication system components and understand their roles and characteristics, challenges and limitations in practical application.

Pre-requisites: Basic Electronics, Elements of Electrical Engineering, Principles of Communication Systems, Electromagnetic Theory and Antenna Engineering, Microwave and Radar.

Unit – I Introduction to Satellite Communication Systems	Contact Hours = 8 Hours	
Overview of satellite communication systems, Historical development and milestones, Satellite orbit		
and constellations, Satellite link budget analysis, Satellite subsystems and components.		

Unit – II Satellite Communication Link Analysis	Contact Hours = 8 Hours		
Satellite link design and parameters, Modulation techniques for satellite communication, Error control			
coding and decoding, Multiple access techniques in satellite communication, Satellite antenna systems			
and beamforming.			

Unit – III Satellite System Architecture and Protocols	Contact Hours = 8 Hours				
Satellite system architecture and network topology, Satellite access protocols (TDMA, FDMA, CDMA), Routing and congestion control in satellite networks, Satellite network synchronization and timing, Quality of Service (QoS) considerations in satellite communication.					
Unit – IV Satellite Link Design and Performance Evaluation	Contact Hours = 8 Hours				
Link budget calculation and analysis, Rain fade and atmospheric ef availability and outage prediction, Interference analysis and mitiga performance evaluation and optimization.					

Unit – V Emerging Trends and Applications in Satellite	Contact Hours = 8 Hours
Communication	

Advanced satellite communication systems (LEO, MEO, HEO), Satellite constellations for global coverage, Satellite-based navigation and positioning systems (GPS, GNSS), Satellite broadcasting and multimedia services, Future directions and emerging technologies in satellite communication.

Flippe	d Classroom Deta	ils	

Unit No.	I	II		IV	V
No. for Flipped Classroom Sessions	1	1	1	1	1

	Books					
	Text Books:					
1.	"Satellite Communications" by Dennis Roddy, McGraw-Hill Education, 2015.					
2.	"Satellite Communications Systems: Systems, Techniques and Technology" by Gerard Maral and Michel Bousquet, Wiley, 2013.					
3.	"Introduction to Satellite Communication" by Bruce R. Elbert, Artech House, 2017.					
4.	"Satellite Communication Engineering" by Michael Olorunfunmi Kolawole, Springer, 2017.					
	Reference Books:					
1.	"Satellite Communications and Navigation Systems" by Enrico Re, Artech House, 2008.					
2.	"Satellite Communications: Payload and System" by Teresa M. Braun, Wiley, 2012.					
3	"Satellite Communications: System and Its Design Technology" by Yoshio Inasawa, Peter Elby and Makoto Noda, John Wiley & Sons, 2011.					
4	"Satellite Communication Systems Design" by SM Moghaddam, TMH, 2019.					
	E-resourses (NPTEL/SWAYAM Any Other)- mention links					
1.	Satellite Communication Systems, Prof. Kalyan Kumar Bandyopadhyay, Department of					
	Electronics and Electrical Communication Engineering, Indian Institute of Technology,					
	Kharagpur					
	https://archive.nptel.ac.in/courses/117/105/117105131/					

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1. IA tests		
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)	
3.	Flipped Classes	3. Open Book Tests (OBT)		
4.	Online classes	4. Course Seminar		
		5.	Semester End Examination	

	Course Outcome (COs)							
At t	At the end of the course, the student will be able to (Highlight the action verb representing the learning							
	level.)							
Lear	Learning Levels: Re - Remember; Un - Understand; Ap - Apply; Learning							
An -	Analysis; Ev - Evaluate; Cr – Create	Level	PO(s)	PSO(s)				
			1, 2,	1				
1.	Recall and recognize the key concepts and principles of satellite communication systems in all aspects.	Un	3, 6,					
	communication systems in an aspects.		10					

2.	Comprehend the different satellite communication techniques, multiple access schemes, modulation and coding techniques, and error control mechanisms.	Ар	1, 2, 3, 6, 9, 10	1
3.	Apply the knowledge and skills in the analysis and design of satellite communication link budgets system performance parameters.	Ар	1, 2, 3, 6, 9, 10	1, 2
4.	Analyze the various components of satellite communication systems, their roles and characteristics in the system architecture and operation, and the challenges and limitations in practical application.	An	1, 2, 3, 6, 9, 10	1, 2

Components	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case	Total
	tests	/Industry/Certification etc)	study etc	Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. -Lack of minimum score in IA test will make the student Not Eligible for SEE

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be <a> 35%, however overall score of
	CIE + SEE should be \geq 40%.
3.	Question paper contains three parts A,B and C. Students have to answer
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each
	Question Carries 10 Marks.
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

	CO-PO Mapping (Planned)									CO-PSO Mapping (Planned)					
~	РО	PO	PO	PO	PO	РО	РО	РО	РО	РО	РО	PO	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓	✓			✓				√			✓		
2	✓	✓	✓			✓			✓	✓			✓		
3	✓	✓	✓			✓			✓	✓			✓	✓	
4	✓	✓	✓			✓			✓	✓			✓	✓	

Vehicular Networks

Course Code	22EC74E	Course type	PEC	Credits L-T-P	3 - 0 - 0
Hours/week: L - T- P	3-0-0		Total credits	3	
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	rs; P = 0 Hrs	CIE Marks	100	
Flipped Classes content	10 Hours	SEE Marks	100		

Cours	e learning objectives
1.	To understand the emerging technologies, standards, vanet architectures and applications in
	Intelligent transportation systems.
2.	To study the design considerations and challenges of vehicle-to-infrastructure and vehicle-to-
	vehicle communications.
3.	To demonstrate vehicular mobility modeling using vehicular technologies and standards from
	the physical to network layers.

Pre-requisites: Digital communication, analog communication, Computer Networks.

Unit – I	Contact Hours = 8 Hours					
Introduction to VANETs, architectures, vehicle to vehicle, vehicle to infrastructure and vehicle to						
cloud, VANET requirements, applications, communication technologies, wireless access for vehicular						
environments (WAVE) and direct short-range communication (DSRC). VANET performance						
parameters.						

Unit – II	Contact Hours = 8 Hours					
Enabling Technologies and challenges: Introduction, Motivation,	Enabling Technologies,					
Communication requirements, Vehicular positioning, Vehicle sensors, On-board computation						
platforms, Cooperative System Architecture, Mapping for Safety Applications, Non-parametric, Path						
Prediction, Parametric, Path prediction Stochastic, path prediction, VANET-enabled Active Safety						
Applications, Infrastructure-to-vehicle applications, Vehicle-to-vehicle applications, Pedestrian-to-						
vehicle applications.						

Unit – III	Contact Hours = 8 Hours					
Protocols: Introduction, Obtaining Local Measurements, Information Transport, Protocols for						
information transport, improving network connectivity, Summarizing Measurements, Geographical						
Data Aggregation.						

Computational Models: Introduction, Limitations, Capacity, Connectivity, Competition, Applications, Communication Paradigms, Centralized client/server systems, Infrastructure-based peer-to-peer communication, VANET communication, Vehicular Mobility Modeling for VANET, Notation Description, Random Models.

Unit – V

Contact Hours = 8 Hours

Flow Models and DSRC: Microscopic flow models, Macroscopic flow models, Mesoscopic flow models, Traffic Models, Layered Architecture for VANETs, General concepts and definitions, A protocol stack for DSRC.

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

Bool	<s< th=""></s<>
	Text Books:
1.	VANET: Vehicular Applications and Inter-Networking Technologies by Hannes Hartenstein and
	Kenneth P Laberteaux. Wiley publishers.
2.	Introduction to Vehicular Wireless Networks by raj Jain.
	Reference Books:
1.	Holger Kerl, Andreas willig, protocols and Architectures for wireless Sensor Network<,
	John wiley and Sons
	E-resources (NPTEL/SWAYAM Any Other)- mention links
1.	http://www.cse.wustl.edu/~jain/cse574-18/

Cours	Course delivery methods		sment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Assignment- Open/Industry/Certification
3.	Flipped Classes	3.	Course Project
4.	Online classes	4.	Semester End Examination

Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning level.)						
	Learning Levels: Re - Remember; Un - Understand; Ap - Apply;LearningAn - Analysis; Ev - Evaluate; Cr - CreateLevel					
1.	Explain architecture of vehicular adhoc networks	Re	1,2,10	1		
2.	Distinguish various vanet architectures	Un	1,2,10	1		
3.	Derive expressions for performance parameters	Ар	1,2,10	1		

4.	Analyze and Design vanet applications	An	1,2,10	1
5.	Analyze various Data Storage and manipulation techniques.	An	1,2,10	1

Components	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case	Total				
Components	tests	/Industry/Certification etc)	study etc	Marks				
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100				
			course (1 course of atleast 8 h					
defined by BC	DS) can be considered	as a Course activity and aw	arded maximum of 10 marks.					
-Student sho	ould score minimum 4	0% of 60 marks (i.e. 24 marl	ks) in IA tests.					
-Lack of min	-Lack of minimum score in IA test will make the student Not Eligible for SEE							
-Minimum s	-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.							
	Ū							

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of
	CIE + SEE should be \geq 40%.
3.	Question paper contains three parts A,B and C. Students have to answer
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each
	Question Carries 10 Marks.
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

CO-I	PO Ma	pping	(Plann	ed)									CO-PS (Plani	60 Map ned)	ping
6	РО	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	\checkmark	\checkmark													
2	\checkmark									\checkmark					
3	\checkmark														
4	\checkmark	\checkmark													
5	\checkmark	\checkmark				1	1	1		\checkmark					
			т	ick ma	rk the	CO, PC) and P	SO ma	pping	1	-				

NATURAL LANGUAGE PROCESSING

Course Code	22EC74F	Course type	PEC	Credits L-T-P	3 - 0 - 0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	L = 40 Hrs; T = 0 Hrs; P = 0 Hrs Total = 40 Hrs			
Flipped Classes content	10 Hours	SEE Marks	100		

	Course learning objectives
1.	To understand foundational concepts and techniques of Natural Language Processing (NLP)
	including text preprocessing, word embeddings, and deep learning models, and apply them to
	real-world problems.
2.	To gain proficiency in implementing and utilizing advanced NLP models such as recurrent
	neural networks (RNNs), transformer networks, and attention mechanisms.
3.	To develop skills in performing syntactic analysis and parsing tasks including dependency
	parsing and constituency parsing.
4.	To explore emerging trends and applications in NLP such as machine translation, question-
	answering systems, and language generation.

Pre-requisites : Fundamentals Deep Learning and artificial neural network

Unit – I	Contact Hours = 8 Hours
Introduction to NLP and Deep Learning	
Introduction to Natural Language Processing, Applications of Natu	ral Language Processing,
Introduction to Word2Vec, Word2Vec objective function and grad	ients.
Case study on Analyzing customer reviews using NLP techniques	to determine their sentiment.
Unit – II	Contact Hours = 8 Hours
Dependency Parsing and Recurrent Neural Networks	
	Description and New Second Second

Dependency Grammar, Neural dependency parsing, Introduction to Recurrent Neural Networks, (RNNs), Language models with RNNs, Vanishing Gradients problem, Fancy RNNs (e.g., LSTM, GRU). Case study on Identifying and classifying named entities in text data for efficient information retrieval.

Unit – III	Contact Hours = 8 Hours			
Machine Translation and Attention Mechanism				
Machine Translation, Sequence-to-Sequence (Seq2Seq) models, Introduction to Attention				
mechanism, Advanced concepts in Attention mechanism.				
Case study on Developing a system for automatic translation of text between different languages.				

Unit – IV	Contact Hours = 8 Hours				
Transformer Networks and Advanced NLP					
Tasks Transformer Networks for NLP, Coreference Resolution, Memory Networks for NLP, Tree					
Recursive Neural Networks and Constituency Parsing, Advanced a	rchitectures in NLP.				

Case study on Building an intelligent system that can accurately answer user questions based on textual information by learning NLP libraries and tools like NLTK, spaCy, and TensorFlow.

Reinforcement Learning and Future of NLP

Reinforcement Learning for NLP, Semi-supervised Learning for NLP, Future directions of NLP models, Multi-task Learning in NLP, Question-Answering (QA) Systems.

Case study on Categorizing documents or text data into specific classes or categories using NLP algorithms.

Unit No.	Ι	II		IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

	Books
	Text Books:
1.	Goldberg, Y, A Primer on Neural Network Models for Natural Language Processing. Morgan &
	Claypool Publishers, 2016
2.	Bird, S., Klein, E., & Loper, E, Natural Language Processing with Python. O'Reilly Media. 2009
3.	L. Ashok Kumar, D. Karthika Renuka, Deep Learning Approach for Natural Language Processing,
	Speech, and Computer Vision, CRC Press, 2023
	Reference Books:
1.	Palash Goyal, Sumit Pandey, Karan Jain, and Karan Nagpal, Deep Learning for Natural Language
	Processing: Creating Neural Networks with Python, 2020
2.	Paul Azunre, Transfer Learning for Natural Language Processing, Manning Publications, 2021.
3.	Jacob Eisenstein, Natural Language Processing, MIT Press, 2019
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	"Natural Language Processing", By Prof. Pawan Goyal, IIT Kharagpur
	https://onlinecourses.nptel.ac.in/noc23_cs80/preview

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)	
3.	Flipped Classes	3.	Open Book Tests (OBT)	

4.	Online classes	4.	Course Seminar
		5.	Semester End Examination

Components	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case	Total			
components	tests	/Industry/Certification etc)	study etc	Marks			
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100			
-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours							

defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of
	CIE + SEE should be \geq 40%.
3.	Question paper contains three parts A,B and C. Students have to answer
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each
	Question Carries 10 Marks.
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

	CO-PO Mapping (Planned)									SO Map Planned					
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	\checkmark	\checkmark			\checkmark							\checkmark	\checkmark	\checkmark	
2	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark
3	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark
4	\checkmark	\checkmark			\checkmark							\checkmark	\checkmark	\checkmark	
	Use tick mark(√)														

Human Computer Interaction

Course Code	22EC74G Course type PE		Credits L-T-P	3-0-0
Hours/week: L - T- P	3-0-0		Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	rs; P = 0 Hrs	CIE Marks	100
Flipped Classes content	2 Hours		SEE Marks	100

	Course learning objectives
1.	Learn the basics of human-computer interaction, interactivity, interaction styles, models of
	interaction and framework of human-computer interaction.
2.	Study how software engineering and the design process relate to interactive system design
	and understand the design rules to develop an effective design process and a universal design.
3.	Learn the programming support tools available for implementing interactive systems and
	improve the abstraction by use of toolkits. Study the evaluation techniques and design of user
	support systems.
4.	Study the implementation and applications of groupware, ubiquitous computing and
	augmented realities applied to interactive systems.

Pre-requisites : Nil

Unit – I

Foundation:

Introduction to human and computer, The Interaction: Models of interaction, Frameworks and HCI, Ergonomics, Interaction styles, Elements of WIMP interface, Interactivity.

Contact Hours = 8 Hours

Case Study: Paradigms for interaction

Unit – II	Contact Hours = 8 Hours

The Design Process:

Interaction design basics: the process of design, user focus, scenarios, navigation design, screen design and layout, iteration and prototyping. HCl in software process: software life cycle, usability engineering, iterative design and prototyping, design rationale. Design rules: principles, standards, guidelines, golden rules and heuristics, HCl patterns. Universal design: Universal design principles, Multi-modal interaction.

Case Study: Designing for diversity

Unit – III	Contact Hours = 8 Hours

Models of Interactive Systems:

Standard formalism, Cognitive models: Goal and task hierarchies, Linguistic models, challenge of display-based systems, Physical and device models, and Cognitive architectures. Interaction models, modeling rich interaction.

Unit – IV Contact Hours = 8 Hours	
-----------------------------------	--

Implementation and Evaluation:

Implementation support: Elements of windowing systems, Programming the application, using toolkits, User interface management systems. Evaluation techniques: Goals of evaluation, Evaluation through expert analysis, choosing an evaluation method. User support: Requirements of user support, Approaches to user support, Adaptive help systems, Design of user support systems.

Case Study: Evaluation through user participation

Unit – V	Contact Hours = 8 Hours
----------	-------------------------

Interactive System Applications:

Groupware: Groupware systems, Computer-mediated communication, Meeting and decision support systems, Shared applications and artifacts, Frameworks for groupware, implementing synchronous groupware. Ubiquitous computing and augmented realities: Ubiquitous computing applications research, Virtual and augmented reality, Information and data visualization.

Case Study: Hypertext, Multimedia and the World Wide Web

Unit No.	I	II	III	IV	V
No. for Flipped	0	0	1	1	0
Classroom Sessions					

	Books				
	Text Books:				
1.	Alan Dix, Janet E. Finlay, Gregory D. Abowd and Russell Beale, "Human-Computer Interaction",				
	3rd Edition, Pearson Education Limited, 2004.				
	Reference Books:				
1.	Preece, J., Rogers, Y., & Sharp, H., "Interaction design: Beyond human-computer interaction",				
	4th Edition, John Wiley & Sons Limited, 2015.				
E-resourses (NPTEL/SWAYAM Any Other)- mention links					
1.	https://www.hcibook.com/e3/online/				

Course delivery methods		Assessment methods	
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Tests (OBT)
		4.	Course Seminar
		5.	Semester End Examination

At	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning level						
	ing Levels: Re - Remember; Un - Understand; Ap - Apply; An - sis; Ev - Evaluate; Cr - Create	Learning Level	PO(s)	PSO(s)			
1.	Understand the basic elements of human-computer interaction.	Un	1,6,8,9,10,11,12	1,3			
2.	Analyze different models of interactive systems and their implementation and evaluation.	An	1,2,6,8,9,10,11,12	2,3			
3.	Apply groupware, ubiquitous computing and augmented reality technologies in an interactive system.	Ар	1,2,6,8,9,10,11,12	1,3			

Components	Addition of two IATwo Assignments – (Open Contexttests/Industry/Certification etc) st		Course project (CP)/ Case	Total			
components			study etc	Marks			
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100			
-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours							
defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.							
-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.							

-Lack of minimum score in IA test will make the student Not Eligible for SEE

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	cheme of Semester End Examination (SEE):						
1.	It will be conducted for 100 marks of 3 hours duration.						
2.	Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of						
	CIE + SEE should be \geq 40%.						
3.	Question paper contains three parts A,B and C. Students have to answer						
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.						
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each						
	Question Carries 10 Marks.						
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.						

	CO-PO Mapping (Planned)										SO Map Planned				
~	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓					✓		✓	✓	✓	✓	✓	✓		✓
2	✓	✓				✓		✓	✓	√	√	✓		✓	✓
3	✓	✓				✓		✓	✓	✓	✓	✓	✓		✓
	Use tick mark(✓)														

CYBER SECURITY – A PRACTICAL APPROACH

Course Code	22EC74H	Course type	Integrated Project based	Credits L-T-P	2-0-1
Hours/week: L-T-P	2-0-2		2-0-2		3
Total Contact Hours	Fotal Contact HoursL = 20 Hrs, T = 0 Hrs, P = 20 HrsTotal = 40 Hrs		CIE Marks	100	
Flipped Classes content	NIL		SEE Marks	100	

	Course learning objectives
1.	To understand the basics of cybersecurity and get familiar with cybersecurity analysis tools
2.	To acquire knowledge regarding types of security threats, attacksand countermeasures
3.	To explore secure coding practices

Required Knowledge of :Basic understanding of internet

Unit – I	Contact Hours = 4 Hours
Cybersecurity System Fundamentals	
Introduction to Digital data, its types and information, Introduction	to information system, Introduction
to management information systems (MIS) and its functions. In	ntroduction to Data Centre and its

Introduction to virtualization, its benefits and virtual machines

Components of Virtual Machines, its hardware and its benefits, Application and Desktop Virtualization and their techniques

Introduction to Cyber Security

infrastructure

CIA Triad-3 pillars of information security architecture, CIA components and its importance, Cyber security threats and best practices, Access controls and its types, Types of Reconnaissance, Types of Cyber Attack, Vulnerability Assessment and its features, Concept and types of Scanning Methodology, Penetration Tests

Unit – II	Contact Hours = 4 Hours

Network Security Threats and countermeasures

Network Security Devices, Types of Network Securities, Network Access Control, Characteristics of Network Access Control, Application Security, Application Security Tools, Firewalls and its types, virtual private network, Tunnelling protocol and types IDS, IPS and their Types, Introduction to Web Application Vulnerabilities

Basic Practices of Web Application Security

Common Cyberattacks on Web Applications, Mobile Application Vulnerabilities, Mobile Security Threats, Mobile Application Security, Fundamentals of Mobile Device Management, Overview of Mobile Device Management

Cloud Computing Threats and Solutions

Clouds Computing – Threats and Vulnerabilities, Cloud Computing Risks and Threats, Introduction to Cloud Security, Cloud Security and its Practices

Unit – III	Contact Hours = 4 Hours
Firewall and its types	
Types of Firewalls and its benefits, Packet Filtering Firewall, Applica	tion Firewall, Inspection Techniques,

Stateful and Stateless Application, Internet protocol, TCP Header, Well-known UDP and TCP Ports, Client Server Model, DNS and DHCP, SSL and TSL, VPN and how it protects your IP address and privacy **Network Analysis**

Information and view specific packets being sent and received on the network, Security Configuration Checklist, Monitoring Network Bandwidth, Network Analyzers, Wireshark and its use cases Case Study: NMAP tool

Contact Hours = 4 Hours

Contact Hours = 4 Hours

|--|

Cryptography

Cryptography and Cryptanalysis, Types of cryptography, Symmetric encryption, Asymmetric encryption, Understanding digital certificates and signatures, introduction to signatures, introduction to digital certificates, introduction to cryptographic attacks, types of cryptographic attacks, Traditional cryptographic attacks, Counter measures to cryptographic attacks Case Study: Cryptool

Unit –V

Web Server & Application Security

Concept and overview of 3 tier Architecture, Web Application Basics, Working of Domain Name System (DNS), Working of DNS and its vulnerabilities, Web Server Vulnerabilities, Web Application Security, Web Application Attacks, Working of HTTP, Configuring Chrome to work with Burp, HTTP Request Methods, HTTP Status Messages, HTTP – Responses.

Secure Coding Techniques

OWASP Secure Coding Practices, Quick Reference Guide, , Nikto and its features, CMSeek, its features and detection tools, WPScan and its uses

Case Study: Burp Suite and its tools

	-	List of Experiments
Unit No.	No. of	Topic(s) related to Experiment
onic No.	Experiments	
1	2	1. Virtual lab environment setup for cybersecurity
		2. Introduction to Kali Linux and its significance in cybersecurity
2	2	1. Fundamentals of Network Security protocols, firewalls, and encryption
		2. Introduction to Penetration Testing: Conducting a basic penetration test
		on a vulnerable system
3	2	1. Conduction of network scanning and host enumeration using tools like
		Nmap
		2. Network Scanning and Host Discoverywith Nmap
4	2	1. Data Encryption and decryption the data using RSA and secure key
		exchange using Diffie-Hellman Key exchange protocol.
		2. Securing email communication with GnuPG
5	2	1. Creating strong passwords and managing them
		2. Testing Password Strength with John-the-riper and Hashcat

1	Case study: Green Data Centre
2	Case study: Google Data Centre
3	Internet Control Message Protocol
4	Hash Cryptography
5	Case study: Web Application Vulnerability Scanning Tools

	Books
	Text Books:
1.	William Stallings, Cryptography and Network Security, Pearson 6th edition, 2005 onwards
2.	Michael E. and Herbart J.: Principles of Information Security, 2nd Edition 2005onwards
3.	Michael Gregg, Omar Santos, Certified Ethical Hacker (CEH) Version 10 Cert Guide, Pearson
	IT Certification, 3rd Edition, 2019 onwards
4.	Shankar Kambhampaty, Infrastructure Architecture Essentials for Data Centerand Cloud,
	2022 onwards (ISBN 979-8786300469)
	Reference Books:
1.	Matt Walker, CEH Certified Ethical Hacker All-in-One Exam Guide, FourthEdition,McGraw-
	Hill, 4th Edition, 2019 onwards
2.	Wes Noonan, Firewall-Fundamentals, Cisco-Press, 1 st Edition, 2006 onwards
3.	Angela Orebaugh, Nmap in the Enterprise: Your Guide to Network Scanning, Syngress, 2008
	onwards
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	
2.	

	Course delivery methods	Assessment methods			
1.	Chalk and Talk	1.	IA tests- Theory & Lab based		
2.	PPT and Videos	2.	Project phase 1 & 2		
3.	Practice session/Demonstrations in Labs	3.	SEE- Project evaluation		
		4.	SEE- Solving an Open ended problem		

	Course Outcome (COs)								
Lear	Learning Levels:								
	Re - Remember, Un - Understand, Ap - Apply, An - Anal	ysis, Ev - Eva	aluate, Cr - Crea	ate					
At th	e end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)					
1.	Examine the vulnerabilities at different parts of the networks and deign secured services	L3	1,2,3, 4, 5, 8,9,10,11,12	2,3					
2.	Analyze various types of attacks and compare the performance of various countermeasure tools.	L4	2, 3, 4, 5, 6,8,9,10,11,12	2,3					
3.	To evaluate the secure systems in various web applications	L5	2, 4, 5, 6,8,9,10,11,12	2,3					

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test **(COMPULSORY)** will be part of the CIE. **No SEE for Lab**.

THEORY	(40 marks)	F				
IA test (Theory)	IA test (Lab)	Project Phase 1	Project Phase 2	Project report	Total	
25 marks	15 marks	25 marks	25 marks	10 marks	100 marks	
The environment of the stand have dependent on						

Theory IA test should be of one-hour duration.

Lab IA test should be of two/three-hour duration.

Project batch will ideally consist of 2 students (maximum of 3).

Project Phase 1 presentation will be conducted after 6 weeks and Project Phase 2 presentation will be conducted after 13 weeks from the start of the semester.

Submitting Project report is compulsory.

Eligibility for SEE:

1. 40% and above (16 marks and above) in theory component

2. 40% and above (24 marks and above) in project component

3. Not eligible in any one of the two components will make the student **Not Eligible** for SEE

Semester End Examination (SEE):

1.	It will be conducted for 100 marks having 3 hours duration.						
	Lab Open ended program/problem/experiment Write-up & execution (1 open ended expt)- (20 marks write-up + 20 marks algorithm/flowchart + 10 marks execution)	50 marks					
2.	 Project evaluation a. Initial write up stating the objectives, methodology and the outcome b. Hardware project: Exhibiting and demonstration of working of project. Software project: Demonstration of the programming capabilities by writing flowchart, algorithm and codes related to a section of the project. 	10 marks 30 marks	100 marks				
	c. Viva-voce	10 marks					
3.	Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of						
	CIE + SEE should be \geq 40%.						
4.	SEE will be conducted in project batches by Internal & External examiners together.						

	CO-PO Mapping (planned)									SO Map planned					
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	~	✓	✓	✓			✓	✓	✓	✓	✓		✓	✓
2		✓	✓	✓	✓	✓		✓	✓	✓	✓	✓		✓	✓
3		✓		✓	✓	✓		✓	✓	✓	✓	✓		✓	✓
	Tick mark the CO, PO and PSO mapping 2, 4, 5, 6,8,9,10,11,12							1							

Multirate Digital Signal Processing

Course Code	22EC74I	Course type	PEC	Credits L-T-P	3 – 0 - 0
Hours/week: L - T- P	3-0-0	Total credits	3		
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	CIE Marks	100		
Flipped Classes content	05 Hours	SEE Marks	100		

	Course learning objectives					
1.	Introduce concepts of linear filtering (single rate filter design).					
2.	Understand basic multirate operations.					
3.	Introduce working and design of various filter banks					
4.	Explore the concept of perfect reconstruction in filterbanks.					

Pre-requisites: Signals and Systems, Digital Signal Processing

Unit – I	Contact Hours = 8 Hours
Introduction,	
Review of Digital Filters (Linear Filtering)	

Filter Design Specifications, FIR Filter Design, IIR Filter Design, Allpass Filters, Special Types of Filters, IIR Filters Based on Two Allpass Filters

Unit – II	Contact Hours = 8 Hours
Fundamentals of Multirate Systems:	
Basic Multirate Operations, Interconnection of Building Block	s, The Polyphase Representation,
Multistage Implementations, Applications of Multirate Systems,	Special Filters and Filter Banks
Unit – III	Contact Hours = 8 Hours

Maximally Decimated Filter Banks:

Introduction, Errors Created in the QMF Bank, A Simple Alias-Free QMF System, Power Symmetric QMF Banks, M-channel Filter Banks, Polyphase Representation, Perfect Reconstruction (PR) Systems, Alias-Free Filter Banks, Tree Structured Filter Banks, Transmultiplexers

Unit – IV	Contact Hours = 8 Hours			
Paraunitary Perfect Reconstruction (PR) Filter Banks:				
Introduction, Lossless Transfer Matrices, Filter Bank Properties Induced by Paraunitariness, Two				
Channel FIR Paraunitary QMF Banks, The Two Channel Paraunitary QMF Lattice, M-channel FIR				
Paraunitary Filter Banks, Transform Coding and the "LOT"				

Unit – V	Contact Hours = 8 Hours
Linear Phase Perfect Reconstruction QMF Banks:	

Introduction, Some Necessary Conditions, Lattice Structures for Linear Phase FIR PR QMF Banks, Formal Synthesis of Linear Phase FIR PR QMF Lattice

Cosine Modulated Filter Banks:

Introduction, The Pseudo QMF Bank, Design of the Pseudo QMF Bank, Efficient Polyphase Structures, Deeper Properties of Cosine Matrices, Cosine Modulated Perfect Reconstruction Systems

Flipped Classroom Details

Unit No.	I	II		IV	V
No. for Flipped Classroom Sessions	1	1	1	1	1

	Books
	Text Books:
1.	P. P. Vaidyanathan, Multirate Systems and Filter Banks, Pearson Publications, 2013 onwards.
	Reference Books:
1.	Roberto Cristi, Modern Digital Signal Processing, CENGAGE Publications, 2009 onwards.
2.	J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and
	Applications, Pearson Publications, 2017 onwards.
3.	A. V. Oppenheim, R. W. Schafer and J. R. Buck, Discrete Time Signal Processing, Pearson
	Publications, 2021 onwards.
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	Multirate DSP by Prof. R. David Koilpillai, IIT Madras, Link:
	https://onlinecourses.nptel.ac.in/noc20_ee21/preview
2.	Foundations of Wavelets and Multirate Digital Signal Processing by Prof. V. M. Gadre, IIT
	Bombay, link: <u>https://nptel.ac.in/courses/117101123</u>

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)	
3.	Flipped Classes	3.	Open Book Tests (OBT)	
4.	Online classes	4.	Course Seminar	
		5.	Semester End Examination	

	Course Outcome (COs)						
At t	he end of the course, the student will be able to (Highlight the ac	tion verb re	presenting th	ie learning			
	level.)	I					
Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)			
An -	Analysis; Ev - Evaluate; Cr - Create	Level	10(3)	F 30(3)			
	Understand the fundamental concepts and designs of digital						
1.	filters, multirate systems, and perfect reconstruction	Un	1,2,3,5,10	1,2			
	techniques						
	apply digital signal processing techniques to design and						
2.	implement various filters and multirate systems for practical	Ар	1,2,3,5,10	1,2			
	applications						
3.	analyze the performance, limitations, of multirate digital	An	1 2 2 5 10	1 2			
5.	signal processing systems and filter banks	AII	1,2,3,5,10	1,2			

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification etc)		Total Marks		
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100		
-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined						

by BOS) can be considered as a Course activity and awarded maximum of 10 marks. -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. -Lack of minimum score in IA test will make the student Not Eligible for SEE -Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Scheme of Semester End Examination (SEE):

••••	
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of
	CIE + SEE should be \geq 40%.
3.	Question paper contains three parts A,B and C. Students have to answer
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each
	Question Carries 10 Marks.
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

	CO-PO Mapping (Planned)								CO-PSO Mapping (Planned)						
~	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	$1 \checkmark \land \land$									✓	✓				
2	✓	✓	✓		✓					√			✓	✓	
3	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								√	✓					
	Use tick mark(✓)														

DIGITAL FORENSICS

Course Code	22EC751	Course type	OEC	Credits L-T-P	3-0-0
Hours/week: L-T-P	3-0-0		Total credits	3	
Total Contact Hours	L = 40 Hrs; T = 0 Hrs; P = 0 Hrs Total = 40 Hrs			CIE Marks	100
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives					
1.	To understand the key aspects of Digital Forensics.					
2.	To study the nature of a typical digital forensics case, the correct procedures for searching and					
	seizing evidence and evaluation of a case.					
3.	To study the E-mail and Social Media Investigations related to Digital Forensics.					
4.	To comprehend the Mobile Device Forensics and Cloud Forensics.					

Pre-requisites: Basics of electronic systems

Unit – I	Contact Hours = 8 Hours				
Understanding the digital forensics profession and investigations: an overview of digital forensics,					
preparing for digital investigations, maintaining profess	sional conduct, preparing a digital forensics				
investigation, procedures for private-sector high-tech i	nvestigations, understanding data recovery				
workstations and software, conducting an investigation					
Data acquisition: understanding storage formats for di	igital evidence, determining the best acquisition				
method, contingency planning for image acquisitions, using acquisition tools					
Case Study: Study of Redundant Array of Independent Disks (RAID) Data Acquisition from a computer.					
Unit – II	Contact Hours = 8 Hours				

	contact nouis o nouis				
Processing crime and incident scenes: identifying digital evidence, collecting evidence in private-					
sector incident scenes, processing law enforcement crime scenes,	preparing for a search, securing a				
computer incident or crime scene, seizing digital evidence at the se	cene, storing digital evidence,				
obtaining a digital hash, reviewing a case.					
Case Study: Study of SHA-1, MD5					

Unit – III	Contact Hours = 8 Hours					
Working with windows and Command Line Interface systems: understanding file systems, exploring						
Microsoft file structures, examining NTFS disks, understanding whole disk encryption, understanding						
the windows registry, understanding virtual machines						
Digital forensics analysis: determining what data to collect and analyze, addressing data-hiding						
techniques						
Case study: Understanding bootstrap loader sequence in a compu	ter.					

Case Study:

1. Identify the applications of RSA in public key cryptosystems.

2. Develop a code for implementing simple hash function.

Unit – IV	Contact Hours = 8 Hours				
E-mail and social media investigations: exploring the role of e-mail in investigations, exploring the					
roles of the client and server in e-mail, investigating e-mail crimes and violations, understanding e-					
mail servers, using specialized e-mail forensics tools, applying digital forensics to social media.					
Case Study:					

1. Study of "Elephant in the Room: Case Studies of Social Media in Civil and Criminal Cases," Mark Lanterman, http://blog.x1discovery.com/2014/06/10/elephantin-the-room-case-studies-of-socialmedia-in-civil-and-criminal-cases/, June 2014.

2. Demonstrate the use of Forensic Toolkit (for Face book by Afentis Software) to discover friends and other information of a public profile.

Unit –V	Contact Hours = 8 Hours				
Mobile device forensics: understanding mobile device forensics, understanding acquisition					
procedures for mobile devices					
Cloud forensics: an overview of cloud computing, legal challenges	in cloud forensics, technical				
challenges in cloud forensics, acquisitions in the cloud, conducting a cloud investigation, tools for					
cloud forensics					
Case Study: Study of SIM Manager tool to read the sim card messa	ages				

ase Study: Study of Silvi ivianager tool to read the sim card messages.

Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

	Books
	Text Books:
1.	Bill Nelson, Amelia Phillips, Christopher Steuart, "Guide to Computer Forensics and
	Investigations: Processing Digital Evidence", Fifth Edition, Cengage Learning, 2015 and
	onwards.
2.	Cory Altheide, Harlan Carvey, "Digital Forensics with Open Source Tools", Elsevier, Syngress
	publications, 2011 and onwards.
	Reference Books:
1.	John R. Vacca, "Computer Forensics: Computer Crime Scene Investigation", Second Edition, ISBN
	1-58450-389-0, 2005 and onwards.
	E-resourses (NPTEL/SWAYAM Any Other)- mention links

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Tests (OBT)
4.	Online classes	4.	Course Seminar
		5.	Semester End Examination

Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning level.) Learning Levels: Re - Remember; Un - Understand; Ap - Apply; Learning PO(s) PSO(s) An - Analysis; Ev - Evaluate; Cr - Create Level Understand the basic concepts of digital forensics and study 1,3,4,5,6,8 1 1. Ap the forensic tools. 2. Analyze the forensic data acquired from an electronic system. An 1,3,4,5,6,8 1 Analyze the e-mail and social media digital forensics and 1,3,4,5,6,8 1 3. Εv document. Understand the digital forensics applied to mobile and cloud 1,3,4,5,6,8 1 4. Ар scenario.

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case	Total
	tests	/Industry/Certification etc)	study etc	Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sche	me of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be ≥35 &, however overall score of
	CIE+SEE should be ≥40%.
3.	Question paper contains three parts A, B and C. Students have to answer
	1. From Part A answer any 5 questions each Question Carries 6 Marks.
	2. From Part B answer any one full question from each unit and each Question Carries 10 Marks.
	3. From Part C answer any one full question and each Question Carries 20 Marks.

				C	0-PO N	Ларріг	ng (Plai	nned)						CO-PSO ping(Pla	
~	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	0	11	12	1	2	3
1	✓		✓	✓	✓	✓		✓					✓		
2	✓		~	✓	✓	✓		✓					✓		
3	✓		✓	✓	✓	✓		✓					✓		
4	✓		✓	✓	✓	✓		✓					✓		
	Use tick mark(✓)														

BIO MEDICAL IMAGE UNDERSTANDING AND ANALYSIS

Course Code	22EC752	Course type	OEC	Credits L-T-P	3-0-0
Hours/week: L-T-P	3 - 0 - 0		Total credits	3	
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	rs; P = 0 Hrs	CIE Marks	100	
Flipped Classes content	10 Hours		SEE Marks	100	

	Course learning objectives						
1.	Identify applications of different Radiological modalities for solving real time problems						
2.	Appreciate the use and applications of transforms in extraction of features from objects						
3.	Appreciate the evolution of Deep Neural Network from ANN						
4.	Design and deploy simple Convolution Neural Network (CNN) model for Biomedical Image						
	classification and identification for specific Radiological Modalities.						

Required Knowledge of: Linear Algebra, Statistics and Probability

Unit – I	Contact Hours = 8 Hours				
Introduction to Biomedical Image Processing					
Digital Image Processing, Biomedical Image Processing, System	, Medical Image modalities, Image				
Algebra, Image transform (FT, DCT, DWT, HOUGH, KL) Image Enl	nancement in spatial and frequency				
domain, Image Restoration, Medical applications of Imaging, Front	iers of Image processing in Medicine.				
Privacy and Ethics in Handling Clinical Data for Experiments: Ens	suring privacy and ethics in handling				
clinical data for experiments is essential to protect patient confidentiality and uphold ethical standards.					
Practical Session : Introduction to Mathwork Matlab and Image Processing Toolbox / Python coding					
Case study review on Image Morphology, Image Fusion, Image Super Resolution					

Unit – II	Contact Hours = 8 Hours					
Artificial Neural Networks and Evolutions of Deep Learning						
Over view of Biological Neural Networks (BNN), McCulloch-Pitts I	Neuron Model of Biological Neuron,					
Artificial Neuron Basic Element and its structure, Different activa	tion function, Training, Testing and					
Validation, Forward and Back propagation with example, Single	layer Feed forward network, Multi-					
layer Feed forward network, classification of learning algorithm	ms, Limitations of Artificial Neural					
Networks (ANN), Evolutions of Deep Learning.						
Practical Session: Introduction to Mathwork Matlab Deep Learning Toolbox/ Python coding						
Case study review on Artificial Neural Networks and Biomedical Image applications						

Unit – III	Contact Hours = 8 Hours

Convolution Neural Networks and Applications

Introduction to Convolutional Neural Networks (CNNs / ConvNets), architecture overview and terminologies of CNN, motivation behind CNN, study of architecture and comparisons of pretrained CNN (limited to only **LeNet-5,ResNet -34 and ResNet -50**).

Case study review on to Convolutional Neural Networks (CNNs / ConvNets)and Biomedical Image applications

Practical Session: Introduction to Mathwork Matlab Deep Learning Toolbox/ Python coding

Unit – IV	Contact Hours = 8 Hours				
Deep Learning Medical Image Segmentation	· · · · ·				
Introduction to Digital Image Segmentation, operators -	filters for edge and line detection, simple				
segmentation algorithms, significance of Image Segmentation in Medical Image, classification of digital					
image segmentation algorithms, automatic image segm	entation, Architecture of U-Net and V-net				
segmentation.					
Practical Session: Introduction to Mathwork Matlab Dee	p Learning Toolbox/ Python coding				

Case study review on Biomedical Image Segmentation

Unit –V Contact Hours = 8 Hours							
Deep Learning Medical Image Classification, Analysis and Visualization							
Features, Features reduction using Principal Component Analysis (PCA), feature reduction using Image						
Transforms (DWT), Pre trained CNN Model for feature extraction	Transforms (DWT), Pre trained CNN Model for feature extraction (only ResNet -50), Example and						
demonstration of CNN pretrained model for image classification a	nd Identification.						
Practical Session: Introduction to Mathwork Matlab Deep Learning Toolbox/ Python coding							
Case study review on Pre trained CNN Model							

Flipped Classroom Details

Unit No.	I	II		IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

Unit No.	Self-Study Component
1.	Linear algebra and probability
2.	Learning algorithms and intelligence in algorithm
3.	LeNet -5 CNN Architecture for number classification
4.	Semantic Segmentation and nnU-net
5.	Clustering algorithm for image classification in Biomedical Imagery applications

	Books								
	Text Books:								
1.	Geoff Dougherty, "Digital Image Processing for Medical Applications", Cambridge University								
	Press, 2nd Edition, 2013.								

2.	Kevin Zhou, Medical Image Recognition, Segmentation and Parsing: Machine Learning and
	Multiple Object Approaches, 1st Edition, Elsevier Science, 2015
	Reference Books:
1.	Kevin Zhou, Hayit Greenspan and Dinggang Shen, Deep Learning for Medical Image Analysis
	Elsevier Science, 2017
2.	Anil K. Jain, Fundamentals of Digital Image Processing, Prentice Hall, 1989
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	Debdoot Sheet, Indian Institute of Technology Kharagpur, MEDICAL IMAGE ANALYSIS, NPTEL
	course
	Link: https://nptel.ac.in/courses/108/105/108105091/

	Course delivery methods	Assessment methods				
1.	Chalk and Talk	1.	IA tests			
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project			
3.	Flipped Classes	3.	Lab Test			
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination			
5.	Mini Project					

	Course Outcome (COs)										
Lear	Learning Levels:										
	Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create										
At th	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)							
1.	Apply knowledge of deep learning algorithms to solve real life problems related to health care and radiology.	Ар	1,2,12	1,2							
2.	Analyze the state of art techniques applied in deep learning research	An	1,2,12	1,2							
3.	Evaluate the effectiveness of deep learning models in healthcare classification and identification using suitable datasets.	Ev	1,2,3,5,6,8,12	1,2,3							
4.	Analyze different deep learning models for different applications of Diseases detection and identification using Computed tomography (CT) and Magnetic Resonance Imaging (MRI).	An	1,2,3,5,6,8,12	1,2,3							

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification etc)		Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks. -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. -Lack of minimum score in IA test will make the student Not Eligible for SEE -Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sche	me of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be \geq 35 &, however overall score of
	CIE+SEE should be ≥40%.
3.	Question paper contains three parts A,B and C. Students have to answer
	1. From Part A answer any 5 questions each Question Carries 6 Marks.
	2. From Part B answer any one full question from each unit and each Question Carries 10 Marks.
	3. From Part C answer any one full question and each Question Carries 20 Marks.

	CO-PO Mapping (Planned)									SO Map Planned					
60	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓			✓							✓	✓	✓	
2	✓	✓			~							✓	✓	✓	
3	✓	~		✓	~	✓		✓	✓	✓		✓	✓	✓	✓
4	~	~		✓	~	✓		✓				✓	✓	✓	✓

Artificial Neural Networks

Course Code	22EC753	Course type	OEC	Credits L-T-P	3 – 0- 0
Hours/week: L-T-P	3-0-0	3-0-0		Total credits	3
Total Contact Hours	L = 40 Hrs; T Total = 40 H	⁻ = 0 Hrs; P = 0 Hrs rs	CIE Marks	100	
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives				
1.	1. Understand different neural network models.				
2.	2. Explore the hard problems and apply multilayer neural networks solve the same.				
3.	3. Understand and interpret the energy analysis applied to Regression neural networks.				
4.					

Pre-requisites : Basic Mathematics

Contact Hours = 8 Hours Unit – I Fundamentals of ANN, Biological Neurons and Their Artificial Models, Types of ANN, Properties, Different Learning Rules, Types of Activation Functions, Training of ANN, Perceptron Model (Both Single & Multi-Layer), Training Algorithm, Problems Solving Using Learning Rules and Algorithms, Linear Separability Limitation and Its Over Comings.

Case Study: Identify an application and analyze its performance using any two network models.

Unit – II	Contact Hours = 8 Hours
Back Propagation Networks (BPN), Training, Architecture-Algorit	hm, Counter Propagation Network
(CPN), Training, Architecture, Bi-Directional Associative Memory	(BAM), Training-stability analysis,
Adaptive Resonance Theory, Adaptive Resonance Theory (ART) A	ART1- ART2, Architecture, Training,
Hop Field Network, Energy Function, Discrete Continuous, Algo	rithm, Application, Travelling Sales
Man Problem TSP.	
Case Study: Linear senarability Percentron convergence theorem	

Case Study: Linear separability, Perceptron convergence theorem.

Unit – III	Contact Hours = 8 Hours
Self organizing networks-Introduction, Kohonan SOM, Linear vect	•
network, Cascade correlation, General Regression neural network, Cognitron, Application of ANN, Texture classification, Character recognition.	
Case Study: Review a research paper on CNN application and anal	yze the architecture.

Unit – IV	Contact Hours = 8 Hours	
Classical set, Operations and properties, Fuzzy Set, Operations and properties, Problems, Classical		
Relations ,Operations and Properties, Fuzzy Relations, Operations and Properties, Compositions		
Membership function, FLCS, Need for FLC-Fuzzification, Defuzzification.		
Case Study: Compare the different parameters of feedback neural	networks with each other	

Unit –V	Contact Hours = 8 Hours

Fuzzy decision making, Types, Fuzzy Rule Based System, Knowledge Based System, Nonlinear Fuzzy Control system, Fuzzy Classification, Hard C Means, Fuzzy C Means. Applications of fuzzy, Water level controller, Fuzzy image Classification, Speed control of motor. **Case Study:** Compare RBF with MLP networks.

Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

	Books				
	Text Books:				
1.	1. B. Yegnanarayana, Artificial neural networks", PHI, 2010 onwards.				
2.	2. Robert J. Schalkoff, "Neural Networks for Pattern Recognition", Mcgraw-Hill Inc onwords.				
	Reference Books:				
1.	Simon Haykin, "Neural Networks and Learning Machines", Pearson Education, 3rd edition, 2008 onwards.				
	E-resourses (NPTEL/SWAYAM Any Other)- mention links				
1.	1. https://onlinecourses.nptel.ac.in/				

	Course delivery methods		Assessment methods	
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)	
3.	Flipped Classes	3.	Open Book Tests (OBT)	
4.	Online classes	4.	Course Seminar	
		5.	Semester End Examination	

	Course Outcome (COs)					
	At the end of the course, the student will be able to (Highlight the action verb representing the					
	learning level.)					
Lear	Learning Levels: Re - Remember; Un - Understand; Ap - Apply; Learning					
An -	Analysis; Ev - Evaluate; Cr - Create	Level	PO(s)	PSO(s)		
1.	1. Analyze performance of different neuron models with reference to identified application.		1,2,4,5	1		
2.	2. Apply multilayer neural networks to solve hard problems.		1,2,4,5	1		
3.	Compare different neural network architectures applied to complex pattern recognition tasks.	An	1,2,4,5	1		

Scheme of Continuous Internal Evaluation (CIE):

Componente	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case	Total
Components	tests	/Industry/Certification etc)	study etc	Marks

Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100		
-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks. -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.						

-Lack of minimum score in IA test will make the student Not Eligible for SEE

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sche	Scheme of Semester End Examination (SEE):				
1.	It will be conducted for 100 marks of 3 hours duration.				
2.	Minimum marks required in SEE to pass: Score should be ≥35 &, however overall score of				
	CIE+SEE should be ≥40%.				
3.	Question paper contains three parts A,B and C. Students have to answer				
	1. From Part A answer any 5 questions each Question Carries 6 Marks.				
	2. From Part B answer any one full question from each unit and each Question Carries 10 Marks.				
	3. From Part C answer any one full question and each Question Carries 20 Marks.				

	CO-PO Mapping (Planned)							CO-PSO Mapping(Planned)							
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	РО			
	104	P02	PU3	P04	P05	P00	P07	PU0	P09	P010	11	12	PSO1	PSO2	PSO3
1	✓	✓	✓	✓	✓							✓	√		
2	✓	✓	✓	✓	✓							✓	✓		
3	✓	✓	~	~	✓							✓	✓		
4	✓	✓	✓	✓	✓							✓	√		
5	✓	✓	✓	✓	✓							✓	✓		
	Use tick mark(✓)														

Computational Intelligence and Application

Course Code	22EC754	Course type	OE	Credits L-T-P	3-0-0
Hours/week: L - T- P 3 - 0 - 0		Total credits	3		
Total Contact Hours	L = 40 Hrs; T = 0 H	rs; P = 0 Hrs	CIE Marks	100	
	Total = 40 Hrs				100
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives
1.	Develop a comprehensive understanding of computational intelligence, fuzzy logic, and neural networks.
2.	Explore and analyse various neural network architectures and their applications.
3.	Acquire in-depth knowledge of the fundamental principles, concepts, and operations of fuzzy logic.
4.	Design and implement effective fuzzy logic systems, including creating rule bases, defining membership functions, and implementing fuzzy inference mechanisms.

Pre-requisites : Mathematical fundaments and set theory, fundamentals of Linear Algebra

Unit – I	
----------	--

Contact Hours = 8 Hours

Introduction to Computational Intelligence

Overview of computational intelligence and its applications, Introduction to neural networks, fuzzy logic, evolutionary computation, swarm intelligence, and machine learning.

Case study on Energy Management in Smart Grids using computational intelligence.

Unit – II	Contact Hours = 8 Hours
Fundamentals of Artificial Neural Network	

Perceptron, artificial neuron, artificial neuron implementation, different activation functions for binary and multilabelled classification. Logic development using simple perceptron, single layer perceptron, multilayer perceptron, artificial neural learning, forward propagation and back propagation algorithm and application.

Applications of Artificial Neural Networks (ANNs)

Image and Speech Recognition, Natural Language Processing, Time Series Prediction, Pattern Recognition and Classification.

Case study on Fraud Detection in Financial Transactions using computational intelligence.

Unit – III	Contact Hours = 8 Hours		
Fuzzy Set theory and Fuzzy System			
Fuzzy set theory: Introduction to Fuzzy Set, Membership, Operations, Properties, Fuzzy Relation.			
Fuzzy system: Introduction, FL, Fuzzification, Fuzzy Inference, F Ru	le Based System, Defuzzification.		
Applications of fuzzy system:			

Fuzzy rule-based traffic signal optimization, Fuzzy logic-based medical diagnosis systems, Fuzzy logicbased power system stability analysis, Fuzzy rule-based decision support systems for financial risk assessment.

Case study on Medical Diagnosis and Treatment using computational intelligence.

Unit – IV	Contact Hours = 8 Hours

Associative Memory

Fuzzy Associative Memory, - Fuzzy associative memories (FAMs) pattern recognition and retrieval in fuzzy logic systems and Associative Neural Memory.

Applications of Associative Memory: Efficient data storage and retrieval in large-scale databases, Image and video processing for object recognition and tracking, Speech recognition and natural language processing, financial forecasting and time series analysis, Fault diagnosis and anomaly detection in complex systems.

Case study on Autonomous Vehicle Navigation using computational intelligence.

Unit – V	Contact Hours = 8 Hours

Applications of Neuro-Fuzzy

Neuro-Fuzzy System Fundamentals, Neuro-Fuzzy Modeling, Neuro-Fuzzy Pattern Recognition application, Neuro-Fuzzy Time Series Prediction and analysis, Neuro-Fuzzy Fault Diagnosis and Neuro-Fuzzy Applications in Healthcare.

Case study on Predictive Maintenance in Manufacturing using computational intelligence.

Unit No.	Self-Study Topics					
1	Exponential models, Time series models.					
2	Multiple linear regression, Multivariate linear regression, Generalized linear models.					
3	Machine learning and compressed sensing.					
5	Sparse signal representation, kernel and sparse kernel					

Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions Mini -Project and Case Study in each Unit	2	2	2	2	2

	Books
	Text Books:
1.	Andries P. Engelbrecht, "Computational Intelligence: An Introduction, Second Edition", Wiley,
	2007.
2.	Simon Haykin, "Neural Networks and Learning Machines", 3rd Edition, Pearson, 2008.
	Reference Books:

1.	Nikola K. Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge						
	Engineering", MIT Press, 1996.						
2.	Bart Kosko, "Neural Networks and Fuzzy Systems", Prentice Hall, 1992.						
3.	Bart Kosko, "Fuzzy Engineering", Prentice Hall, 1997.						
	E-resourses (NPTEL/SWAYAM Any Other)- mention links						
1.	Approximate Reasoning Using Fuzzy Set Theory, By Prof. Balasubramaniam Jayaram, IIT						
	Hyderabad						
	https://onlinecourses.nptel.ac.in/noc23_ma60/preview						
2.	Introduction To Fuzzy Set Theory, Arithmetic And Logic, By Prof. Niladri Chatterjee, IIT Delhi						
	https://onlinecourses.nptel.ac.in/noc23_ma73/preview						
3.	Deep Learning for Computer Vision, By Prof. Vineeth N Balasubramanian, IIT Hyderabad						
	https://onlinecourses.nptel.ac.in/noc21_cs93/preview						

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)	
3.	Flipped Classes	3. Open Book Tests (OBT)		
4.	Online classes	4. Course Seminar		
5.		5.	Semester End Examination	

	Course Outcome (COs)						
At t	At the end of the course, the student will be able to (Highlight the action verb representing the learning						
	level.)						
Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)			
An -	Analysis; Ev - Evaluate; Cr - Create	Level	FO(3)	F30(3)			
	Understand the foundational principles and concepts of		1,2,	1,2			
1.	computational intelligence, including neural networks and fuzzy	Re	12				
	logic.						
2.	Apply computational intelligence techniques effectively to solve	۸n	1,2,	1,2			
۷.	complex problems.	Ар	12				
3.	Analyze and evaluate computational intelligence algorithms and	An	1,2,12	1,2,3			
э.	models critically.	An					
Δ	Design and implement innovative computational intelligence	٨٣	1,2,12	1,2,3			
4.	solutions for real time application.	An					

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification etc)		Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks. -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. -Lack of minimum score in IA test will make the student Not Eligible for SEE -Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	Scheme of Semester End Examination (SEE):						
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the						
	calculation of SGPA and CGPA.						
2.	Minimum marks required in SEE to pass: 40 out of 100						
3.	Question paper contains two questions from each unit each carrying 20 marks. Students have to						
	answer one full question from each unit.						

	CO-PO Mapping (Planned)								CO-PSO Mapping (Planned)						
~	РО	РО	РО	PO	РО	PO	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	√	✓										✓	✓		
2	✓	✓										✓	✓		
3	✓	✓					✓					✓	✓	✓	✓
4	✓	✓										✓	✓	✓	✓
	Tick mark the CO, PO and PSO mapping														

Fundamentals of Robotics

Course Code	22EC755	Course type	OEC	Credits L-T-P	3 – 0- 0
Hours/week: L-T-P	3-0-0		Total credits	3	
Total Contact Hours	L = 40 Hrs; T = 0 Total = 40 Hrs	0 Hrs;P = 0 Hrs	CIE Marks	100	
Flipped Classes content	3 Hours			SEE Marks	100

	Course learning objectives						
1.	Explain the fundamentals of industrial automation and robotics						
2.	Explain the different types of actuators, motors, grippers used in robot drive system						
3.	Explain the applications of robots in various fields						
4.	Apply the knowledge of Sensors and actuators in building robotic systems						

Pre-requisites: Fundamentals of Electronics, Fundamentals of Physics

Unit – I	Contact Hours = 8 Hours				
Fundamentals of Robot: Introduction, industrial robot, robot, laws of robotics, types of robots, robot					
specification, benefits of robot, need for robot, manufacturing applications of robot, the					
future of robotics					
Case Study: Conduct a survey on Non-manufacturing robotic appli	cations.				

Unit – II	Contact Hours = 8 Hours				
Robot Drive Systems and End Effectors: Introduction, actuators, types of actuators or drives, DC					
servomotor, types of D.C. motors, A.C. motors, stepper motor, selection of motors, Comparison of					
pneumatic, hydraulic electrical drives, end-effectors, grippers.					
Case Study: Study the control of a two-wheeled robot					

Unit – III	Contact Hours = 8 Hours				
Sensors: Sensors, requirements and classification of sensors, position sensors, force sensors, external					
sensors: Electro-mechanical sensors.					
Case Study Identify on explication that was machine vision for all	atu ati an data ati an				

Case Study: Identify an application that uses machine vision for obstruction detection.

Unit – IV	Contact Hours = 8 Hours					
Control Methods: Performance objectives, electrical power, s	servo-controlled robots, non-servo					
controlled robots, actuators, controllers, programmable controllers.						
Robot Programming: Introduction, methods for robot programming, defining a robot program, method						
of defining position in space, motion interpolation, basic programming commands in work-cell control.						
Case Study: Understand the working principles of a robotic arm control system.						

Unit –V Contact Hours = 8 Hours	
---------------------------------	--

Uses for Robots: Performance objectives, loading and unloading, materials handling, fabricating, assembling, painting, welding, inspecting and testing, the future of flexible automation, objectives of CIM, the future of robots, social impact of robots, new uses and new forms.

Case Study: Design a simple automation system that employs the knowledge of sensors and actuators.

Flipped Classroom Details										
Unit No. I II III IV V										
No. for Flipped Classroom Sessions	2	2	2	2	2					

	Books										
	Text Books:										
1.	Ramachandran S., "Robotics", AIRWALK PUBLICATIONS (2017), ISBN: 978-9384893-69-9										
2.	Rex Miller, Mark R. Miller - Robots and Robotics_ Principles, Systems, and Industrial										
	Applications-McGraw-Hill Education (2017)										
3.	Mike Wilson - Implementation of Robot Systems_ An introduction to robotics, automation, and										
	successful systems integration in manufacturing-Butterworth Heinemann (2014)										
	Reference Books:										
1.	Lina J. Karam, Naji Mounsef - Introduction to Engineering_ A Starter's Guide with Hands-on										
	Digital and Robotics Explorations (Synthesis Lectures on Engineering)										
2.	John J. Craig - Introduction to Robotics Mechanics and Control 3rd edition-Pearson										
	Education, Inc. (2005)										
	E-resourses (NPTEL/SWAYAM Any Other)- mention links										
1.	https://nptel.ac.in/courses/108/105/108105063/										

	Course delivery methods	Assessment methods				
1.	Chalk and Talk	1.	IA tests			
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)			
3.	Flipped Classes	3.	Open Book Tests (OBT)			
4.	Online classes	4.	Course Seminar			
		5.	Semester End Examination			

At	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning									
level.) Learning Levels: Re - Remember; Un - Understand; Ap - Apply; Learning An - Analysis; Ev - Evaluate; Cr - Create Level										
1.	Understand the fundamentals of Robotics.	Un	1,12	1						
2.	Compare and identify the appropriate actuators and sensors required for the robotic application.	Ар	2,3,9,10,1 1,12	1						
3.	Analyze the performance of various applications and compare different programming aspects in these applications.	An	5,9,10,11, 12	1						

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification etc)	Course project (CP)/ Case study etc	Total Marks							
Marks30+30 = 6010 + 10 = 2020 marks (with report presentation)											
-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks. -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. -Lack of minimum score in IA test will make the student Not Eligible for SEE -Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.											

	Sch	neme of Semester End Examination (SEE):					
	1.	It will be conducted for 100 marks of 3 hours duration.					
	2.	Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of					
CIE + SEE should be \geq 40%.							
	3.	Question paper contains three parts A,B and C. Students have to answer					
		1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.					
		2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each					
		Question Carries 10 Marks.					

3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

CO-PO Mapping (Planned)									Мар	CO-PSC ping(Pla					
~	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	РО	РО	PSO	PSO2	
со	1	2	3	4	5	6	7	8	9	0	11	12	1		PSO3
1	✓											✓	1		
2		✓	✓						✓	✓	✓	✓	1		
3					✓				✓	✓	✓	✓		1	
	Use tick mark(✓)														