KARNATAK LAW SOCIETY'S

GOGTE INSTITUTE OF TECHNOLOGY

UDYAMBAG, BELAGAVI-590008

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) (APPROVED BY AICTE, NEW DELHI)

1st Year B.E. Scheme and Syllabus (2022 Scheme) COMPUTER SCIENCE AND ENGINEERING REVISED FROM AY 2024-25

INSTITUTION VISION

Gogte Institute of Technology shall stand out as an institution of excellence in technical education and in training individuals for outstanding caliber, character coupled with creativity and entrepreneurial skills.

MISSION

To train the students to become Quality Engineers with High Standards of Professionalism and Ethics who have Positive Attitude, a Perfect blend of Techno-Managerial Skills and Problem solving ability with an analytical and innovative mindset.

QUALITY POLICY

- Imparting value added technical education with state-of-the-art technology in a congenial, disciplined and a research oriented environment.
- Fostering cultural, ethical, moral and social values in the human resources of the institution.
- Reinforcing our bonds with the Parents, Industry, Alumni, and to seek their suggestions for innovating and excelling in every sphere of quality education.

DEPARTMENT VISION

MISSION

	PROGRAM OUTCOMES (POs)								
1.	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.								
2.	Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.								
3.	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.								
4.	Conduct investigations of complex problems: Use research-based knowledge and research								
5.	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern								
6.	The engineer and society: Apply reasoning informed by the contextual knowledge to assess								
7.	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.								
8.	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.								
9.	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.								
10.	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.								
11.	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.								
12.	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.								

KLS Gogte Institute of Technology 1st Year B.E. Scheme of Teaching and Examination- 2022 Outcome-Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2022-23)

Total credits for B.E. Program: 160

Credit definition:

Offline Courses	Online Courses
• 1-hour Lecture (L) per week = 1 Credit	04 weeks =1 Credit
 2 hours Tutorial (T) per week = 1 Credit, 	08 weeks = 2 Credit
• 2 hours Practical /Drawing (P) per week = 1 Credit	12 weeks = 3 Credit

Semester wise distribution of credits for B.E program

Year	Semester	Credits	Total/Year	Cumulative Credits
1 st	I	20	40	40
1	II	20	40	40
2 nd	III			
2	IV			
3 rd	V			
3.*	VI			
4 th	VII			
4	VIII]	
	Total		160	

Curriculum frame work:

Structure of Undergraduate Engineering program

S.No.	Category of courses	VTU Breakup of credits	KLSGIT Breakup of credits
1	Humanities and Social Sciences including Management courses (English, Kannada, Indian Constitution, Environmental Sciences and Management)	10	
2	Basic Science courses	23	
3	Engineering Science courses including workshop, drawing	20	
4	Professional Core Courses	46	
5	Professional Elective courses relevant to chosen specialization/branch	9	
6	Open subjects – Electives from other technical, emerging, arts commerce and	6	
7	Mini, Project, Major Project work and Seminar	13	
8	Summer Internship and Research /Industrial Internship	20	
9	Ability Enhancement Courses, including Research		
10	Universal Human Values	2	
	TOTAL	160	160

L-T-P Model for Courses

		Conta	Credits			
S.No.	L-T-P	Lecture	Tutorial	Practical	L-T-P	Total
1	3 - 0 - 0	3	0	0	3 - 0 - 0	3
2	3 - 2 - 0	3	2	0	3 - 1 - 0	4
3	3 - 0 - 2	3	0	2	3 - 0 - 1	4
4	2 - 0 - 2	2	0	2	2 - 0 - 1	3
	1 - 0 - 4	1	0	4	1 - 0 - 2	3

Theory courses having the corresponding lab are converted to integrated type course. Also, the electives (if possible) can also be made integrated type.

Integrated courses (Professional Core/Electives): Integrated courses will have Theory Syllabus with Practical Syllabus of the same course. In such a course there could be no Semester End Examination (SEE) for the practical syllabus of the course, however, Continuous Internal Evaluation (CIE) will be conducted for the practical topics. SEE should include questions from practical topics.

SDA-Skill Development Activities, TD/PSB- Teaching Department / Paper Setting Board, ASC-Applied Science Course, ESC- Engineering Science Courses, ETC- Emerging Technology Course, AEC- Ability Enhancement Course, HSMS-Humanity and Social Science and Management Course, SDC- Skill Development Course,

KLS Gogte Institute of Technology 1stYear B.E. Scheme of Teaching and Examination 2022

1 st Sem	ester for C	Computer Scien	ce and Engg. Physics Cycle		Ηοι	ırs/w	eek	T		Ex	amina	tion
S.No.	Course Type	Course Code	Course Title	Teaching Dept.	L	т	Ρ	Total contact hours/week	Credits	CIE	SEE	Total
1	ASC	22MATS11	Mathematics for Computer ScI	Mathematics	3	0	2	5	4	100	100	200
2	ASC	22PHYS12	Physics for Computer Sc Stream	Physics	3	0	2	5	4	100	100	200
3	ESC	22POP13	Principles of Programming Using C	CSE Dept.	2	0	2	4	3	100	100	200
4	ESC-I	22ESC14X	Engineering Science Course-I	Engg. Dept.	3	0	0	3	3	100	100	200
5	ETC	22ETC15X	Emerging Technology Course	Engg. Dept.	3	0	0	3	3	100	100	200
6	AEC	22ENG16	Communicative English	English	1	0	0	1	1	50	50	100
7	HSMC	22KSK17/ 22KBK17	Samskrutika Kannada/ Balake Kannada	Kannada Faculty	1	0	0	1	1	50	50	100
8	SDC	2211L18	Idea to Innovation Lab	Engg. Depts	0	0	2	2	1	100	-	100
			400				7		20			

101	100	
Gai		201
		15,71

2 nd Sei	2 nd Semester for Computer Science and Engg. Chemistry Cycle					Total contact		Ex	aminat	ion		
S.No.	Course Type	Course Code	Course Title	Teaching Dept.		F	Р	hours/week	Credits	CIE	SEE	Total
1	ASC	22MATS21	Mathematics for Computer Sc. EnggII	Mathematics	3	0	2	5	4	100	100	200
2	ASC	22CHES22	Chemistry for Computer Sc Stream	Chemistry	3	0	2	5	4	100	100	200
3	ESC	22CED23	Computer-Aided Engineering Drawing	Mech. Dept.	2	0	2	4	3	100	100	200
4	ESC-II	22ESC24X	Engineering Science Course-II	Engg. Dept.	3	0	0	3	3	100	100	200
5	PLC	22PLC25X	Programming Language Course	Engg. Dept.	2	0	2	4	3	100	100	200
6	AEC	22PWS26	Professional Writing Skills in English	English	1	0	0	1	1	50	50	100
7	HSMS	22ICO27	Indian Constitution	Humanities	1	0	0	1	1	50	50	100
8	AEC	22SFH28	Scientific Foundations for Health		1	0	0	1	1	50	50	100
									20			

Engineering Science Courses (ESC)

Code	Title	L	Т	Ρ	1 st Semester	2 nd Semester
22ESC141/241	Introduction to Civil Engineering	3	0	0	AE,ME,EE,CSE,EC,ISE,AI	AE,ME,EE,CSE,EC,ISE,AI
22ESC142/242	Introduction to Electrical Engineering	3	0	0	AE,CV,ME,CSE,EC,ISE,AI	AE,CV,ME,CSE,EC,ISE,AI
22ESC143/243	Introduction to Electronics Engineering	3	0	0	AE,CV,ME,EE,CSE,ISE,AI	AE,CV,ME,EE, CSE,ISE,AI
22ESC144/244	Introduction to Mechanical Engineering	3	0	0	AE,CV,EE,CSE,EC,ISE,AI	AE,CV,EE,CSE,EC,ISE,AI
22ESC145/245	Introduction to C Programming	2	0	2	AE,CV,ME,EE,EC	AE,CV,ME,EE,EC
22ESC146/246	Introduction to Aeronautical Engineering	3	0	0	CV,ME,EE,CSE,EC,ISE,AI	CV,ME,EE,CSE,EC,ISE,AI

Emerging Technology Courses (ETC)

Code	Title	L	Т	Ρ	1 st Semester-Phy	2 nd Semester-Che	Offering Dept.
22ETC15/25A	Smart Materials and Systems	3	0	0	AE,EE ,CSE,ISE,AI	EC,ME,CV	ME
22ETC15/25B	Green Buildings	3	0	0	AE,EE,CSE,ISE,AI	EC,ME,CV	CV
22ETC15/25C	Introduction to Nano Technology	3	0	0	AE,EE ,CSE,ISE,AI	EC,ME,CV	NanoScience
22ETC15/25D	Introduction to Sustainable Engineering	3	0	0	AE,EE ,CSE,ISE,AI	EC,ME,CV	CV
22ETC15/25E	Renewable Energy Sources	3	0	0	AE,EE ,CSE,ISE,AI	EC,ME,CV	EE,ME
22ETC15/25F	Introduction to Communication Systems	3	0	0	AE,EE ,CSE,ISE,AI	EC,ME,CV	EC
22ETC15/25G	Introduction to Internet of Things (IoT)	3	0	0	AE,EE,CSE,ISE,AI	EC,ME,CV	ISE
22ETC15/25H	Introduction to Cyber Security	3	0	0	AE,EE,CSE,ISE,AI	EC,ME,CV	CSE
22ETC15/25I	Introduction to Solar technology	3	0	0	AE,EE ,CSE,ISE,AI	EC,ME,CV	EE
22ETC15/25J	Introduction to Electric vehicles	3	0	0	AE,EE,CSE,ISE,AI	EC,ME,CV	EE

Programming Language Courses (PLC)

Code	Title	L	Т	Ρ	1 st Semester-Che	2 nd Semester-Phy
22PLC15/25A	Introduction to Web Programming	2	0	2	EC,ME,CV	AE,EE ,CSE,ISE,AI
22PLC15/25B	Introduction to Python Programming	2	0	2	EC,ME,CV	AE,EE ,CSE,ISE,AI
22PLC15/25C	Basics of JAVA programming	2	0	2	EC,ME,CV	AE,EE ,CSE,ISE,AI
22PLC15/25D	Introduction to C++ Programming	2	0	2	EC,ME,CV	AE,EE ,CSE,ISE,AI

• The student has to select one course from the ESC group.

• The students have to opt for the courses from ESC group without repeating the course in either 1st or 2nd semester

• The students must select one course from either ETC or PLC group according to the cycle.

• All students will be undergoing Communicative English in 1 sem and Professional Writing Skills in English in 2 sem.

Credit Definition:	04-Credits courses are to be designed for 50 hours of Teaching-Learning Session
1-hour Lecture (L) per week=1Credit	04-Credits (IC) are to be designed for 40 hours' theory and 12-14 hours of practical
2-hoursTutorial(T) per week=1Credit	sessions
2-hours Practical / Drawing (P) per week=1Credit	03-Credits courses are to be designed for 40 hours of Teaching-Learning Session
2-hous Skill Development Actives (SDA) per week = 1 Credit	02- Credits courses are to be designed for 25 hours of Teaching-Learning Session
	01-Credit courses are to be designed for 12-15 hours of Teaching-Learning sessions

Student's Induction Program: Motivating (Inspiring) Activities under the Induction program – The main aim of the induction program is to provide newly admitted students a broad understanding of society, relationships, and values. Along with the knowledge and skill of his/her study, students' character needs to be nurtured as an essential quality by which he/she would understand and fulfill the responsibility as an engineer. The following activities are to be covered in 21 days. Physical Activity, Creative Arts, Universal Human Values, Literary, Proficiency Modules, Lectures by Eminent People, Visits to Local areas, Familiarization with Department/Branch and Innovation, etc. For details, refer the ANNEXURE-I of Induction Programs notification of the University published at the beginning of the 1st semester.

AICTE Activity Points to be earned by students admitted to BE/ B.Tech. / B. Plan day college program (For more details refer to Chapter 6, AICTE Activity Point Program, Model Internship Guidelines): Over and above the academic grades, every regular student admitted to the 4 years Degree program and every student entering 4 years Degree programs through lateral entry, shall earn 100 and 75 Activity Points respectively for the award of degree through AICTE Activity Point Program. Students transferred from other Universities to the fifth semester are required to earn 50 Activity Points from the year of entry to VTU. The Activity Points earned shall be reflected on the student's eighth semester Grade Card. The activities can be spread over the years, any time during the semester weekends, and holidays, as per the liking and convenience of the student from the year of entry to the program. However, the minimum hours' requirement should be fulfilled. Activity Points (non-credit) do not affect SGPA/CGPA and shall not be considered for vertical progression. In case students fail to earn the prescribed activity Points, an Eighth Semester Grade Card shall be issued only after earning the required activity points. Students shall be admitted for the award of the degree only after the release of the Eighth semester Grade Card.

22MATX11/21 Shall have the 03 hours of theory examination (SEE), however, practical sessions question shall be included in the theory question papers. All 01 Credit- courses shall have the SEE of 01 hours duration and the pattern of the question paper shall be MCQ and or descriptive.

Mathematics for CSE/ ISE stream-I

Course Code	22MATS11	Course type	Integrated	Credits L-T-P	3 - 0- 1
Hours/week: L-T-P	3 - 0 - 2			Total credits	4
Total Contact Hours	L = 40 Hrs; T = 0 Hrs;P = 20 Hrs Total = 60 Hrs			CIE Marks	100
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives				
1.	• Familiarize the importance of calculus associated with one variable and two variables				
	for Computer Science/IS Engineering				
2.	• Analyze Computer Science /IS Engineering problems applying Ordinary Differential				
	Equations.				
3.	• Develop the knowledge of Linear Algebra refereeing to matrices.				

Required Knowledge of : Basic Trigonometry, Calculus, Algebra, Matrices

Unit –	I
--------	---

Contact Hours = 8 Hours

Calculus:

Introduction to polar coordinates and curvature relating to Computer Science/IS and engineering.

Polar coordinates, Polar curves, angle between the radius vector and the tangent, angle between two curves. Pedal equations. Curvature and Radius of curvature - Cartesian,

Parametric, Polar and Pedal forms. Problems

Applications: Computer graphics, Image processing.

(RBT Levels: L1, L2 and L3)

Unit – II

Contact Hours = 8 Hours

Series Expansion and Multivariable Calculus:Introduction to series expansion and partial differentiation in the field of Computer Science/ IS and Engineeringapplications.Taylor's and

Maclaurin's series expansion for one variable (Statement only) -problems. Partial

differentiation, Euler's theorem and problems, total derivative - differentiation of composite functions. Jacobian and problems. Maxima and Minima for a function of two variables. Problems.

Applications: Series expansion in computer programming, Errors and approximations, calculators.

(RBT Levels: L1, L2 and L3).

Unit – III	Contact Hours = 8 Hours			
Ordinary Differential Equations (ODEs) of first order: Introduction to first order ordinary differential equations pertaining to the applications for the Computer Science and Engineering.				
Linear and Bernoulli's differential equations. Exact and reducible to exact differential				
equations - Integrating factors on $\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$, $\frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$. Applications of ODE's –				
Orthogonal Trajectories, Newton's law of cooling.				
Nonlinear differential equations: Introduction to general and singular solutions, Solvable for				
p only, Clairaut's equations, reducible to Clairaut's equations. Problems				
Applications: L-R and C-R circuits, Rate of Growth or Decay, Conduction of heat.				
(RBT Levels: L1, L2 and L3)				
	Contact Hours - 9 Hours			

Unit – IV	Contact Hours = 8 Hours
Linear Algebra: Introduction of linear algebra related to Co	omputer Science/IS Engineering

applications.

Elementary row transformation of a matrix, Rank of a matrix. Consistency and solution of a system of linear equations - Gauss-elimination method, and approximate solution by Gauss-Seidel method. Eigenvalues and Eigenvectors, Rayleigh's power method to find the dominant Eigenvalue and Eigenvector. Introduction to Quadratic and Canonical form.

Applications: Boolean matrix, Network analysis, Markov analysis, critical point of a network system, optimum solution.

(RBT Levels: L1, L2 and L3)

Unit –V

Contact Hours = 8 Hours

Modular arithmetic: Introduction of modular arithmetic and its applications in Computer Science/IS and Engineering.

Introduction to Congruences, Linear Congruences, The Chinese Remainder theorem, Solving Polynomials, Linear Diophantine Equation, System of Linear Congruences, Euler's Theorem, Wilson Theorem and Fermat's little theorem. Applications of Congruences-RSA algorithm. Applications: Cryptography, encoding and decoding, RSA applications in public key encryption.

(RBT Levels: L1, L2 and L3)

Flipped Classroom Details

Unit No.	I	II		IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

Unit No.	No. of Experiments	Topic(s) related to Experiment	
1	1	2D plots for Cartesian and polar curves.	
1	2	Finding angle between polar curves, curvature and radius of curvature	
		of a given curve.	

List of Experiments

2	3	Finding partial derivatives, Jacobian and plotting the graph.	
2	4	Applications to Maxima and Minima of two variables.	
3	5	Solution of first order differential equation and plotting the graphs	
5	6	Finding G.C.D. using euclids algorithm.	
5	7	Applications of Wilsons theorem.	
4	8	Numerical solution of system of linear equations, test for consistency	
		and graphical representation.	
4	9	Solution of system of linear equations using Gauss-Seidel iteration.	
4	10	Compute eigenvalues and eigenvectors and find the largest and smallest	
		eigenvalue by Rayleigh power method.	

Unit	Self-Study Topics
No.	
1	Centre and circle of curvature, evolutes and involutes.
2	Indeterminate forms –L-Hospital's rule, problems Method of Lagrange's undetermined multipliers with single constraint.
3	Applications of ODE's: Solvable for x and y.
4	Gauss-Jordan method, Solution of a system of equations by Gauss-Jacobi iterative method. Inverse of a square matrix by Cayley- Hamilton theorem.
5	Divisibility, GCD, Properties of Prime Numbers, Fundamental theorem of Arithmetic.

	Books
	Text Books:
1.	B. S. Grewal: "Higher Engineering Mathematics", Khanna publishers, 42 ^h Ed., 2021 onwards.
2.	Erwin Kreyszig: "Advanced Engineering Mathematics, John Wiley & Sons Inc., 9 th Edition, 2006 and onwards.
	Reference Books:
1.	B.V. Ramana: "Higher Engineering Mathematics"McGraw-Hill Education, 11 th Ed., 2004 onwards.
2.	Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics"Oxford University Press, 3 rd Ed., 2016 onwards
3	N.P Bali and Manish Goyal:"A textbook of Engineering Mathematics"Laxmi Publications, 10 th Ed., 2022 onwards
4	C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics"McGraw –Hill Book Co., New york, 6 th Ed., 2017 onwards
5	Gupta C.B, Sing S.R and Mukesh Kumar: "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education (India) Pvt. Ltd 2015.
6	H. K. Dass and Er. Rajnish Verma: "Higher Engineering Mathematics"S. Chand
	Publication, 3 rd Ed., 2014.
7	James Stewart: "Calculus" Cengage Publications, 7 th Ed., 2019.

8	David C Lay: "Linear Algebra and its Applications", Pearson Publishers, 4 th Ed., 2018.
9	Gareth Williams:"Linear Algebra with applications", Jones Bartlett Publishers Inc.,
	6 th Ed., 2017.
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	https://nptel.ac.in/courses/111/106/111106051/
2.	https://www.classcentral.com/course/udemy-calculus-3-26232
3	https://nptel.ac.in/courses/111104137
4	https://archive.nptel.ac.in/courses/111/106/111106100/
5	https://nptel.ac.in/courses/111107108
6	https://www.youtube.com/watch?v=ZMDTndFMgks

	Course delivery methods	Assessment methods		
1.	Chalk and Talk		IA tests	
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project	
3.	Flipped Classes	3.	Lab Test	
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination	
5.	Virtual Labs (if present)	EOF	The second	

Course Outcome (COs)

Learning Levels: Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create							
At th	e end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)			
1.	Apply the knowledge of calculus to solve problems related to polar curves and Learn the notion of partial differentiation to compute rate of change multivariate functions	L1, L2 , L3	1				
2.	Get acquainted and to apply modular arithmetic to computer algorithms.	L1, L2, L3	1				
3.	Analyze the solution of linear and non linear ordinary differential equations and Make use of matrix theory for solving for system of linear equations and compute eigen values and eigenvectors.	L1, L2 , L3	1				
4	Familiarize with modern mathematical tool namely MATLAB	L1, L2, L3	5				

Scheme of Continuous Internal Evaluation (CIE) for Integrated course

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test (COMPULSORY) will be part of the CIE. No SEE for Lab.

THEORY (60 marks)		LAB (40 marks)	LAB (40 marks)		
IA test 1	IA test 2	Conduction	Lab test	Total	
30 marks 30 marks		10 marks	30 marks	100 marks	
IA Test:					

Conduct of Lab:

- 1. Conducting the experiment and journal: 5 marks
- 2. Calculations, results, graph, conclusion and Outcome: 5 marks

Lab test: (Batchwise with 15 students/batch)

- 1. Test will be conducted at the end of the semester
- 2. Timetable, Batch details and examiners will be declared by Exam section
- 3. Conducting the experiment and writing report: 5 marks
- 4. Calculations, results, graph and conclusion: 15 marks

5. Viva voce: 10 marks

Eligibility for SEE:

1. Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. Lack of minimum score in IA test will make the student Not Eligible for SEE

2. Student should score minimum 40% of 30 marks (i.e. 12 marks) in Lab test & should score 40% of 40 marks (i.e. 16 marks) in Lab component.

3. Lab test is COMPULSORY

- 4. Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.
- 5. Not eligible in any one of the two components will make the student Not Eligible for SEE

Scheme of Semester End Examination (SEE):

- 1. It will be conducted for 100 marks of 3 hours duration.
- 2. Minimum marks required in SEE to pass: Score should be ≥35 &, however overall score of CIE+SEE should be ≥40%.
- 3. Question paper contains three parts A,B and C. Students have to answer

1. From Part A answer any 5 questions each Question Carries 6 Marks.

- 2. From Part B answer any one full question from each unit and each Question Carries 10 Marks.
- 3. From Part C answer any one full question and each Question Carries 20 Marks.

	CO-PO Mapping (planned)									CO-PSO ping(pla					
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	РО	РО	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	11	12	1	2	3
1	1														
2	1														
3	1														
4					1										
5															
6															
	Tick mark the CO, PO and PSO mapping														

Applied Physics for CSE stream

Course Code	22PHYS12/22	Course type	ASC	Credits L-T-P	3 - 0 - 1
Hours/week: L - T- P	3 - 0 - 2			Total credits	4
Total Contact Hours	L = 40 Hrs; $T = 0$ Hrs; $P = 20$ Hrs Total = 60 Hrs			CIE Marks	100
Flipped Classes content	05 Hours			SEE Marks	100

	Course learning objectives					
1.	To study the essentials of photonics and its application in computer science.					
2.	To study the principles of quantum mechanics and its application in quantum					
	computing.					
3.	To study the electrical properties of materials					
4.	To study the essentials of physics for computational aspects like design and data					
	analysis.					

Required Knowledge of : Basic Physics

Unit – I Laser and Optical Fibers:

Contact Hours = 8 Hours

LASER: Characteristic properties of a LASER beam, Interaction of Radiation with Matter, Einstein's A and B Coefficients and Expression for Energy Density (Derivation), Laser Action, Population Inversion, Metastable State, Requisites of a laser system, Semiconductor Diode Laser, Applications: Bar code scanner, Laser Printer, Laser Cooling (Qualitative), Numerical Problems.

Optical Fiber : Principle and Structure, Propagation of Light, Acceptance angle and Numerical Aperture (NA), Derivation of Expression for NA, Modes of Propagation, RI Profile, Classification of Optical Fibers, Attenuation and Fiber Losses, Applications: Fiber Optic networking, Fiber Optic Communication. Numerical Problems

Unit – II Quantum Mechanics:Contact Hours = 8 Hoursde Broglie Hypothesis and Matter Waves, de Broglie wavelength and derivation of
expression by analogy, Phase Velocity and Group Velocity, Heisenberg's Uncertainty
Principle and its application (Non existence of electron inside the nucleus - Non Relativistic),
Principle of Complementarity, Wave Function, Time independent Schrödinger wave equation
(Derivation), Physical Significance of a wave function and Born Interpretation, Expectation
value, Eigen functions and Eigen Values, Particle inside one dimensional infinite potential
well, Quantization of Energy States, Waveforms and Probabilities. Numerical Problems.

Unit – III Quantum Computing:	Contact Hours = 8 Hours
-------------------------------	--------------------------------

Introduction to Quantum Computing, Moore's law & its end, Differences between Classical & Quantum computing. Concept of qubit and its properties. Representation of qubit by Bloch sphere. Single and Two qubits. Extension to N qubits.

Dirac representation and matrix operations:

Matrix representation of 0 and 1 States, Identity Operator I, Applying I to $|0\rangle$ and $|1\rangle$ states, Pauli Matrices and its operations on $|0\rangle$ and $|1\rangle$ states, Explanation of i) Conjugate of a matrix and ii) Transpose of a matrix. Unitary matrix U, Examples: Row and Column Matrices and their multiplication (Inner Product), Probability, and Quantum Superposition, normalization rule. Orthogonality, Orthonormality. Numerical Problems

Ouantum Gates:

Single Qubit Gates: Quantum Not Gate, Pauli - X, Y and Z Gates, Hadamard Gate, Phase Gate (or S Gate), T Gate

Multiple Qubit Gates: Controlled gate, CNOT Gate, (Discussion for 4 different input states). Representation of Swap gate, Controlled -Z gate, Toffoli gate.

Unit – IV Electrical Properties of Materials and

Contact Hours = 8 Hours

Applications

Electrical Conductivity in metals

Resistivity and Mobility, Concept of Phonon, Matheissen's rule, Failures of Classical Free Electron Theory, Assumptions of Quantum Free Electron Theory, Fermi Energy, Density of States, Fermi Factor, Variation of Fermi Factor With Temperature and Energy. Numerical Problems.

Superconductivity

Introduction to Super Conductors, Temperature dependence of resistivity, Meissner's Effect, Critical Field, Temperature dependence of Critical field, Types of Super Conductors, BCS theory (Qualitative), Quantum Tunneling, High Temperature superconductivity, Josephson Junctions (Qualitative), DC and RF SQUIDs (Qualitative), Applications in Quantum Computing : Charge, Phase and Flux qubits, Numerical Problems.

Unit – V Applications of Physics in computing: Contact Hours = 8 Hours Physics of Animation :

Taxonomy of physics based animation methods, Frames, Frames per Second, Size and Scale, Weight and Strength, Motion and Timing in Animations, Constant Force and Acceleration, The Odd rule, Odd-rule Scenarios, Motion Graphs, Examples of Character Animation : Jumping, Parts of Jump, Jump Magnification, Stop Time, Walking: Strides and Steps, Walk **Timing. Numerical Problems**

Statistical Physics for Computing: Descriptive statistics and inferential statistics, Poisson distribution and modeling the probability of proton decay, Normal Distributions (Bell Curves), Monte Carlo Method: Determination of Value of π . Numerical Problems.

Flipped Classroom Details

Unit No.	Ι	II	III	IV	V		
No. for Flipped	1	1	1	1	1		
Classroom Sessions							

List of Experiments

Unit No.	No. of Experiments	Topic (s) related to Experiment			
1	2	Laser and Optical Fibers			
		1. Determination of wavelength of LASER using Diffraction Grating.			
		2. Determination of acceptance angle and numerical aperture of the			
		given Optical Fiber.			
4	3	Electrical Properties of Materials and Applications			
		1. Determination of Fermi Energy of Copper.			
		2. I-V characteristics of photodiode			
		3. Study the I-V Characteristics of the Given Bipolar Junction			
		Transistor			
	3	1. Study the frequency response of Series & Parallel LCR circuits.			
		2. Identification of circuit elements in a Black Box and determination			
		of values of the components.			
		3. Determination of dielectric constant of the material of capacitor by			
		Charging and Discharging method.			
2	1	Quantum Mechanics			
		Determination of Planck's Constant using LEDs.			
	1	Determination of Energy gap of the given Semiconductor.			
	•	ALL STREET			

Unit	Self-Study Topics
No.	
1	Principle and Construction of Optical Fibers
2	de Broglie Hypothesis and Matter Waves
3	Moore's law & its end
4	Resistivity and Mobility
5	Descriptive statistics and inferential statistics

	Books					
	Text Books:					
1.	M. N. Avadhanulu and P. G. Kshirasagar. A text book of Engineering Physics, S. Chand					
	and company limited, 9 th Revised Edition (2014) and onwards.					
2.	Vishal Sahani, Quantum Computing, McGraw Hill Education, 2007 Edition and onwards.					
3.	Michele Bousquet with Alejandro Garcia, Physics for Animators, CRC Press, Taylor &					
	Francis, 2016 and onwards.					

	Reference Books:
1.	Arthur Beiser, Concepts of Modern Physics, Tata McGraw Hill Publications, 6th Edition
	and onwards
2.	K. Krane, Modern Physics, Wiley, 2 nd edition and onwards.
3	S. O. Pillai, Solid state Physics, New age International Publishers, 6th Edition and onwards.
4	B. B. Laud, Lasers and non linear optics, New age International Publishers, 2 nd Edition
-	and onwards.
5	David Griffiths. Introduction to Electrodynamics, Cambridge University Press 4 th Edition and onwards.
6	Michael A. Nielsen & Isaac L. Chuang, Quantum Computation and Quantum Information,
	Cambridge Universities Press, 2010 Edition and onwards.
7	Parag K Lala Quantum Computing - A Beginner's Introduction, , Indian Edition, Mc
	GrawHill, Reprint 2020 and onwards.
8	Luisa Dalla Chiara, Roberto Giuntini, Roberto Leporini, Giuseppe Sergioli, Quantum
	Computation and Logic: How Quantum Computers Have Inspired Logical
	Investigations, Maria TrendsinLogic, Volume 48, Springer.
9	F. Reif, Statistical Physics: Berkeley Physics Course, Volume 5, McGraw Hill, 2007 and
	onwards.
	E-resourses (NPTEL/SWAYAM, Any Other)- mention links
1	LASER : <u>https://www.youtube.com/watch?v=WgzynezPiyc</u>
2	Superconductivity : <u>https://www.youtube.com/watch?v=MT5X15ppn48</u>
3	Optical Fiber : <u>https://www.youtube.com/watch?v=N_kA8EpCUQo</u>
4	Quantum Mechanics : <u>https://www.youtube.com/watch?v=p7bzE1E5PMY&t=136s</u>
5	Quantum Computing : <u>https://www.youtube.com/watch?v=jHoEjvuPoB8</u>
6	Quantum Computing :https://www.youtube.com/watch?v=ZuvCUU2jD30
7	Physics of Animation : <u>https://www.youtube.com/watch?v=kj1kaA_8Fu4</u>
8	Statistical Physics Simulation : <u>https://phet.colorado.edu/sims/html/plinko-</u>
	probability/latest/plinko-probability_en.html
9	NPTEL Supercoductivity: <u>https://archive.nptel.ac.in/courses/115/103/115103108/</u>
10	NPTEL Quantum Computing : <u>https://archive.nptel.ac.in/courses/115/101/115101092</u>
11	Virtual LAB :https://www.vlab.co.in/participating-institute-amrita-vishwa-vidyapeetham
12	Virtual LAB : <u>https://vlab.amrita.edu/index.php?sub=1&brch=189∼=343&cnt=1</u>
13	http://nptel.ac.in
14	https://swayam.gov.in

	Course delivery methods	Assessment methods			
1.	Chalk and Talk	1.	IA tests		
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project		
3.	Flipped Classes	3.	Lab Test		
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination		
5.	Virtual Labs				

Course Outcome (COs)

Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create

At t	he end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)
1.	Remember the fundamentals of Lasers, Optical fibers, electrical properties, quantum mechanics, quantum computing and physics of animation.	Re	1,12	
2.	Understand the principles of Lasers, Optical fibers, electrical properties, quantum mechanics, quantum computing and physics of animation.	Un	1,12	
3.	Apply the concepts of Lasers, Optical fibers, electrical properties, quantum mechanics, quantum computing and physics of animation to solve engineering problems.	Ар	1,12	
4.	Anayse the experiment in a group, Design and Develop the innovative experiment.	Re, Un, Ap	1,2, 9,12	

Scheme of Continuous Internal Evaluation (CIE) for Integrated course

Learning Levels:

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test (COMPULSORY) will be part of the CIE. No SEE for Lab.

THEORY (60 marks)		LAB (40 marks)		Total	
IA test 1	IA test 2	Conduction	Lab test	- Total	
30 marks	30 marks	10 marks	30 marks	100 marks	
IA Test:					
1. 10 marks quest	tions in Part A of IA	question paper shoul	d also include an OBE rela	ted question	
(max 2 marks).					
2. Remaining 20 r	marks questions in	Part B & C should be o	descriptive.		
Conduct of Lab:					
1. Conducting the	e experiment and jo	ournal: 5 marks			
2. Calculations, re	esults, graph, concl	usion and Outcome: 5	marks		
Lab test: (Batchwise with 15 students/batch)					
1. Test will be cor	1. Test will be conducted at the end of the semester				
2. Timetable, Bate	2. Timetable, Batch details and examiners will be declared by Exam section				
3. Conducting the experiment and writing report: 5 marks					
4. Calculations, results, graph and conclusion: 15 marks					
5. Viva voce: 10 marks					

Eligibility for SEE:

1. Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. Lack of minimum score in IA test will make the student Not Eligible for SEE

2. Student should score minimum 40% of 30 marks (i.e. 12 marks) in Lab test & should score 40% of 40 marks (i.e. 16 marks) in Lab component.

3. Lab test is COMPULSORY

4. Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

5. Not eligible in any one of the two components will make the student **Not Eligible** for SEE

Scheme of Semester End Examination (SEE):

- 1. It will be conducted for 100 marks of 3 hours duration.
- 2. Minimum marks required in SEE to pass should be ≥ 35 out of 100, however overall score of CIE + SEE should be $\geq 40\%$.
- 3. Question paper contains 3 parts A,B & C, wherein students have to answer any 5 out of 7 questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2 questions in part C.

					1	~	TE	TE Y					(CO-PSO)
	CO-PO Mapping (planned)									/lappin					
					1	5/	1		151				(]	planneo	d)
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO	PSO
CO	1	2	3	4	-5	6	7	8	9 🔓	10	11	12	1	2	3
1					1	0	1		16	61	5				
2						1		₽×>	10		1				
3					1	5	Wind a	1000		18					
4					2			2	V	Sec.					
	Tick mark the CO, PO and PSO mapping														

Principles of Programming in C

Course Code	22POP13/23	Course type	Integrated	Credits L-T-P	2 - 0 - 1
Hours/week: L - T- P	2-0-2		Total credits	3	
Total Contact Hours	L = 30 Hrs; T = 0 H	lrs; P = 20 Hrs		CIE Marks	100
	Total = 50 Hrs				100
Flipped Classes	10 Hours			SEE Marks	100
content	10 110013				100

Course learning objectives

1.	Elucidate the basic architecture and functionalities of a Computer Design and Develop Solutions to problems using modular programming constructs such as functions and
	procedures
2.	Apply programming constructs of C language to solve the real-world problems
3.	Explore user-defined data structures like arrays, structures and pointers in implementing solutions to problems .
4.	Design and Develop Solutions to problems using modular programming constructs such as functions and procedures

Required Knowledge of Basics of programming

Unit – I	Contact Hours = 6 Hours
Introduction to C: Introduction to computers, input and output of	evices, designing efficient programs.
Introduction to C, Structure of C program, Files used in a C	program, Compilers, Compiling and
executing C programs, variables, constants, Input/output statem	ents in C, Textbook: Chapter 1.1-1.9,
2.1-2.2, 8.1 - 8.6 ,9.1-9.1	

Unit – II Contact Hours = 6 Hours Operators in C, Type conversion and typecasting. Decision control and Looping statements: Introduction to decision control, Conditional branching statements, iterative statements, nested loops, break and continue statements, goto statement. Textbook: Chapter 9.15-9.16, 10.1-10.6

Unit – III	Contact Hours = 6 Hours					
Functions: Introduction using functions, Function definition, function declaration, function call, return						
statement, passing parameters to functions, scope of varia	bles, recursive functions. Arrays:					
Declaration of arrays, accessing the elements of an array, stori	ng values in arrays, Operations on					
arrays, Passing arrays to functions, two dimensional arrays, ope	rations on two-dimensional arrays,					
two dimensional arrays to functions, applications of arrays. Te	extbook: Chapter 11.1-11.10, 12.1-					
12.10,12.12						

Unit – I	V
----------	---

Contact Hours = 6 Hours

Strings and Pointers: Introduction, string taxonomy, operations on strings, arrays of strings. Pointers: Introduction to pointers, declaring pointer variables, Types of pointers, Passing arguments to functions using pointers Textbook: Chapter 13.1-13.6, 14-14.7

Unit – V	Contact Hours = 6 Hours
Structure, Union: Introduction, structures and functions, U	Unions, unions inside structures,
Enumerated data type. Files: Introduction to files, using files in	C, reading and writing data files. ,
Detecting end of file Textbook: Chapter 15.1 – 15.10, 16.1-16.5	

Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped	2	2	2	2	2
Classroom Sessions					

Unit No.	No. of Experiments	Topic(s) related to Experiment
2	3	 Simulation of a Simple Calculator. Compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages. An electricity board charges the following rates for the use of electricity: for the first 200 units 80 paise per unit: for the next 100 units 90 paise per unit: beyond 300 units Rs 1 per unit. All users are charged a minimum of Rs. 100 as meter charge. If the total amount is more than Rs 400, then an additional surcharge of 15% of total amount is charged.
3	5	 4. Write a C Program to display Pyramid pattern by reading the number of rows as input. 1 2 3 4 5 6 7 8 9 10 5. Implement Binary Search on Integers. 6. Implement Matrix multiplication and validate the rules of multiplication. 7. Compute sin(x) using Taylor series 8. Sort the given set of N numbers using Bubble sort.
4	2	9. Write functions to implement string operations such as compare, concatenate, and find string length. Use the parameter passing

List of Experiments

		techniques. 10. Develop a program using pointers to compute the sum, mean and standard deviation of all elements stored in an array of N real numbers
5	2	11. Implement structures to read, write and compute average- marks of the students, list the students scoring above and below the average marks for a class of N students.
		12. Write a C program to copy a text file to another, read both the input file name and target file name.

Unit No.	Self-Study Topics
1	Data types ,Symbolic constants
2	Evaluation of expressions, operator precedence and associativity
3	Need for user defined functions
4	String handling functions
5	Copying and comparing structure variables

Books	
	Text Books:
1.	1. Computer fundamentals and programming in c, "Reema Thareja", Oxford University, Second
	edition,
	2017.
	Reference Books:
1.	E. Balaguruswamy, Programming in ANSI C, 7th Edition, Tata McGraw-Hill.
2.	Brian W. Kernighan and Dennis M. Ritchie, The 'C' Programming Language, Prentice Hall of
	India.
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	elearning.vtu.ac.in/econtent/courses/video/BS/15PCD23.html
2.	https://nptel.ac.in/courses/106/105/106105171/ MOOC courses can be adopted for more
	clarity in
	understanding the topics and verities of problem solving methods.
3.	https://tinyurl.com/4xmrexre

Course delivery methods		Assessment methods			
1.	Chalk and Talk	1.	IA tests		
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project		
3.	Flipped Classes	3.	Lab Test		
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination		
5.	Virtual Labs (if present)				

Cours	Course Outcome (COs)							
Lear	Learning Levels:							
Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create								
At th	e end of the course, the	Learning	PO(s)	PSO(s)				
stude	ent will be able to	Level	FO(3)	F30(3)				
	To understand the basic		PO1	PSO1				
	architecture and							
CO1	functionalities of a	11						
01	computer and also	L1						
	recognize the hardware							
	parts.							
	Apply programming		PO1,PO2	PSO1				
	constructs like arrays,							
CO2	strings of C language to	L3						
	solve the real world							
	problem.							
	Design and Develop	10	PO3,PO4,PO5,PO10,PO11,PO12	PSO1,PSO2,PSO3				
CO3	Solutions to problems	L4						
	using modular							
	programming constructs.	28/10						

Scheme of Continuous Internal Evaluation (CIE) for Integrated course

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test (COMPULSORY) will be part of the CIE. No SEE for Lab.

THEORY (60 marks)		LAB (40 marks)	Total	
IA test 1	IA test 2	Conduction	Lab test	TOLAI
30 marks	30 marks	10 marks	30 marks	100 marks

IA Test:

1. 10 marks questions in Part A of IA question paper should also include an OBE related question (max 2 marks).

2. Remaining 20 marks questions in Part B & C should be descriptive.

Conduct of Lab:

1. Conducting the experiment and journal: 5 marks

2. Calculations, results, graph, conclusion and Outcome: 5 marks

Lab test: (Batchwise with 15 students/batch)

1. Test will be conducted at the end of the semester

2. Timetable, Batch details and examiners will be declared by Exam section

3. Conducting the experiment and writing report: 5 marks

4. Calculations, results, graph and conclusion: 15 marks

5. Viva voce: 10 marks

Eligibility for SEE:

1. Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. Lack of minimum score in IA test will make the student Not Eligible for SEE

2. Student should score minimum 40% of 30 marks (i.e. 12 marks) in Lab test & should score 40% of 40 marks (i.e. 16 marks) in Lab component.

- 3. Lab test is COMPULSORY
- 4. Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

5. Not eligible in any one of the two components will make the student **Not Eligible** for SEE

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration
2.	Score should be \geq 35% ,however overall score of CIE + SEE should be \geq 40%
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7 questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2 questions in part C.

CO-F	PO Ma	pping	(plann	ed)		/	T	h	1				CO-PS (plan		apping
со	PO 1	РО 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
1	✓				1	Twi	1	11C	1				✓		
2	✓	✓			10	01		1 10	51	20			✓		
3			✓	✓	✓	0	/	~		17	1	✓	✓	✓	✓

Mathematics for CSE/ISE Stream-II

Course Code	22MATS21	Course type	Integrated	Credits L-T-P	3 - 0- 1
Hours/week: L-T-P	3 - 0 - 2		Total credits	4	
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 60 Hrs	Hrs;P = 20 Hrs	CIE Marks	100	
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives							
1.	Familiarize the importance of Integral calculus and Vector calculus essential							
2.	Learn vector spaces and linear transformations.							
3.	Develop the knowledge of numerical method and apply to solve transcendental and							
	Differential equations.							

Required Knowledge of : Basic Trigonometry, Calculus, Algebra, Matrices, I Semester knowledge

Unit – I	Contact Hours = 8 Hours						
Introduction to Integral Calculus in Computer Science/IS& Engineering.							
Multiple Integrals: Evaluation of dou	ble and triple integrals, evaluation of double integrals by						
change of order of integration, changi	change of order of integration, changing into polar coordinates. Applications to find Area and						
Volume by double integral. Problems.							
Beta and Gamma functions: Definit	ions, properties, relation between Beta and Gamma						
functions. Problems.							
Applications: Antenna and wave pror	agation. Calculation of optimum value in various						

Applications: Antenna and wave propagation, Calculation of optimum value in vari geometries. Analysis of probabilistic models. (**RBT Levels: L1, L2 and L3**)

Unit – II	Contact Hours = 8 Hours						
Introduction to Vector Calculus in Computer Science/IS& Engineering.							
Scalar and vector fields. Gradient, directional derivative, curl and divergence - physical							
interpretation, solenoidal and irrotational vector fields. Problems.							
Curvilinear coordinates: Scale factors, base vectors, Cylindrical polar coordinates, Spherical							
polar coordinates, transformation between cartesian and curvilinear systems, orthogonality.							
Problems.							
Applications: Conservation of laws, Electrostatics, Analysis	of stream lines.						

(RBT Levels: L1, L2 and L3)

Unit – III	Contact Hours = 8 Hours
Importance of numerical methods for discrete data in the	field of Computer Science/IS&
Engineering.	

Solution of algebraic and transcendental equations - Regula-Falsi and Newton-Raphson methods (only formulae). Problems.

Finite differences, Interpolation using Newton's forward and backward difference formulae, Newton's divided difference formula and Lagrange's interpolation formula (All formulae without (proof). Problems.

Numerical integration: Trapezoidal, Simpson's $(1/3)^{rd}$ and $(3/8)^{th}$ rules (without proof). Problems.

Applications: Estimating the approximate roots, extremum values, Area, volume, surface area. Errors in finite precision.(**RBT Levels: L1, L2 and L3**)

Unit –IV Contact Hours = 8 Hours

Introduction to various numerical techniques for handling Computer Science/IS& Engineering applications.

Numerical Solution of Ordinary Differential Equations (ODE's):Numerical solution of ordinary differential equations of first order and first degree – Taylor's series method, Modified Euler's method, Runge-Kutta method of fourth order and Milne's predictor-corrector formula (No derivations of formulae). Problems.

Applications: Estimating the approximate solutions of ODE.(RBT Levels: L1, L2 and L3).

 Unit -V
 Contact Hours = 8 Hours

 Importance of Vector Space and Linear Transformations in the field of Computer

 Science/IS & Engineering.

Vector spaces: Definition and examples, subspace, linear span, Linearly independent and dependent sets, Basis and dimension. Problems.

Linear transformations: Definition and examples, Algebra of transformations, Matrix of a linear transformation. Change of coordinates, Rank and nullity of a linear operator, rank-nullity theorem. Inner product spaces and orthogonality. Problems.

Applications: Image processing, AI & ML, Graphs and networks, computer graphics.

(RBT Levels: L1, L2 and L3)

Flipped Classroom Details

Unit No.	I		III	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

List of Experiments

Unit No.	No. of	Topic(s) related to Experiment					
Offic NO.	Experiments	ropic(s) related to Experiment					
1	1	Program to compute area, surface area, volume and centre of gravity					
1	2	Evaluation of improper integrals					
2	3	Finding gradient, divergent, curl and their geometrical interpretation					
5	4	Computation of basis and dimension for a vector space and Graphical					
		representation of linear transformation.					
5	5	Computing the inner product and orthogonality					
3		Solution of algebraic and transcendental equation by Ramanujan's,					
	6	Regula-Falsi and Newton-Raphson method					

3	7	Interpolation/Extrapolation using Newton's forward and backward
		difference formula
3	8	Computation of area under the curve using Trapezoidal, Simpson's $(1/3)^{rd}$ and $(3/8)^{th}$ rule
4	9	Solution of ODE of first order and first degree by Taylor's series and Modified Euler's method
4	10	Solution of ODE of first order and first degree by Runge-Kutta 4th order and Milne's predictor-corrector method

Unit No.	Self-Study Topics
1	Center of gravity, Duplication formula.
2	Volume integral.
3	Ramanujan's method, Bisection method, Lagrange's inverse Interpolation, Weddle's
	rule.
4	Adam-Bashforth method.
5	Angles and Projections. Rotation, reflection, contraction and expansion

	Books
	Text Books:
1	B. S. Grewal: "Higher Engineering Mathematics" Khanna publishers, 44th Ed., 2021.
2	E. Kreyszig: "Advanced Engineering Mathematics" John Wiley & Sons, 10th Ed., 2018.
	Reference Books:
1	V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
2	Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press,
	3rd Ed., 2016.
3	N.P Bali and Manish Goyal: "A textbook of Engineering Mathematics" Laxmi Publications,
	10th Ed., 2022.
4	C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw –HillBook
	Co., Newyork, 6th Ed., 2017.
5	Gupta C.B, Sing S.R and Mukesh Kumar: "Engineering Mathematic for Semester I andII",
	Mc-Graw Hill Education(India) Pvt. Ltd 2015.
6	H. K. Dass and Er. Rajnish Verma: "Higher Engineering Mathematics"S. Chand
	Publication, 3rd Ed., 2014.
7	James Stewart: "Calculus" Cengage Publications, 7th Ed., 2019.
8	David C Lay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018
9	Gareth Williams: "Linear Algebra with applications", Jones Bartlett Publishers Inc., 6 th Ed.,
	2017.

	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1	https://www.youtube.com/watch?v=ksS_yOK1vtk&list=PLbRMhDVUMngfIrZCNOyPZwHUU1pP66vQ
	W&ab_channel=IITKharagpurJuly2018
2	https://www.youtube.com/watch?v=TWAN_T66Cps&list=PLq-
	Gm0yRYwTguDcfylj1ZicXxzdZCAr5S&ab_channel=NumericalMethods
3	https://www.youtube.com/watch?v=zT83sJ5IrEE&list=PLyqSpQzTE6M-
	QT7PvEBHV0iNMvZk9mocO&ab_channel=nptelhrd
4	https://www.youtube.com/watch?v=LJ-
	LoJhbBA4&list=PLbMVogVj5nJQ2vsW_hmyvVfO4GYWaaPp7&ab_channel=nptelhrd
5	

	Course delivery methods	Assessment methods					
1.	Chalk and Talk	1.	IA tests				
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project				
3.	Flipped Classes	3.	Lab Test				
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination				
5. Virtual Labs (if present)							
YE DE L							

	Course Outcome (COs)								
Lear	ning Levels:								
	Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create								
At th	e end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)					
1.	Apply the knowledge of multiple integrals to compute area and volume and Understand the applications of vector calculus refer to solenoidal, irrotational vectors, orthogonal curvilinear coordinates.	L1, L2 and L3	1						
2.	Apply the knowledge of numerical methods in analyzing the discrete data and for solving the physical and engineering problems.	L1, L2 and L3	1						
3.	Demonstrate the idea of Linear dependence and independence of sets in the vector space, and linear transformation.	L1, L2 and L3	1						
4.	Familiarize with modern mathematical tool namely MATLAB	L1, L2 and L3	5						

Scheme of Continuous Internal Evaluation (CIE) for Integrated course

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test (COMPULSORY) will be part of the CIE. No SEE for Lab.

THEORY (60 n	narks)	LAB (40 marks)	LAB (40 marks)					
IA test 1	IA test 2	Conduction	Conduction Lab test					
30 marks	30 marks 10 marks 30 marks							
IA Test:								
1. 10 marks q	uestions in Part A c	of IA question paper s	hould also include an O	BE related question				
(max 2 marks).								
2. Remaining 20 marks questions in Part B & C should be descriptive.								

. Remaining 20 marks questions in Part B & C should be descriptive.

Conduct of Lab:

- 1. Conducting the experiment and journal: 5 marks
- 2. Calculations, results, graph, conclusion and Outcome: 5 marks

Lab test: (Batchwise with 15 students/batch)

- 1. Test will be conducted at the end of the semester
- 2. Timetable, Batch details and examiners will be declared by Exam section
- 3. Conducting the experiment and writing report: 5 marks
- 4. Calculations, results, graph and conclusion: 15 marks

5. Viva voce: 10 marks

Eligibility for SEE:

1. Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. Lack of minimum score in IA test will make the student Not Eligible for SEE

2. Student should score minimum 40% of 30 marks (i.e. 12 marks) in Lab test & should score 40% of 40 marks (i.e. 16 marks) in Lab component.

3. Lab test is COMPULSORY

- 4. Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.
- 5. Not eligible in any one of the two components will make the student Not Eligible for SEE

Sch	Scheme of Semester End Examination (SEE):					
1.	It will be conducted for 100 marks of 3 hours duration.					
2.	Minimum marks required in SEE to pass: Score should be \geq 35 &, however overall score of CIE+SEE should be \geq 40%.					
3.	Question paper contains three parts A(30 marks),B(50 marks) and C (20 marks). 1. From Part A answer any 5 questions each Question Carries 6 Marks.					
	 From Part B answer any one full question from each unit and each Question Carries 10 Marks. From Part C answer any one full question and each Question Carries 20 Marks. 					

	CO-PO Mapping (planned)										CO-PSO ping(pla				
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	РО	РО	PSO	PSO	PSO
co	1	2	3	4	5	6	7	8	9	0	11	12	1	2	3
1	\														
2	1														
3	1														
4					1										
5	5														
6															
	Tick mark the CO, PO and PSO mapping														

Chemistry for Computer Science Engineering

Course Code	22CHES12/22	Course type	Integrated	Credits L-T-P	3 - 0 - 1
Hours/week: L - T- P	3 - 0 - 2		Total credits	4	
Total Contact Hours	L = 40 Hrs; T = 0 H	rs; P = 20 Hrs	CIE Marks	100	
	Total = 60 Hrs				
Flipped Classes	10 Hours	Hours			100
content	1000.0		SEE Marks	100	

	Course learning objectives
1.	To enable students to acquire knowledge on principles of chemistry for
	engineeringapplications.
2.	To develop an intuitive understanding of chemistry by emphasizing the
	relatedbranches of engineering.
3.	To provide students with a solid foundation in analytical reasoning required to solve
	societal problems.

Required Knowledge : Students should have the fundamentals of Chemistry

Unit – I : Sensors and Energy Systems Contact Hours = 8 Hours

Sensors: Introduction, working principle and applications of Conductometric sensors, Electrochemical sensors and Optical sensors. Sensors for the measurement of dissolved oxygen (DO). Electrochemical sensors for the pharmaceuticals, surfactants, hydrocarbons. Electrochemical gas sensors for SOx and NOx. Disposable sensors in the detection of biomolecules and pesticides. Types of electrochemical sensor, Gas sensor - O2 sensor, Biosensor - Glucose sensors.

Energy Systems: Introduction to batteries, construction, working and applications of Lithium ion and Lithium Sulfur battery. Quantum Dot Sensitized Solar Cells (QDSSC's)-Principle, Properties and Applications. Construction, working and applications of Sodium ion batteries.

Unit – II : Materials for Memory and Display Systems	Contact Hours = 8 Hours
--	-------------------------

Memory Devices: Introduction, Basic concepts of electronic memory, History of organic/polymer electronic memory devices, Classification of electronic memory devices, types of organic memory devices (organic molecules, polymeric materials, organic-inorganic hybrid materials).

Display Systems: Photoactive and electroactive materials, Nanomaterials and organic materials used in optoelectronic devices. Liquid crystals (LC's) - Introduction, classification, properties and application in Liquid Crystal Displays (LCD's). Properties and application of Organic Light Emitting Diodes (OLED's), Quantum Light Emitting Diodes (QLED's) and Light emitting electrochemical cells.Properties and functions of Silicon (Si), Germanium (Ge), Copper (Cu), Aluminium (AI), and Brominated flame retardants in computers.

Contact Hours = 8 Hours

Corrosion Chemistry: Introduction, electrochemical theory of corrosion, types of corrosiondifferential metal and differential aeration. Corrosion control - galvanization, anodizing of aluminium and sacrificial anodic method. Corrosion Penetration Rate (CPR) - Introduction and numerical problem.

Electrode System: Introduction, types of electrodes. Ion selective electrode – Introduction, types, construction, working and applications of glass electrode. Determination of pH using glass electrode. Reference electrode - Introduction, calomel electrode – construction, working and applications of calomel electrode. Concentration cell– Definition, construction, working and Numerical problems.

Analytical Techniques: Introduction, principle, instrumentation and applications of Conductometry and Potentiometry. IR and UV- Visible spectroscopy.

Unit – IV : Polymers and Green Fuels Contact Hours = 8 Hours

Polymers: Introduction, Molecular weight - Number average, weight average and numerical problems. Conducting polymers – synthesis and conducting mechanism of polyacetylene and applications. Photoconducting polymer: Synthesis, properties and applications of polyvinylcarbazole (PVK). Synthesis, properties and applications of Acrylonitrile Butadiene Styrene polymer (ABS).

Green Fuels: Introduction, construction and working of solar photovoltaic cell, advantages, and disadvantages. Numericals on solar cells. Generation of energy (green hydrogen) by electrolysis of water and its storage and advantages. Construction, working, and applications of direct methanol-oxygen fuel cell.

|--|

E-Waste: Introduction, sources of e-waste, Composition, Characteristics, and Need of ewaste management. Materials used in manufacturing electronic and electrical products, health hazards due to exposure to e-waste. Recycling and Recovery: Different approaches of recycling (separation, thermal treatments, hydrometallurgical extraction, pyrometallurgical methods, direct recycling). Extraction of gold from E-waste. Role of stake holders in environmental management of e-waste (producers, consumers, recyclers, and statutorybodies).

Impact of heavy metals on environment and human health.

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

Flipped Classroom Details

List of Experiments

	No. of	
Unit No.	Experiments	Topic(s) related to Experiment
1	5	A2. Determination of strength of an acid in Pb-acid battery
		B1. Conductometric estimation of acid mixture
		B2. Potentiometric estimation of FAS using K ₂ Cr ₂ O ₇
		B3. Determination of pKa of vinegar using pH sensor (Glass electrode)
		D1: Evaluation of acid content in beverages by using pH sensors and simulation.
		D2. Construction of photovoltaic cell.
2	3	A3: Synthesis of Nanoparticles
		C3. Estimation of iron in TMT bar by diphenyl amine/external indicator method
		D4. Searching suitable PDB file and target for molecular docking
3	5	A4. Electroless plating of copper on printed circuit board (PCB)
		B4. Determination of rate of corrosion of mild steel by weight loss
		method
		B1. Conductometric estimation of acid mixture
		B2. Potentiometric estimation of FAS using K ₂ Cr ₂ O ₇
		C4. Estimation of Sodium present in soil/effluent sample using flame
		photometry
		B5. Estimation of total hardness of water by EDTA method
4	3	A1. Chemical Structure drawing using software: ChemDraw or
		ACD/ChemSketch
		C2. Determination of Viscosity coefficient of lubricant (Ostwald's
		viscometer)
		D3. Design an experiment to Identify the presence of proteins in given
		sample.
5	2	C1. Estimation of Copper present in electroplating effluent by optical sensor (colorimetry)
		C5. Determination of Chemical Oxygen Demand (COD) of industrial
		waste water sample

	Books				
	Text Books:				
1.	John O'M Bockris and Amulya K. N. Reddy, "Modern Electrochemistry", 2nd Ed. Vol. 2B,				
	Electrodics in Chemistry, Engineering, Biology, and Environmental Science.				
2.	Shashi Chawla, "A text Book of Engineering Chemistry" Dhanpat Rai and Co. (Pvt) Ltd., 3rd Ed.				
	Reprint 2013.				
3.	Monika Jain and P. C. Jain, "Engineering Chemistry" 17th Ed. Dhanpat Rai and Co. (Pvt) Ltd.,				
	2019.				

4.	R. V. Gadag and A. N. Shetty, "Engineering Chemistry", IK International Publishing
	House, New Delhi, 3rd Edition 2014.
5.	B. S. Jai Prakash, R. Venugopal, Shivakumariah and Pushpa Iyengar, "Chemistry for
	Engineering Students", Subhash Stores, Bengaluru, 2014.
	Reference Books:
1.	National Research Council 1995. Expanding the Vision of Sensor Materials.
	Washington, DC: The National Academies Press. https://doi.org/10.17226/4782.
2.	K. Kalyanasundaram, Dye-sensitized Solar Cells, EPFL Press, 03-Aug-2010.
3.	Surana K., Mehra R.M. Quantum Dot Sensitized Solar Cells (QDSSCs). In: Khan
	Z. (eds) Nanomaterials and Their Applications. Advanced Structured Materials, Vol 84.
	Springer, Singapore 2018. https://doi.org/10.1007/978-981-10-6214-8_12
4.	Dr. H. Panda, "Handbook on Electroplating with Manufacture of Electrochemicals", ASIA
	PACIFIC BUSINESS PRESS Inc., 2017.
5.	D. Pletcher, F.C. Walsh, "Industrial Electrochemistry", Springer Netherlands, 2012.
6.	Robert Baboian, "Corrosion Tests and Standards Application and Interpretation", ASTM
	International, 2005.
7.	A.K.Shaha, "Combustion Engineering and Fuel Technology", Oxford & IBH Publishing
	Company.
8.	Fred W. Billmeyer, "Textbook of Polymer Science", 3rd Ed.2007, Wiley Publication.
9.	C. D. Varghese, "Electroplating and other Surface Treatments- A Practical Guide", Tata
	Mcgraw-Hill Publishing Co. Ltd. 3rd Reprint 2003.
10.	EIRI Board of Consultants and Engineers, "Hand Book of Electroplating anodizing and Surface
	EIRI Board of Consultants and Engineers, "Hand Book of Electroplating anodizing and Surface Finishing Technology", Engineers India Research Institute, New Delhi.
10. 11.	
	Finishing Technology", Engineers India Research Institute, New Delhi. V R Gowariker,"Polymer Science",2019, New Age International Publishers. Mars Fontana,"CORROSION ENGINEERING", 2017, McGraw Hill Education.
11.	 Finishing Technology", Engineers India Research Institute, New Delhi. V R Gowariker, "Polymer Science", 2019, New Age International Publishers. Mars Fontana, "CORROSION ENGINEERING", 2017, McGraw Hill Education. E-resourses (NPTEL/SWAYAM Any Other)- mention links
11. 12. 1.	 Finishing Technology", Engineers India Research Institute, New Delhi. V R Gowariker, "Polymer Science", 2019, New Age International Publishers. Mars Fontana, "CORROSION ENGINEERING", 2017, McGraw Hill Education. E-resourses (NPTEL/SWAYAM Any Other)- mention links Electrochemistry: https://nptel.ac.in/downloads/122101001/
11. 12. 1. 2.	 Finishing Technology", Engineers India Research Institute, New Delhi. V R Gowariker, "Polymer Science", 2019, New Age International Publishers. Mars Fontana, "CORROSION ENGINEERING", 2017, McGraw Hill Education. E-resourses (NPTEL/SWAYAM Any Other)- mention links Electrochemistry: https://nptel.ac.in/downloads/122101001/ Polymers: https://nptel.ac.in/courses/113105028/
11. 12. 1.	Finishing Technology", Engineers India Research Institute, New Delhi.V R Gowariker, "Polymer Science", 2019, New Age International Publishers.Mars Fontana, "CORROSION ENGINEERING", 2017, McGraw Hill Education.E-resourses (NPTEL/SWAYAM Any Other)- mention linksElectrochemistry: https://nptel.ac.in/downloads/122101001/Polymers: https://nptel.ac.in/courses/113105028/Chemistry of materials: https://nptel.ac.in/courses/104/103/104103019/
11. 12. 1. 2.	 Finishing Technology", Engineers India Research Institute, New Delhi. V R Gowariker,"Polymer Science",2019, New Age International Publishers. Mars Fontana,"CORROSION ENGINEERING", 2017, McGraw Hill Education. E-resourses (NPTEL/SWAYAM Any Other)- mention links Electrochemistry: https://nptel.ac.in/downloads/122101001/ Polymers: https://nptel.ac.in/courses/113105028/ Chemistry of materials: https://nptel.ac.in/courses/104/103/104103019/ https://www.vlab.co.in/broad-area-chemical-sciences
11. 12. 1. 2. 3.	Finishing Technology", Engineers India Research Institute, New Delhi.V R Gowariker, "Polymer Science", 2019, New Age International Publishers.Mars Fontana, "CORROSION ENGINEERING", 2017, McGraw Hill Education.E-resourses (NPTEL/SWAYAM Any Other)- mention linksElectrochemistry: https://nptel.ac.in/downloads/122101001/Polymers: https://nptel.ac.in/courses/113105028/Chemistry of materials: https://nptel.ac.in/courses/104/103/104103019/https://www.vlab.co.in/broad-area-chemical-scienceshttps://demonstrations.wolfram.com/topics.php
11. 12. 1. 2. 3. 4	 Finishing Technology", Engineers India Research Institute, New Delhi. V R Gowariker,"Polymer Science",2019, New Age International Publishers. Mars Fontana,"CORROSION ENGINEERING", 2017, McGraw Hill Education. E-resourses (NPTEL/SWAYAM Any Other)- mention links Electrochemistry: https://nptel.ac.in/downloads/122101001/ Polymers: https://nptel.ac.in/courses/113105028/ Chemistry of materials: https://nptel.ac.in/courses/104/103/104103019/ https://www.vlab.co.in/broad-area-chemical-sciences
11. 12. 1. 2. 3. 4 5	Finishing Technology", Engineers India Research Institute, New Delhi.V R Gowariker, "Polymer Science", 2019, New Age International Publishers.Mars Fontana, "CORROSION ENGINEERING", 2017, McGraw Hill Education.E-resourses (NPTEL/SWAYAM Any Other)- mention linksElectrochemistry: https://nptel.ac.in/downloads/122101001/Polymers: https://nptel.ac.in/courses/113105028/Chemistry of materials: https://nptel.ac.in/courses/104/103/104103019/https://www.vlab.co.in/broad-area-chemical-scienceshttps://demonstrations.wolfram.com/topics.phphttps://libgen.rs/
11. 12. 1. 2. 3. 4 5 6	Finishing Technology", Engineers India Research Institute, New Delhi. V R Gowariker, "Polymer Science", 2019, New Age International Publishers. Mars Fontana, "CORROSION ENGINEERING", 2017, McGraw Hill Education. E-resourses (NPTEL/SWAYAM Any Other)- mention links Electrochemistry: https://nptel.ac.in/downloads/122101001/ Polymers: https://nptel.ac.in/courses/113105028/ Chemistry of materials: https://nptel.ac.in/courses/104/103/104103019/ https://www.vlab.co.in/broad-area-chemical-sciences https://demonstrations.wolfram.com/topics.php https://interestingengineering.com/science http://libgen.rs/ https://nptel.ac.in/downloads/122101001/
11. 12. 1. 2. 3. 4 5 6 7	Finishing Technology", Engineers India Research Institute, New Delhi.V R Gowariker, "Polymer Science", 2019, New Age International Publishers.Mars Fontana, "CORROSION ENGINEERING", 2017, McGraw Hill Education.E-resourses (NPTEL/SWAYAM Any Other)- mention linksElectrochemistry: https://nptel.ac.in/downloads/122101001/Polymers: https://nptel.ac.in/courses/113105028/Chemistry of materials: https://nptel.ac.in/courses/104/103/104103019/https://www.vlab.co.in/broad-area-chemical-scienceshttps://demonstrations.wolfram.com/topics.phphttps://libgen.rs/
11. 12. 1. 2. 3. 4 5 6 7 8	Finishing Technology", Engineers India Research Institute, New Delhi. V R Gowariker, "Polymer Science", 2019, New Age International Publishers. Mars Fontana, "CORROSION ENGINEERING", 2017, McGraw Hill Education. E-resourses (NPTEL/SWAYAM Any Other)- mention links Electrochemistry: https://nptel.ac.in/downloads/122101001/ Polymers: https://nptel.ac.in/courses/113105028/ Chemistry of materials: https://nptel.ac.in/courses/104/103/104103019/ https://www.vlab.co.in/broad-area-chemical-sciences https://demonstrations.wolfram.com/topics.php https://interestingengineering.com/science http://libgen.rs/ https://nptel.ac.in/downloads/122101001/
11. 12. 1. 2. 3. 4 5 6 7 8 9	Finishing Technology", Engineers India Research Institute, New Delhi.V R Gowariker, "Polymer Science", 2019, New Age International Publishers.Mars Fontana, "CORROSION ENGINEERING", 2017, McGraw Hill Education.E-resourses (NPTEL/SWAYAM Any Other)- mention linksElectrochemistry: https://nptel.ac.in/downloads/122101001/Polymers: https://nptel.ac.in/courses/113105028/Chemistry of materials: https://nptel.ac.in/courses/104/103/104103019/https://www.vlab.co.in/broad-area-chemical-scienceshttps://demonstrations.wolfram.com/topics.phphttps://interestingengineering.com/sciencehttps://interestingengineering.com/sciencehttps://nptel.ac.in/downloads/122101001/https://nptel.ac.in/downloads/122101001/

	9lbHrDMjHWWh
13	https://www.youtube.com/watch?v=j5Hml6KN4TI
14	https://www.youtube.com/watch?v=X9GHBdyYcyo
15	https://www.youtube.com/watch?v=1xWBPZnEJk8
16	https://www.youtube.com/watch?v=wRAo-M8xBHM

Course delivery methods		Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project	
3.	Flipped Classes	3.	Lab Test	
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination	
5.	Virtual Labs (if present)			

	Course Outcome (COs)			
Lea	rning Levels: Re - Remember; Un - Understand; Ap - Apply; An - Analysis; E	v - Evaluate	: Cr - Create	
At th	e end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)
1.	Identify the terms involved in scientific and engineering application processes	Re	1,9	NA
2.	Explain the phenomena of chemistry to describe the methods of engineering processes	Un	1,9,10	NA
3.	Solve the problems in chemistry that are pertinent in engineering applications	Ар	1	NA
4.	Apply the basic concepts of chemistry to explain the chemical properties and processes	Ар	1, 9,10,12	NA
5.	Analyze properties and Processes associated with chemical substances in multidisciplinary situations	An	1, 10,12	NA

Scheme of Continuous Internal Evaluation (CIE) for Integrated course

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test (COMPULSORY) will be part of the CIE. No SEE for Lab.

THEORY (60	marks)	LAB (40 marks)	LAB (40 marks)	
IA test 1	IA test 2	Conduction	Lab test	Total
30 marks	30 marks	10 marks	30 marks	100 marks
IA Test:				
1. 10 marks c	juestions in Part A c	of IA question paper sl	hould also include an O	BE related question
(max 2 marks	5).			
2. Remaining	20 marks questions	s in Part B & C should	be descriptive.	
Conduct of La	ab:			
1. Conducting	g the experiment ar	nd journal: 5 marks		
2. Calculation	ns, results, graph, co	onclusion and Outcom	ie: 5 marks	
Lab test: (Bat	tchwise with 15 stu	dents/batch)		
1 Test will be	e conducted at the	end of the semester		

- 2. Timetable, Batch details and examiners will be declared by Exam section
- 3. Conducting the experiment and writing report: 5 marks
- 4. Calculations, results, graph and conclusion: 15 marks

5. Viva voce: 10 marks

Eligibility for SEE:

1. Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. Lack of minimum score in IA test will make the student Not Eligible for SEE

2. Student should score minimum 40% of 30 marks (i.e. 12 marks) in Lab test & should score

40% of 40 marks (i.e. 16 marks) in Lab component.

- 3. Lab test is COMPULSORY
- 4. Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.
- 5. Not eligible in any one of the two components will make the student Not Eligible for SEE

Scheme of Semester End Examination (SEE):

1. It will be conducted for 100 marks of 3 hours duration.

- 2. Minimum marks required in SEE to pass: Score should be > 35, however overall score of CIE + SEE should be > 40%.
- 3. Question paper contains 3 parts A,B & C, wherein students have to answer any 5 out of 7 questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2 questions in part C.

Non X

CO-PO Mapping (planned)								CO-PSO Mapping (planned)							
со	РО	РО	РО	РО	РО	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	V					4			V	JE					
2	V					X		-	V	V					
3	V							X							
4	V									٧		٧			
5	V								٧	٧		٧			
	Tick mark the CO, PO and PSO mapping														

Computer – Aided Engineering Drawing

Course Code	22CED13/23	Course type	Core	Credits L-T-P	2 – 0- 1
Hours/week: L-T-P	2-0-2	Total credits	3		
Total Contact Hours	L = 30 Hrs; T = 0H Total = 50 Hrs	rs; P = 20Hrs	CIE Marks	100	
Flipped Classes content	10 Hours	SEE Marks	100		

Course learning objectives				
1.	To understand the basic principles and conventions of engineering drawing.			
2.	To use drawing as a communication mode.			
3.	To generate orthographic and pictorial views using CAD software.			
4.	To understand the development of surfaces.			
5.	To visualize engineering components.			

Pre-requisites: Usage of drawing instruments.

General Instructions: 1. Use AUTOCAD software for generating orthographic and pictorial views. 2. Make use of sketch book with blank sheets for manual / preparatory sketching.

Unit – I

Contact Hours = 10 Hours L: 6 hours P: 4 hours

Introduction:(for CIE only)

Significance of Engineering drawing, BIS Conventions of Engineering Drawing, Free hand sketching of engineering drawing, Scales. Introduction to Computer Aided Drafting software, Co-ordinate system and reference planes HP, VP, RPP & LPP in 2D/3D environment. Selection of drawing sheet size and scale. Commands and creation of Lines, coordinate points, axes, polylines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet and curves.

Orthographic Projections of Points, Lines: (for CIE only)

Introduction to Orthographic projections: Orthographic projections of points in 1st and 3rd quadrants. Orthographic projections of lines (Placed in First quadrant only): Simple problem on line (Given one end, true length and true inclinations with respect to both planes, to draw its projections.) **Orthographic projections of planes: (for CIE and SEE)**

Orthographic projections of square, rectangle, hexagon, and circular lamina (Placed in First quadrant and on HP only, using change of position method, and not involving determination of apparent angle of line in the final top view.)

Unit – II	Contact Hours = 10 Hours
	L: 6 hours P: 4 hours
Orthographic Projections of Solids: (for CIE and SEE)	

Orthographic projections of right regular solids: Prisms & Pyramids (square, rectangle, hexagon); Cylinders, Cones; Cube & Tetrahedron (All solids Resting on HP only and not involving determination of apparent angle of axis in the final top view.)

Unit – III	Contact Hours = 10 Hours
	L: 6 hours P: 4 hours

Isometric Projections: (for CIE and SEE)

Isometric scale, Isometric projection of hexahedron (cube), right regular prisms, pyramids (types covered in unit II), cylinders, cones and spheres. Isometric projection of combination of two simple solids when their axes are coinciding.

Conversion of isometric drawings of simple objects / engineering components into orthographic views. (For CIE only)

Unit – IV	Contact Hours = 10 Hours
	L: 6 hours P: 4 hours

Development of Lateral Surfaces of Solids: (for CIE and SEE)

Concept of Section of Solid. Development of lateral surfaces of right regular prisms, pyramids (types covered in unit II), cylinders and cones resting with base on HP only. Development of lateral surfaces of their frustums and truncations with a single section plane only (section plane perpendicular to VP and inclined to HP only). Problems on applications of development of lateral surfaces like funnels and trays.

Unit -V (For CIE Only)

Contact Hours = 10 Hours L: 6 hours P: 4 hours

Multidisciplinary Applications & Practice (For CIE Only): Free hand Sketching: Roads, Buildings, Utensils, Hand tools & Furniture etc. Drawing Simple Mechanisms: Gear trains, Ratchets, Chain and belt drives, etc. Electric Wiring and lighting diagrams: Automatic fire alarm, Call bell system, UPS system. Basic Building Drawing: Architectural floor plan of a two bed room residential building, basic foundation drawing, steel structures- Frames, bridges, trusses. Electronics Engineering Drawings: Simple Electronics Circuit Drawings.

Flipped Classroom Details

Unit No.	X	- 11		IV	V
No. of Flipped Classroom Sessions	2	2	2	2	2

List of Exercises on AUTOCAD during Laboratory sessions

Unit No.	No. of Lab Sessions	Topic(s) related to Exercises
1	1	Introduction, projections of points
1	1	Projections of straight lines
1	2	Projections of planes
2	2	Projections of solids
3	2	Isometric projections
4	2	Development of surfaces

	Books
	Text Books:
1.	K. R. Gopalakrishna, & Sudhir Gopalakrishna: Textbook Of Computer Aided Engineering
	Drawing, 39th Edition, Subash Stores, Bangalore, 2010
2.	S.N. Lal, & T.Madhusudhan: Engineering Visualization, 1st Edition, Cengage Publication, 2012
3.	Parthasarathy N. S., Vela Murali, Engineering Drawing, Oxford University Press, 2015
	Reference Books:
1.	Bhatt, N.D., Engineering Drawing: Plane and Solid Geometry, 53rd edition, Charotar Publishing
	House Pvt. Limited, 2019.
2.	Bhattacharya S. K., Electrical Engineering Drawing, New Age International publishers, second
	edition 1998, reprint 2005.
3.	K. S. Sai Ram, Design of steel structures, Third Edition by Pearson Publication, 2016
	E-resourses (NPTEL/SWAYAM. Any Other)- mention links
1	https://nptel.ac.in/courses/112/105/112105294/
2	https://nptel.ac.in/courses/112/103/112103019/
3	https://nptel.ac.in/courses/105/104/105104148/
4	https://nptel.ac.in/courses/112/102/112102304/
5	Building plans- https://www.designingbuildings.co.uk/wiki/Engineering_drawing
6	Circuits- https://www.smartdraw.com/circuit-diagram/
7	Mechanical Components-http://ecoursesonline.iasri.res.in/mod/page/view.php?id=2474

	Course delivery methods	and and	Assessment methods
1.	Chalk and Talk	1. >	IA tests
2.	PPT and Videos	2.	Assignment/Project
3.	Flipped Classes	3.	CAD Print outs/sketches
4.	Use of simple models (Lamina, solids)	4.	Semester End Examination

	Course Outcome (COs)						
At t	At the end of the course, the student will be able to (Highlight the action verb representing the learning						
	level.)						
Lear	rning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning PO(s		PSO(s)			
An	- Analysis; Ev - Evaluate; Cr - Create	Level	PO(3)	F30(3)			
1.	Visualize and apply basic drafting fundamentals	L3	1	1			
2.	Apply basic concepts to develop construction/drawing techniques	L3	1	1			
3.	Create detailed and standard drawings using CAD tool	L3	1,5	1			

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test (COMPULSORY) will be part of the CIE. No SEE for Lab.

THEORY (60 mar	ks)	LAB (40 marks)	Total	
IA test 1	IA test 2	Conduction	TOTAL	
30 marks	30 marks	10 marks	30 marks	100 marks

IA Test:

1. 10 marks questions in Part A of IA question paper should also include an OBE related question (max 2 marks).

2. Remaining 20 marks questions in Part B & C should be descriptive.

Conduct of Lab:

1. Conducting the experiment and journal: 5 marks

2. Calculations, results, graph, conclusion and Outcome: 5 marks

Lab test: (Batchwise with 15 students/batch)

1. Test will be conducted at the end of the semester

- 2. Timetable, Batch details and examiners will be declared by Exam section
- 3. Conducting the experiment and writing report: 5 marks
- 4. Calculations, results, graph and conclusion: 15 marks

5. Viva voce: 10 marks

Eligibility for SEE:

1. Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. Lack of minimum score in IA test will make the student Not Eligible for SEE

2. Student should score minimum 40% of 30 marks (i.e. 12 marks) in Lab test & should score 40% of 40 marks (i.e. 16 marks) in Lab component.

3. Lab test is COMPULSORY

4. Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

5. Not eligible in any one of the two components will make the student Not Eligible for SEE

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be > 35&, however overall score of
	CIE + SEE should be <u>></u> 40%.
3.	Question paper contains two questions each from unit I to Unit IV each carrying 25 marks.
	Students have to answer one full question from each unit, only by sketching in answer script. (No
	print out)

Articulation matrix

	CO BO Manning (Blanned)								CO-PSO)					
	CO-PO Mapping (Planned)						Марр	oing(Pla	nned)						
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	\checkmark												\checkmark		
2	\checkmark												\checkmark		
3	\checkmark				\checkmark								\checkmark		

Engineering Science Courses

INTRODUCTION TO CIVIL ENGINEERING

Course Code	22ESC141/241	Course type	ESC	Credits L-T-P	3 – 0 - 0
Hours/week: L - T- P	3 - 0- 0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 Hr Total = 40 Hrs	s; P = 0 Hrs	CIE Marks	100	
Flipped Classes content	10 Hours		SEE Marks	100	

	Course learning objectives						
1.	1. To make students learn the scope of various specializations of civil engineering.						
2.	To make students learn the concepts of sustainable infrastructure						
3.	To develop students' ability to analyze the problems involving forces, moments with their applications.						
4.	To develop the student's ability to find out the center of gravity and moment of inertia and their applications.						
L							

Unit – I	NUN	Contact Hours = 8 Hours
Introduction to Civil Engineering:	Surveying, Structural	Engineering, Geotechnical Engineering,
Hydraulics & Water Resources, Trans	sportation Engineering,	Environmental Engineering, Construction
planning & Project management.		2
Desis Materials of Construction, Duis	Comparet Quesentano I	Diata Deterformed & Dre strassed Consults

Basic Materials of Construction: Bricks, Cement & mortars, Plain, Reinforced & Pre-stressed Concrete, Structural steel.

Contact Hours = 8 Hours

Unit – II

Structural elements of a building: Foundation, plinth, lintel, chejja, Masonry wall, column, beam, and slab

Infrastructure & Environment: Introduction to sustainable development, Smart city concept, Introduction to Water Supply and Sanitary system

Introduction to Force: Concept of idealization, system of forces, principles of superposition and transmissibility.

Unit – III	Contact Hours = 8 Hours
Analysis of force systems: Resolution and composition of forces,	Resultant of concurrent and non-
concurrent coplanar force systems, moment of forces, couple, Varigr	non's theorem, free body diagram,
equations of equilibrium, equilibrium of concurrent and non-concu	rrent coplanar force systems and
numerical examples.	

Unit – IV	Contact Hours = 8 Hours
Centroid: Importance of centroid and centre of gravity, methods of d	etermining the centroid,
locating the centroid of plane laminae from first principles, centro	id of built-up sections. Numerical
examples.	

Unit – VContact Hours = 8 HoursMoment of inertia: Importance of Moment of Inertia, method of determining the second moment of
area (moment of inertia) of plane sections from first principles, parallel axis theorem and
perpendicular axis theorem, radius of gyration, moment of inertia of built-up sections, Numerical
Examples.

Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped	02	02	02	02	02
Classroom Sessions					

	Books
	Text Books:
1.	Bansal R. K., Rakesh Ranjan Beohar and Ahmad Ali Khan, "Basic Civil Engineering and Engineering Mechanics" , Laxmi Publications, 2015
2.	Kolhapure B K, "Elements of Civil Engineering and Engineering Mechanics", EBPB, 2014
3.	Bhavikatti S S, "Engineering Mechanics", New Age International Publications, 2019
	Reference Books:
1.	Beer F.P. and Johnston E. R., "Mechanics for Engineers", Statics and Dynamics,, McGraw Hill, 1987
2.	Irving H. Shames, "Engineering Mechanics", Prentice-Hall, 2019
3.	Reddy Vijaykumar K and Suresh Kumar K, "Engineering Mechanics", BS publication, 2011
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	https://www.youtube.com/watch?v=nGfVTNfNwnk&list=PLOSWwFV98rfKXq2KBphJz95rao7q8PpwT
2.	https://www.youtube.com/watch?v=atoP5_DeTPE

	Course delivery methods	Assessment methods			
1.	Chalk and Talk	1.	IA tests		
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)		
3.	Flipped Classes	3.	Open Book Tests (OBT)		
4.	Online classes	4.	Course Seminar		
	No. 1	5.	Semester End Examination		

Lea	Course Outcome (COs) Learning Levels: Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create						
	At the end of the course, the student will be able to Learning PO(s) PSO(s)						
1.	Understand the various disciplines of civil engineering	Un	1	1			
2.	Understand the infrastructure requirement for sustainable development and force system	Un	1,7	1,3			
3.	3. Compute the resultant and equilibrium of force systems. Un & Ap 1,2 1						
4.	4.Locate the centroid of plane and built-up sectionsUn & Ap1,21						
5.	Compute the moment of inertia of plane and built-up sections.	Un & Ap	1,2	1			

Components	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case study	Total
	tests	/Industry/Certification etc)	etc	Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

IA Test:

1. 10 marks questions in Part A of IA question paper should also include an OBE related question (max 2 marks).

2. Remaining 20 marks questions in Part B & C should be descriptive

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

Eligibility for SEE:

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE.

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Scheme of Semester End Examination (SEE):

- 1. It will be conducted for 100 marks of 3 hours duration.
- Minimum marks required in SEE to pass: Score should be ≥ 35% &, however overall score of CIE + SEE should be ≥ 40%.

3. Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7 questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2 questions in part C.

	CO-PO Mapping (Planned)									SO Map Planned					
~	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO	PO	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	V												V		
2	٧						V						٧		٧
3	V	V											V		
4	V	V											V		
5	٧	٧											٧		

Introduction to Electrical Engineering

Course Code	22ESC142/242	Course type	ESC-I	Credits L-T-P	3-0-0
Hours/week: L - T- P	3-0-0		Total credits	3	
Total Contact Hours	L = 40 Hrs; T = 0 $Total = 40 Hrs$	Hrs; $P = 0$ Hrs	CIE Marks	100	
Flipped Classes content	5 Hours		SEE Marks	100	

	Course learning objectives
1.	To understand the basics of typical power system measuring instruments and various power
	generation sources.
2.	To understand the basics of DC and single-phase AC circuits
3.	2. To understand the basics of three phase AC circuits and working, construction, types of three
	phase Induction motor.
4.	To understand the working principle, construction and types of single-phase transformer and
	DC motors.
5.	To understand the working principle of various domestic appliances.

Pre-requisites: Fundamentals of electrical circuits.

Unit – I	Contact Hours = 8 Hours
Typical Electrical System:	A typical power system single line diagram, typical domestic wiring
layout, protection of electric	al systems using fuse & MCB, earthing and energy billing, safety
measures.	
Power Concration Hydel the	ermal solar & wind nower generation (Block Diagram approach)

Power Generation: Hydel, thermal, solar & wind power generation (Block Diagram approach).

Unit – II

Contact Hours = 8 Hours

DC circuits: Ohm's law and Kirchhoff's laws, analysis of series, parallel and series-parallel circuits. Power and energy.

Single-phase AC circuits: Generation of sinusoidal voltage, frequency of generated voltage, average value, RMS value, form factor and peak factor of sinusoidal voltage and currents.

Phasor representation of alternating quantities. Analysis of R, L, C, R-L, R-C and R-L-C circuits with phasor diagrams, Real power, reactive power, apparent power, and Power factor, numerical.

Unit – III	Contact Hours = 8 Hours					
Transformer: Principle of operation, working and construction of single-phase transformer (core and						
shell type), EMF equation, transformation ratio, losses, efficiency, voltage regulation and its						
significance, illustrative problems on EMF equation and efficiency	only, applications of transformers.					
DC Motor: Principle of operation, construction and working, back Emf, torque equation. Shunt and						
series motors, operating characteristics and applications,						

Unit – IV

Contact Hours = 8 Hours

Three-phase AC circuits: Necessity and advantage of 3-phase system. Generation of 3-phase power. Definition of phase sequence. Balanced supply and balanced load. Relationship between line and phase values of balanced star and delta connections. Power in balanced 3-phase circuits. Measurement of 3-phase power by 2-wattmeter method (excluding derivations). Simple Numerical.

Three Phase Induction Motor: Principle of operation, types and constructional features, slip and its significance, applications of squirrel cage and slip ring motors, necessity of a starter, illustrative examples on slip calculations.

Unit – V

Contact Hours = 8 Hours

Measuring instruments: Classification of measuring instruments, essential requirements of an instrument, construction and operation ofdynamometer typewattmeter, electronic energy meter, current transformer and potential transformer.

Domestic Appliances: Construction and working of LED lamps, Ceiling Fan, Water Heater and UPS (Block diagram approach)

Unit No.					
Omt No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	1		1	1	1

	Books				
	Text Books:				
1.	DC Kulshreshtha, Basic Electrical Engineering, Tata McGraw Hill, First Edition 2019.				
2.	B.L.Theraja, A text book of Electrical Technology, S Chandand Company, reprint edition 2014.				
	Reference Books:				
1.	D.P.Kothari and I.J.Nagrath, Basic Electrical Engineering, Tata McGraw Hill 4 th edition, 2019.				
2.	V. K. Mehta, Rohit Mehta, Principles of Electrical Engineering & Electronics, S. Chand and Company				
	Publications, 2 nd edition, 2015.				
	E-resourses (NPTEL/SWAYAM Any Other)- mention links				
1.	www.nptel.ac.in				
2.	https://www.youtube.com/watch?v=rLUyP6g1VNI&list=PL425060D3C78350E1				

	Course delivery methods	Assessment methods			
1.	Chalk and Talk	1. IA tests			
2.	PPT and Videos	2. Online Quizzes (Surprise and Schedule			
3.	Flipped Classes	3. Open Book Tests (OBT)			
		4.	Course Seminar		
		5.	Semester End Examination		

Course Outcome (COs)

At the end of the course, the student will be able to (Highlight the **action verb** representing the learning level.) Learning Levels: Re - Remember; Un - Understand; Ap -Learning **PSO(s)** PO(s) An - Analysis; Ev - Evaluate; Cr - Create Level Apply; 1.12 1 Explain the electrical energy sources, layout and components of electrical power systems, basic concepts of 1. Un Electric circuits and Electromagnetism, basic power system protection and power and energy calculations.

2.	Explain and analyze DC and single phase and three phase AC circuits	An	1,12	1
3.	Explain the types, construction and operation of electrical machines such as DC motor, transformer and induction motor.	Un	1,12	1,2
4.	Explain the performance characteristics of electrical machines and identify the relevant practical applications.	Un	1,12	1,2

Components	Addition of two IA	• • • •	Course project (CP)/ Case study	
tests /		/Industry/Certification etc)	etc	Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

IA Test:

1. 10 marks questions in Part A of IA question paper should also include an OBE related question (max 2 marks).

2. Remaining 20 marks questions in Part B & C should be descriptive

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

Eligibility for SEE:

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE.

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Scl	Scheme of Semester End Examination (SEE):							
1.	It will be conducted for 100 marks of 3 hours duration.							
2.	Minimum marks required in SEE to pass: Score should be \geq 35% &, however overall score of							
	CIE + SEE should be <u>></u> 40%.							
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7							
3.								

	CO-PO Mapping (Planned)											'SO Ma Plannec				
С	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	РО	PO	PSO	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
1	\checkmark											\checkmark	 			
2	\checkmark											\checkmark	\checkmark			
3	\checkmark											\checkmark	\checkmark	~		
4	\checkmark											\checkmark	\checkmark	\checkmark		
	1		Tic	k mar	k the C	CO, PC) and I	PSO m	apping	5	1	1				

Introduction to Electronics Engineering

Course Code	22ESC143/243	Course type	ESC-I	Credits L-T-P	3-0-0
Hours/week: L - T- P	3 - 0 - 0		Total credits	3	
Total Contact Hours	L = 40 Hrs; T = 0 H $Total = 40 Hrs$	CIE Marks	100		
Flipped Classes content	5 Hours	SEE Marks	100		

	Course learning objectives						
1.	To understand working of diodes and transistors, their performance and application as rectifier,						
	amplifier and oscillator.						
2.	To understand working of OPAMP and its applications, and explain the working of commonly						
	used domestic appliances.						
3.	To understand concept of Boolean algebra and Realization of Boolean expressions using logic						
	gates.						
4.	To understand working of various types of Transducers and Sensors						

Pre-requisites: Fundamentals of electronic circuits.

Unit – I **Contact Hours = 8 Hours** Semiconductor Diodes: Introduction, PN Junction diode, Characteristics and Parameters, Diode Applications: Introduction, Half Wave Rectifier, Full Wave Rectifier, Capacitor Filter Circuit, numerical

Zener Diodes: Characteristics and, Zener Diode Voltage Regulator.

Unit – II **Contact Hours = 8 Hours** Bipolar Junction Transistors: Introduction, BJT configurations (CB, CC, CE), modes of operation of BJT.

Amplifiers-Introductions to amplifiers, transistor working as amplifier, R-C coupled amplifiers, types of power amplifiers. Applications of power amplifiers.

Unit – III	2		0	Con	tact]	Hours	= 8 H	ours			
Oscillators-Introduction,	Barkhausen	criterion,	types	of	oscilla	tors,	R-C	phase	shift	oscillato	r,
Crystal oscillators.											
On susting a lower lifting	Tutus du sti su	al. a wa a t. a.	inting .	.c : .	11	1	a4: a a 1			ultime of a	

Operational amplifiers – Introduction, characteristics of ideal and practical op-amp; working of opamp, inverting and non-inverting amplifiers, voltage follower, summer, subtractor, ZCD.

Unit – IV	Contact Hours = 8 Hours					
Digital Electronics: Boolean algebra, binary number system,	logic gates, truth table, operations.					
Realization of Boolean expressions : Introduction, logic diagram and truth table of half adder and full						
adder.						

Unit – V

Contact Hours = 8 Hours

Transducers and Sensors: Introduction, classification, resistance transducer, thermoelectric transducer, photoelectric transducer, hall effect transducer. types of Sensors, proximity sensor, pneumatic sensor, light sensor, thermal sensor.

Flipped Classroom Details

Unit No.	Ι	II	III	IV	V
No. for Flipped Classroom Sessions	1	1	1	1	1

	Books							
	Text Books:							
1.	D P Kothari, I J Nagrath, 'Basic Electronics', 2nd edition, McGraw Hill Education							
	(India),PrivateLimited,2018.							
2.	Robert L. Boylestad, "Electronic devices and circuit Theory", Pearson Education, 9th edition.							
	Reference Books:							
1.	David A. Bell, "Electronic Devices & amp; Circuits", Oxford university press, 5th edition.							
2.	M. Morris Mano, Digital Logic and Computer Design, , PHI Learning, 2008							
	E-resourses (NPTEL/SWAYAM Any Other)- mention links							
1.	www.nptel.ac.in							

	Course delivery methods	Assessment methods			
1.	Chalk and Talk	1. IA tests			
2.	PPT and Videos	2. Online Quizzes (Surprise and Scheduled)			
3.	Flipped Classes	3. Open Book Tests (OBT)			
	54/	4. Course Seminar			
		5. Semester End Examination			
		3. Semester End Examination			

At	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning level.)									
	rning Levels: Re - Remember; Un - Understand; Apply; An - Analysis; Ev - Evaluate; Cr - Create	Learning Level	PO(s)	PSO(s)						
Ар -	Explain the construction, types and operational characteristics of solid-state devices such as PN junction diode, Bipolar Junction Transistor, Operational Amplifier	Un	1,12	3						
2.	Explain the application circuits ofdiodes, transistors &OPAMP circuits & determine the performance parameters.	Ар	1,12	3						
3.	Explain the basic concepts of digital electronic circuit components and performance of logiccircuits.	Un	1,12	3						
4.	Explain the types, working and applications of transducers and sensors.	Un	1,12	3						

Scheme of Continuous Internal Evaluation (CIE) for Theory course

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification etc)	Course project (CP)/ Case study etc	Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

IA Test:

1. 10 marks questions in Part A of IA question paper should also include an OBE related question (max 2 marks).

2. Remaining 20 marks questions in Part B & C should be descriptive

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

Eligibility for SEE:

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE.

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Scł	neme of Semester End Examination (SEE):							
1.	It will be conducted for 100 marks of 3 hours duration.							
2.	Minimum marks required in SEE to pass: Score should be \geq 35% &, however overall score of							
	CIE + SEE should be <u>></u> 40%.							
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7							
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2							
	questions in part C.							

				CO)-PO N	Aappi	ng (Pla	anned)	E	100	1		C		Mappin nned)	ng
С	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
0	1	2	3	4	5	6	ŏ7	8	9	10	11	12	1	2	3	4
1	\checkmark				12.3	1C	5 in ((E		20.		\checkmark			\checkmark	
2	\checkmark					1) 3	< li		18	7	\checkmark			\checkmark	
3	\checkmark					1		with	a han		18	\checkmark			\checkmark	
4	\checkmark					24	(N		Sec.	\checkmark			\checkmark	
5	\checkmark									111		\checkmark			\checkmark	

Introduction to Mechanical Engineering

Course Code	22ESC144/244	Course type	ESC	Credits L-T-P	3 – 0 - 0
Hours/week: L - T- P	3-0-0	Total credits	3		
Total Contact Hours	L = 40 Hrs; T = 0 H	CIE Marks	50		
	Total = 40 Hrs				
Flipped Classes content	05 Hours			SEE Marks	50

	Course learning objectives									
1.	To develop basic Knowledge on Mechanical Engineering, Fundamentals and Energy Sources.									
2.	Understand the concept of different types of Machine tool operations and Modern									
	Manufacturing Processes like CNC, 3D printing.									
3.	To know the concept of IC engines and Future Mobility vehicles.									
4.	To give exposure in the field of Engineering Materials and Manufacturing Processes Technology									
	and its applications									
5.	To acquire a basic understanding role of Mechanical Engineering in the Robotics and									
	Automation in industry.									

Pre-requisites : Basic idea on general engineering concepts

Unit – I	Contact Hours = 8 Hours
Introduction: Role of Mechanical Engineering in Industries a	and Society- Emerging Trends and
Technologies in different sectors such as Energy, Manufacturing,	Automotive, Aerospace, and Marine
sectors.	

Energy: Introduction and applications of Energy sources like Fossil fuels, Nuclear fuels, Hydel, Solar, wind, and bio-fuels, Environmental issues like Global warming and Ozone depletion

Unit – IIContact Hours = 8 HoursMachine Tool Operations: Working Principle of lathe, Lathe operations: Turning, facing, knurling.
Working principles of Drilling Machine, drilling operations: drilling, boring, reaming. Working of
Milling Machine, Milling operations: plane milling and slot milling. (No sketches of machine tools,
sketches to be used only for explaining the operations).

Introduction to Advanced Manufacturing Systems: Introduction, components of CNC, advantages and applications of CNC, 3D printing.

Unit – III

Contact Hours = 8 Hours

Introduction to IC Engines: Components and Working Principles, 4-Strokes Petrol and Diesel Engines, Application of IC Engines.

Insight into Future Mobility: Electric and Hybrid Vehicles, Components of Electric and Hybrid Vehicles. Advantages and disadvantages of EVs and Hybrid vehicles.

Contact Hours = 8 Hours

Engineering Materials: Types and applications of Ferrous & Nonferrous Metals, silica, ceramics, glass, graphite, diamond and polymer. Shape Memory Alloys.

Joining Processes: Soldering, Brazing and Welding, Definitions, classification of welding process, Arc welding, Gas welding and types of flames.

Unit – V							Contact Hours = 8 Hours			
Introduction to	Mechatronics	and	Robotics:	open-loop	and	closed-loop	mechatronic	systems.		

Classification based on robotics configuration: polar cylindrical, Cartesian coordinate and spherical. Application, Advantages and disadvantages. Automation in industry: Definition, types - Fixed, programmable and flexible automation, basic elements with block diagrams, advantages.

Introduction to IOT: Definition and Characteristics, Physical design, protocols, Logical design of IoT, Functional blocks, and communication models.

Flipped Classroom Details									
Unit No.	I	II	III	IV	V				
No. for Flipped Classroom Sessions	1	1V	1	1	1				
	/	WITE OF TO							

	Books
	Text Books:
1.	Elements of Mechanical Engineering, K R Gopala Krishna, Subhash Publications, 2008.
2.	An Introduction to Mechanical Engineering, Jonathan Wickert and Kemper Lewis, Third Edition, 2012.
	Reference Books:
1.	Elements of Workshop Technology (Vol. 1 and 2), Hazra Choudhry and Nirzar Roy, Media Promoters and Publishers Pvt. Ltd., 2010.
2.	Manufacturing Technology- Foundry, Forming and Welding, P.N.Rao Tata McGraw Hill 3rd Ed., 2003.
3.	Internal Combustion Engines, V. Ganesan, Tata McGraw Hill Education; 4th edition, 2017.
4.	Robotics, Appu Kuttan KK K. International Pvt. Ltd, volume 1.
5.	Dr. SRN Reddy, Rachit Thukral and Manasi Mishra, "Introduction to Internet of Things: A Practical Approach", ETI Labs.
6.	Raj kamal, "Internet of Things: Architecture and Design", McGraw hill.
	E-resources (NPTEL/SWAYAM Any Other)- mention links
1.	https://rakhoh.com/en/applications-and-advantages-of-steam-in-manufacturing- and-process- industry/)
2.	https://www.makino.com/en-us/resources/content-library/videos

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)	
3.	Flipped Classes	3.	Open Book Tests (OBT)	
4.	Online classes	4.	Course Seminar	
		5.	Semester End Examination	

At t	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning								
	level.)								
	ning Levels: Re - Remember; Un - Understand; Ap - Apply; Analysis; Ev - Evaluate; Cr - Create	Learning Level	PO(s)	PSO(s)					
1.	Discuss the latest happenings in the area of Mechanical Engineering and its allied fields.	L2	1,12	1					
2.	Explain the fundamentals involved in various manufacturing processes with a basic idea of materials involved.	L2	1,2	1					
3.	Discuss the latest happenings in the field of mobility and IOT.	L2	1,12	1					

Components	Addition of two IA	• • • •	Course project (CP)/ Case study	
•	tests	/Industry/Certification etc)	etc	Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100
IA Test:		STUTE OF TEQU	2	

IA Test:

1. 10 marks questions in Part A of IA question paper should also include an OBE related question (max 2 marks).

2. Remaining 20 marks questions in Part B & C should be descriptive

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

Eligibility for SEE:

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE.

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	neme of Semester End Examination (SEE):					
1.	It will be conducted for 100 marks of 3 hours duration.					
2.	Minimum marks required in SEE to pass: Score should be > 35% &, however overall score of					
	CIE + SEE should be <u>></u> 40%.					
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7 questions					
	in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2 questions in					
	part C.					

	CO-PO Mapping (Planned)										SO Map Plannec				
~	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓											✓	✓		
2	✓	✓											✓		
3	✓											✓	✓		
	Tick mark the CO, PO and PSO mapping														

Introduction to C Programming

Course Code	22ESC145/245	5 Course Integrated		Credits L-T-P	2 - 0 - 1
Hours/week: L - T- P	2-0-2			Total credits	3
Total Contact Hours	L = 30 Hrs; T = 0 Hrs; P = 20 Hrs Total = 50 Hrs			CIE Marks	100
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives								
1.	Elucidate the basic architecture and functionalities of a Computer Design and Develop								
	Solutions to problems using modular programming constructs such as functions and								
	procedures								
2.	Apply programming constructs of C language to solve the real-world problems								
3.	Explore user-defined data structures like arrays, structures and pointers in implementing								
	solutions to problems .								
4.	Design and Develop Solutions to problems using modular programming constructs such as								
	functions and procedures								

Required Knowledge of :

Unit – I	70/200	Contact Hours = 6 Hours
Introduction to C: Introductio	n to computers, input and outp	out devices, designing efficient programs.
Introduction to C, Structure	of C program, Files used in a	a C program, Compilers, Compiling and
executing C programs, variable	les, constants, Input/output sta	tements in C, Textbook: Chapter 1.1-1.9,
2.1-2.2, 8.1 - 8.6, 9.1-9.14	N/V/V	

Unit – II	Contact Hours = 6 Hours						
Operators in C, Type conversion and typecasting. Decision	control and Looping statements:						
Introduction to decision control, Conditional branching statements, iterative statements, nested							
loops, break and continue statements, goto statement. Textbook: Chapter 9.15-9.16, 10.1-10.6							

Unit – IIIContact Hours = 6 HoursFunctions: Introduction using functions, Function definition, function declaration, function call, return
statement, passing parameters to functions, scope of variables, Arrays: Declaration of arrays,
accessing the elements of an array, storing values in arrays, Operations on arrays Textbook: Chapter
11.1-11.13, 12.1-12.6

Unit – IV

....

...

Contact Hours = 6 Hours

Two dimensional arrays, operations on two-dimensional arrays, two-dimensional arrays to functions, Applications of arrays and introduction to strings: Applications of arrays, case study with sorting techniques. Introduction to strings: Reading strings, writing strings, summary of functions used to read and write characters. Textbook: Chapter 12.7-12.12

Contact Hours = 6 Hours

Strings: String taxonomy, operations on strings, Miscellaneous string and character functions, arrays of strings. Pointers: Understanding the Computer's Memory, Introduction to Pointers, Declaring Pointer Variables Structures: Introduction to structures Textbook: Chapter 13.1-13.6, 14.1-14.3, 15.1

Flipped Classroom Details							
Unit No.	I	II	III	IV	V		
No. for Flipped Classroom Sessions	2	2	2	2	2		

No. for Flipped	2	2	2	2	2
Classroom Sessions					
		List of Experimen	ts		
No. of					

Unit No.	No. of Experiments	Topic(s) related to Experiment
1	1	 C Program to find Mechanical Energy of a particle using E = mgh+1/2 mv2.
2	3	 C Program to convert Kilometers into Meters and Centimeters Program to check whether the given number is palindrome or not. Compute sin(x)/cos(x) using Taylor series approximation. Compare you result with the built-in library function. Print both the results with appropriate inferences.
3	1	5. Sort the given set of N numbers using Bubble sort.
4	1	6. Implement Matrix multiplication and validate the rules of multiplication.
5	4	 C Program to Check the Given Character is Lowercase or Uppercase or Special Character. Write functions to implement string operations such as compare, concatenate, string length. Convince the parameter passing techniques Implement structures to read, write and compute average-marks and the students scoring above and below the average marks for a class of N students. Develop a program using pointers to compute the sum, mean and standard deviation of all elements stored in an array of N real numbers.

Unit No.	Self-Study Topics				
1	Data types ,Symbolic constants				
2	Evaluation of expressions, operator precedence and associativity				
3	Need for user defined functions				
4	String handling functions				

Unit – V

Book	KS
	Text Books:
1.	1. Computer fundamentals and programming in c, "Reema Thareja", Oxford University, Second edition, 2017.
	Reference Books:
1.	E. Balaguruswamy, Programming in ANSI C, 7th Edition, Tata McGraw-Hill.
2.	Brian W. Kernighan and Dennis M. Ritchie, The 'C' Programming Language, Prentice Hall of India.
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	elearning.vtu.ac.in/econtent/courses/video/BS/15PCD23.html
2.	https://nptel.ac.in/courses/106/105/106105171/ MOOC courses can be adopted for more clarity in understanding the topics and verities of problem solving methods.
3.	https://tinyurl.com/4xmrexre

Course delivery methods			Assessment methods			
1.	Chalk and Talk	1.	IA tests			
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project			
3.	Flipped Classes	3.	Lab Test			
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination			
5.	Virtual Labs (if present)					

	Course Outcome (COs) Learning Levels:								
Re - F	Remember; Un - Understand; Ap - Apply;	valuate; Cr -	Create						
At th able t	e end of the course, the student will be to	Learning Level	PO(s)	PSO(s)					
CO1	Elucidate the basic architecture and functionalities of a computer and also recognize the hardware parts.	11 11111	PO1	PSO1					
CO2	Apply programming constructs of C language to solve the real world problem	L2,L3	PO1,PO2,P O3	PSO1					
CO3	Design and Develop Solutions to problems using modular programming constructs.	L4	PO3,PO4,P O5,PO10,P O11,PO12	PSO1,PSO2,PS O3					

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test (COMPULSORY) will be part of the CIE. No SEE for Lab.

THEORY (60 mar	ks)	LAB (40 marks)	Total			
IA test 1	IA test 2	Conduction	Lab test	TOtal		
30 marks	30 marks	10 marks	30 marks	100 marks		
IA Test:						
1. 10 marks questions in Part A of IA question paper should also include an OBE related question						
(max 2 marks).						
2. Remaining 20 marks questions in Part B & C should be descriptive.						

Conduct of Lab:

1. Conducting the experiment and journal: 5 marks

2. Calculations, results, graph, conclusion and Outcome: 5 marks

Lab test: (Batchwise with 15 students/batch)

1. Test will be conducted at the end of the semester

2. Timetable, Batch details and examiners will be declared by Exam section

3. Conducting the experiment and writing report: 5 marks

4. Calculations, results, graph and conclusion: 15 marks

5. Viva voce: 10 marks

Eligibility for SEE:

1. Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. Lack of minimum score in IA test will make the student Not Eligible for SEE

2. Student should score minimum 40% of 30 marks (i.e. 12 marks) in Lab test & should score 40% of 40 marks (i.e. 16 marks) in Lab component.

3. Lab test is COMPULSORY

4. Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

5. Not eligible in any one of the two components will make the student Not Eligible for SEE

	A DE CIE S
Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be \geq 35% &, however overall score of
	CIE + SEE should be <u>></u> 40%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out
	of 2 questions in part C.

YI A

CO-I	CO-PO Mapping (planned)							CO-PSO Mapping (planned)							
со	РО	РО	РО	РО	РО	РО	РО	PO	РО	РО	РО	РО	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓												✓		
2	✓	✓											✓		
3			✓	✓	✓								✓	✓	
4			✓	✓	✓								✓	✓	
5			✓	✓	✓					✓	✓	✓	✓	✓	✓
6															
Tick	mark	the CC	, PO a	nd PSC	mapp	oing		1		1		1			

Introduction to Aeronautical Engineering

Course Code	22ESC146/246	Course type	ESC	Credits L-T-P	3 – 0 - 0
Hours/week: L - T- P	3-0-0	Total credits	3		
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	rs; P = 0 Hrs	CIE Marks	100 marks	
Flipped Classes content	10 Hours		SEE Marks	100 marks	

	Course learning objectives						
Stude	Students should						
1.	Understand the history, basic principle of aviation, trends in aerospace Industry.						
2.	2. Understand the basics of flight &aircraft propulsion.						
3.	3. Understand the various flight controls and dynamics of aircraft						
4. Understand different systems of an aircraft							

Unit – I	AUTE OF TE	Contact Hours = 8 Hours
Introduction to Aircrafts	12 SAR	Flipped Classes Content = 2 Hours
History of aviation; History of In	idian Aviation Sector, History	of Unmanned Air Vehicles, Basic

components of an aircraft; structural members; Helicopters, their parts and functions. Introduction to Military Aircraft, Transport Aircraft, Unmanned Aircraft, Classification of aircraft and space vehicles, Classification and Applications of Unmanned Air Vehicles, global and Indian Aircraft scenario. Aircraft materials.

Topics for Flipped Classes: History of aviation; History of Indian Aviation Sector

Unit – II	Contact Hours = 8 Hours				
Basic principles of flight	Flipped Classes Content = 2 Hours				
International standard atmosphere and its properties; significance of speed of sound; Mach number,					
airspeed and groundspeed; Bernoulli's theorem and measurement of airspeed; aerofoil nomenclature,					
Types of Aerofoils, forces acting on Aerofoil, pressure distribution over aerofoil. Centre of pressure,					
Aerodynamic center, Aspect Ratio, Introduction to Lift and drag components. Introduction to wind					
tunnel testing. Introduction to rotary wing aerodynamics.					

Topics for Flipped Classes: Aerofoil nomenclature, Types of Aerofoils

Unit – III	Contact Hours = 8 Hours					
Aircraft Propulsion	Flipped Classes Content = 2 Hours					
classification of Aircraft power plants, Aircraft power plants - basic principles of piston & jet engine						
and Rocket engine, Brayton cycle and its application to gas turbine engines; SFC, TSFC, Specif						
Impulse, Propulsive Efficiency, Thermal efficiency, Overall efficiency, production of thrust						
propellers and jets.						
Topics for Flipped Classes: classification of Aircraft power plants						

Unit – IV	Contact Hours = 8 Hours
Aircraft Performance and Stability	Flipped Classes Content = 2 Hours

Phases of flight, Steady level flight, stalling speed, High lift Devices, Thrust and power curves, Excess power, Range and endurance, Introduction to maneuver and accelerated flight performance. Aircraft axis system; aircraft motions; static and dynamic stability; longitudinal, lateral and directional static stability; Numerical on trim conditions, Effect of wings and Tail configurations on static stability. Introduction to transonic and supersonic flight.

Topics for Flipped Classes: High lift Devices, Aircraft axis system

Unit – V	Contact Hours = 8 Hours					
Aircraft Systems	Flipped Classes Content = 2 Hours					
cockpit instrumentation and displays: Pasis flight control s	ustom & EDW navigation system					

cockpit instrumentation and displays; Basic flight control system & FBW, navigation system, Environment control system and oxygen system, hydraulic and pneumatic systems, fuel system, communication system, APU, Instrument landing system.

Topics for Flipped Classes: APU, Instrument landing system

Unit No.	Self-Study Component
1	Drones (flapping wing, MAV, quad copters)
2	Bernoulli's theorem and its application for generation of lift, Flight regimes.
3	Ramjet, Scramjet
4	Effect of flaps and stats on lift, control tabs, stalling, gliding, landing, turning
5	power generation & Distribution systems

	Books
	Text Books:
1.	John D. Anderson, "Introduction to Flight", McGraw-Hill Education, 2011. ISBN 9780071086059.
2.	Lalit Gupta and O P Sharma, "Fundamentals of Flight Vol-I to Vol-IV", Himalayan Books, 2006, ISBN-13: 978-8170020974
	Reference Books:
1.	Ian Moir, Allan Seabridge, "Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration", John Wiley & Sons, 2011. ISBN 978111965006.
2.	Nelson R.C., "Flight stability and automatic control", McGraw-Hill International Editions, 1998. ISBN 9780071158381.
3.	Sutton G.P., "Rocket Propulsion Elements", John Wiley, New York, 8th Ed., 2011; ISBN: 1118174208, 9781118174203.
	E-resources (NPTEL/SWAYAM Any Other)- mention links
1.	NPTEL: Online Resources: Lecture by: Prof. Rajkumar S. Pant, IIT Bombay
	https://swayam.gov.in/nd1_noc19_ae05/preview_
2.	NPTEL: (Unit III) Online Resources: Lecture by: Prof. Debi Prasad Mishra, IIT Kanpur https://swayam.gov.in/nd1_noc19_ae08/preview

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1. IA tests		
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)	
3.	Flipped Classes	3. Open Book Tests (OBT)		
4.	Online classes	4. Course Seminar		
		5.	Semester End Examination	

	Course Outcome (COs)								
At th	e end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)					
1.	Explain the types of Aircrafts & industries	L2 (Un)	1,12	1,2,3					
2.	Estimate various Aerodynamic forces & Compare various Atmosphere layers properties	L3 (Ap)	1,2,12	1,2,3					
3.	Interpret the air-breathing engines & its components	L2 (Un)	1,12	1,2,3					
4.	Illustrate the basics of flight dynamics, aircraft performance and maneuverability.	L2 (Un)	1,12	1,2,3					
5.	Demonstrate the various systems of aircraft	L2 (Un)	1,9,12	1,2,3					

Components	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case study	Total
	tests	/Industry/Certification etc)	etc	Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

IA Test:

1. 10 marks questions in Part A of IA question paper should also include an OBE related question (max 2 marks).
 2. Remaining 20 marks questions in Part B & C should be descriptive

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

Eligibility for SEE:

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE.

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Scheme of Semester End Examination (SEE):	5
---	---

1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be \geq 35% &, however overall score of
	CIE + SEE should be <u>></u> 40%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7 questions
	in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2 questions in
	part C.

II-

	CO-PO Mapping (Planned)							CO-PSO Mapping (Planned)							
~~~	РО	PO	РО	PO	PO	PO	РО	PO	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	٧											٧	٧	٧	٧
2	٧	V										٧	٧	٧	٧
3	٧											٧	٧	٧	٧
4	٧											٧	٧	٧	٧
5	٧											٧	٧	٧	٧
	Tick mark the CO, PO and PSO mapping														

# Engineering Technology Courses (ETC)

#### **Smart Materials and Systems**

Course Code	22ETC15A	Course type	ETC	Credits L-T-P	3 – 0- 0
Hours/week: L-T-P	3-0-0	Total credits	3		
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	CIE Marks	50		
Flipped Classes content	05 Hours	SEE Marks	50		

	Course learning objectives							
1.	To develop the students ability to learn emerging materials.							
2.	2. To make students to learn prefabricated building components.							
3.	3. To understand the sensors deployed in smart buildings.							
4.	4. To learn building information modelling for building design.							
5.	To learn the concepts of 3D printing.							

Pre-requisites : General idea on engineering materials and building components.

Unit – I	15818	Contact Hours = 8 Hours
Emorging Matorials		

Emerging Materials

Honey comb structure (Carbon composites), Nano-materials, engineered polymers, emerging sustainable by products (Fly ash and GGBS) and construction chemicals, Shape memory alloys.

#### Unit – II

Prefabricated/ Manufactured building components

Definition, types of prefabricated/ manufactured building components and infrastructure, modular coordination, standardization, materials, systems, production, transportation and installation.

Unit – III	Contact Hours = 8 Hours
Smart Materials	

Definition, Principles of Piezo-electricity, materials (Polymers and Ceramics), sensors (Piezo-electric sensor, strain gauge, shear sensor, in-plane and out of plane sensor, accelerometer), smart composites.

Unit – IV

Contact Hours = 8 Hours

**Contact Hours = 8 Hours** 

#### BIM and IBMS BIM:

Definition, Necessity, advantages, BIM in building design, infrastructure design and construction IBMS – Definition, Necessity, advantages, Types of IBMS.

Unit –V Contact Hours = 8 Hours	
---------------------------------	--

#### **3D Printing**

Importance, Historic development, advantages, common terminologies, classification, materials used in 3D printing, Process chain, 3D modelling, Data conversion and transmission, checking and preparation, Building, Post processing, Applications.

Flipped Classroom	Details
-------------------	---------

Unit No.	I	II	III	IV	v
No. for Flipped Classroom Sessions	1	1	1	1	1

	Books									
	Text Books:									
1.	Donald R. Askeland and Pradeep P. Fulay, Essentials of Materials Science and Engineering,									
	2009, Cengage Learning.									
2.	Dr. S. Sathish, Advances in Civil Engineering, 2019, AkiNik Publications.									
3.	Ian Gibson, David Rosen and Brent Stucker, Additive Manufacturing Technologies: 3D Printing,									
	Rapid Prototyping, and Direct Digital Manufacturing, 2014, Springer Nature.									
	Reference Books:									
1.	by Ulrich Knaack, Sharon Chung-Klatte, Rein hard Hassel bach, Prefabricated Systems:									
	Principles of Construction, Birkhauser Publisher.									
	E-resources (NPTEL/SWAYAM Any Other)- mention links									
1.	YouTube Videos.									

	Course delivery methods	b	Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Tests (OBT)
4.	Online classes	4.	Course Seminar
		5.	Semester End Examination

Δ	<b>Course Outcome (COs)</b> At the end of the course, the student will be able to (Highlight the <b>action verb</b> representing the learning level.)										
	ning Levels: Re - Remember; Un - Understand; Ap - Apply; Analysis; Ev - Evaluate; Cr - Create	Learning Level	PO(s)	PSO(s)							
1.	<b>Apply</b> the knowledge of smart materials and other emerging materials to engineering requirements.	L3	1	1							
2.	<i>Implement</i> the knowledge of PFBC, BIM and IBIMS in architecture, engineering, and construction industry to generate better buildings and designs.	L3	1	1							
3.	<i>Practice</i> 3D modeling and 3D printing in manufacturing and building sectors.	L2	1	1							

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification etc)	Course project (CP)/ Case study etc	Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

IA Test:

1. 10 marks questions in Part A of IA question paper should also include an OBE related question (max 2 marks).
 2. Remaining 20 marks questions in Part B & C should be descriptive

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

#### Eligibility for SEE:

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE.

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	neme of Semester End Examination (SEE): 30 ^{TE OF} 760
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be > 35% &, however overall score of
	CIE + SEE should be <u>&gt;</u> 40%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out
	of 2 questions in part C.

	CO-PO Mapping (Planned)								CO-PSO ping(Pla						
6	PO P								PSO	PSO	PSO				
со	1	2	3	4	5	6	7	8	9	0	11	12	1	2	3
1	✓												✓		
2	✓												✓		
3	✓												✓		
	Tick mark the CO, PO and PSO mapping														

#### **Green Buildings**

Course Code	22ETC15B Course type ETC		22ETC15B Course type ETC		22ETC15B Course type ETC		22ETC15B Course type ETC		Credits L-T-P	3 - 0 - 0
Hours/week: L - T- P	3-0-0		Total credits	3						
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	rs; P = 0 Hrs	CIE Marks	100						
Flipped Classes content	10 Hours		SEE Marks	100						

	Course learning objectives
1.	To study the green buildings towards sustainable development and its rating systems
2.	To study the energy efficiency of building constructions
3.	To study various materials used in construction of green buildings
4.	To study the indoor environmental quality of green buildings using various building
	codes.

#### Pre-requisites: Environmental Studies

 Unit – I
 Contact Hours = 8 Hours

 Introduction to the concept of cost effective construction
 -Uses of different types of materials

 and their availability -Stone and Laterite blocks- Burned Bricks- Concrete Blocks- Stabilized Mud

 Blocks- Lime Pozzolana Cement- Gypsum Board- Light Weight Beams- Fiber Reinforced Cement

 Components- Fiber Reinforced Polymer Composite- Bamboo- Availability of different materials 

 Recycling of building materials – Brick- Concrete- Steel- Plastics - Environmental issues related to

 quarrying of building materials.

Unit – IIContact Hours = 8 HoursEnvironment friendly and cost effective Building Technologies - Different substitute for wall<br/>construction Flemish Bond - Rat Trap Bond – Arches – Panels - Cavity Wall - Ferro Cement and Ferro<br/>Concrete constructions – different pre cast members using these materials - Wall and Roof Panels –<br/>Beams – columns - Door and Window frames - Water tanks - Septic Tanks - Alternate roofing<br/>systems - Filler Slab - Composite Beam and Panel Roof -Pre-engineered and ready to use building<br/>elements - wood products - steel and plastic

 Unit – III
 Contact Hours = 8 Hours

 Global Warming – Definition - Causes and Effects - Contribution of Buildings towards Global

 Warming - Carbon Footprint – Global Efforts to reduce carbon Emissions Green Buildings –

 Definition - Features- Necessity – Environmental benefit - Economical benefits - Health and Social

 benefits - Major Energy efficient areas for buildings – Embodied Energy in Materials Green

 Materials - Comparison of Initial cost of Green V/s Conventional Building - Life cycle cost of

 Buildings.

Unit – IV	Contact Hours = 8 Hours				
Green Building Rating Systems- BREEAM – LEED - GREEN STAR -GRIHA (Green Rating for Integrated					
Habitat Assessment) for new buildings – Purpose - Key highlig	hts - Point System with Differential				
weight age. Green Design – Definition - Principles of sustainabl	e development in Building Design -				
Characteristics of Sustainable Buildings – Sustainably manag	ed Materials - Integrated Lifecycle				
design of Materials and Structures (Concepts only)					

Unit	- V			Contac	t Hours = 8	Hours	
Util	ity of Solar Energy in	Buildings					
Utili	ity of Solar energy in	buildings conce	epts of Solar Pas	sive Cooling an	d Heating o	f Buildings	s. Low
Ene	rgy Cooling.						
Gre	en Composites for Bu	uildings					
	Icepts of Green Com	•	Utilisation in Bu	uildings, Low Er	nergy Appro	aches to	Water
	nagement. Manager			-	•••••		
	anEnvironment and (			-	0		0
		-	Flipped Classroo	m Details			
	Unit No.	I		III	IV		v
	No. for Flipped						
	assroom Sessions	02	02	02	02		02
			Books				
	Text Books:		Dooks				
1.	Mike Montoya, "G	Freen Building F	undamentals",	Pearson, USA, 2	010.		
2.	GRIHA version 201	L5, GRIHA rating	system, Green	Rating for Integ	rated Habita	t Assessm	ent.
	Reference Books:	/	HE OF				
1.	IGBC Green Home	s Rating System	, Version 2.0., A	bridged referen	ce guide, 20	)13, Indian	Green
	Building Council P		S/ CIU	2 2 1	Ŭ,	,	
2.	Non-Conventional	Energy Resource	ces by G. D. Rai,	Khanna Publish	ers.		
3.	K.S. Jagadish, B.V.		eddy and K.S. N	anjunda <mark>R</mark> ao, <b>"A</b>	lternative b	uilding ma	aterials
	and technologies'		ol m	VEC			
4.	Sustainable Buildi	ng Design Manu	al, Vol.1 and 2, 1	FERI, New Delhi	2004.		
	E-resourses (NPTE		ny Other) men	tion links	1		
1.	https://www.yout						
		ubeleony water	it ingalozine	- ALE			
2.	https://www.yout	ube.com/watch	?v=DRO_rlkywx	Q			
			X	cer			
	Course delive	ry methods	e	Assess	sment meth	ods	
1.	Chalk and Talk		1.	IA tests			
2.	PPT and Videos		2.	Online Quizze	es (Surprise a	and Sched	uled)
3.	Flipped Classes	d Classes 3. Open Book Tests (OBT)					
4.	Online classes	classes 4. Course Seminar					
			5.	Semester End	Examinatio	n	
			Course Outcome				
Lear	rning Levels: Re - Ren			· · ·	ılysis; Ev - Ev	valuate; Cı	· - Crea
	At the end of th				Learning Level	PO(s)	PSO(
1.	Identify the differen	t building mate	rials for construc	ction	Un	6,7	3

1.	Identify the different building materials for construction	Un	6,7	3
2.	<b>Apply</b> effective environmental friendly building technology in construction	Un	6,7	3
3.	Understand the effect of global warming	Un	6,7	3
4.	Understand the green buildings rating systems	Un	6,7	3
5.	Use alternate source of energy and effective use of water.	Ар	6,7	3

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification etc)	Course project (CP)/ Case study etc	Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

#### IA Test:

1. 10 marks questions in Part A of IA question paper should also include an OBE related question (max 2 marks).

2. Remaining 20 marks questions in Part B & C should be descriptive

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

#### Eligibility for SEE:

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

#### -Lack of minimum score in IA test will make the student Not Eligible for SEE.

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	eme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be > 35% &, however overall
	score of CIE + SEE should be <u>&gt;</u> 40%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out
	of 7 questions in part A, 5 out of 10 questions choosing 1 question from each unit in
	part B & 1 out of 2 questions in part C.

	CO-PO Mapping (Planned)								CO-PSO Mapping (Planned)						
со	РО	РО	РО	РО	РО	РО	РО	PO	PO	PO	РО	РО	PSO	PSO	PSO
co	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1						٧	٧	$\sim$							V
2						٧	٧								V
3						٧	٧								V
4						٧	٧								V
5						V	V								V

#### Introduction to Nano Technology

Course Code	22ETC15C	Course type	ETC	Credits L-T-P	3-0-0
Hours/week: L - T- P	3-0-0		Total credits	3	
Total Contact Hours	L = 40 Hrs; T = 0 Total = 40 Hrs	0 Hrs; P = 0 Hrs	CIE Marks	100	
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives				
1.	To provide a comprehensive overview of synthesis and characterization of nanoparticles,				
	nanocomposites and hierarchical materials with nanoscale features.				
2.	To provide the engineering students with necessary background for understanding various				
	nanomaterials characterization techniques				
3.	To develop an understanding of the basis of the choice of material for device applications				
4.	To give an insight into complete systems where nanotechnology can be used to improve our				
	everyday life				

#### Pre-requisites : Basic science fundamentals

#### Unit – I: Introduction to Nanomaterials

Contact Hours = 8 Hours

Nanotechnology, Frontier of future-an overview, Length Scales, Variation of physical properties from bulk to thinfilms to nanomaterials, Confinement of electron in 0D, 1D, 2D and 3D systems, Surface to Volume Ratio, Synthesis of Nanomaterials: Bottom-Up approach: Chemical Routes for Synthesis of nanomaterials - Sol-gel, Precipitation, Solution Combustion synthesis, Hydrothermal, SILAR, Chemical Bath Deposition. Top-Down approach- Ball milling technique, Sputtering, Laser Ablation

#### Unit - II: Characterization of Nanomaterials

**Contact Hours = 8 Hours** 

Basic principles and instrumentations of Electron Microscopy –Transmission Electron Microscope, Scanning Electron Microscope, Scanning Probes- Scanning Tunneling microscope, Atomic Force Microscope –different imaging modes, comparison of SEM and TEM, AFM and STM, AFM & SEM. Basic principles of working of X-ray diffraction, derivation of Debye-Scherrer equation, numericals on Debye Scherrer equation, Optical Spectroscopy- Instrumentation and application of IR, UV/VIS (Band gap measurement)

#### Unit – III: Carbon Based Materials Contact Hours = 8 Hours

Introduction, Synthesis, Properties (electrical, Electronic and Mechanical), and Applications of Graphene, SWCNT, MWCNT, Fullerenes and other Carbon Materials: Carbon nanocomposites, nanofibres, nanodiscs, nanodiamonds.

#### Unit – IV: Nanotechnology in Energy storage and conversion Contact Hours = 8 Hours

Solar cells: First generation, second generation and third generation solar cells: Construction and working of Dye sensitized and Quantum dot sensitized solar cells.

Batteries: Nanotechnology in Lithium ion battery- working, Requirements of anodic and cathodic materials, classification based on ion storage mechanisms, limitations of graphite anodes, Advances in Cathodic materials, Anodic materials, Separators

Fuel Cells: Introduction, construction, working of fuel cells and nanotechnology in hydrogen storage and proton exchange membranes

Super capacitors: Introduction, construction and working of supercapacitor

#### Unit – V: Applications of Nanotechnology Contact Hours = 8 Hours

Nanotech Applications and Recent Breakthroughs: Introduction, Significant Impact of Nanotechnology and Nanomaterial, Medicine and Healthcare Applications, Biological and Biochemical Applications (Nano biotechnology), Electronic Applications (Nano electronics), Computing Applications (Nano computers), Chemical Applications (Nano chemistry), Optical Applications (Nano photonics), Agriculture and Food Applications, Recent Major Breakthroughs in Nanotechnology.

Nano coatings (Photocatalysts) and super hydrophobic coatings (Lotus effect)

#### **Flipped Classroom Details**

Unit No.	I	II		IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

	Books
	Text Books:
1.	A.K. Bandyopadhyay, Nano Materials –/ New Age Publishers, 2008
2.	C.N.R. Rao, P. John Thomas and G. U. Kulkarni, Nanocrystals: Synthesis, Properties and Applications – SpringerSeries in Materials Science, 2007
3.	T. Pradeep/TMH, Nano Essentials, Mc Graw Hill, 2007
4.	Peter J. F. Harris, Carbon nanotube science: synthesis, properties, and applications. Cambridge UniversityPress, 2011
5.	M.A. Shah, K.A. Shah, "Nanotechnology: The Science of Small", Wiley India, 2013., (ISBN 13: 9788126538683)
	Reference Books:
1.	C. P. Poole and F. J. Owens, Introduction to Nanotechnology, Wiley, 2003
2.	Understanding Nanotechnology, Scientific American 2002
3.	M. Ratner and D. Ratner, Nanotechnology, Prentice Hall 2003
4.	M. Wildon, K. Kannagara, G. Smith, M. Simmons and B. Raguse, Nanotechnology, CRC Press Boca Raton 2002
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	https://nptel.ac.in/courses/118104008
2.	https://www.digimat.in/nptel/courses/video/118104008/L16.html
3.	https://archive.nptel.ac.in/courses/113/106/113106099/
4.	https://nptel.ac.in/courses/112107283
5.	https://onlinecourses.nptel.ac.in/noc22_me131/preview_

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)	
3.	Flipped Classes	3.	Open Book Tests (OBT)	
4.	Online classes	4.	Course Seminar	
		5.	Semester End Examination	

At tl	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning level.)							
Learning Levels: Re - Remember; Un - Understand; Ap - Apply;LearningAn - Analysis; Ev - Evaluate; Cr - CreatePO(s)LevelPO(s)								
1.	Identify techniques used in synthesis and characterization of nanomaterials.	1	1	NA				
2.	Demonstrate the synthesis, characterization and applications of nanomaterials in various fields.	2	1,9, 10, 12	NA				
3.	Solve the numerical problems that are pertaining to nanotechnologies.	3	1	NA				
4.	Analyze the different synthesis and characterization techniques of nanomaterials.	4	1	NA				

Components	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case study	Total
	tests	/Industry/Certification etc)	etc	Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

#### IA Test:

1. 10 marks questions in Part A of IA question paper should also include an OBE related question (max 2 marks).
 2. Remaining 20 marks questions in Part B & C should be descriptive

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

Eligibility for SEE:

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE.

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be $\geq$ 35% &, however overall score of CIE + SEE should be $\geq$ 40%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7 questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2 questions in part C.

	CO-PO Mapping (Planned)									CO-PSO Mapping (Planned)					
~	PO         PO<							PSO	PSO	PSO					
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1 V														
2	٧								V	٧		٧			
3	٧														
4	4 V														
	Tick mark the CO, PO and PSO mapping														

#### INTRODUCTION TO SUSTAINABLE ENGINEERING

Course Code	22ETC15D	Course type	Credits L-T-P	3 – 0 - 0	
Hours/week: L - T- P	3-0-0		Total credits	3	
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	rs; P = 0 Hrs		CIE Marks	100
Flipped Classes content     10 Hours				SEE Marks	100

	Course learning objectives					
1.	To familiarize the students to the area of sustainability and concepts of sustainability engineering					
2.	To enable students with an understanding of principles and frame work of sustainable engineering					
3.	To provide students with an understanding of Life Cycle Assessment tool in sustainable engineering					
4.	To provide students with understanding of integration of sustainability with design.					

#### Pre-requisites: Environmental Studies

 Unit – I
 Contact Hours = 8 Hours

 Sustainable Development and Role of Engineers: Introduction, Why and What is Sustainable
 Development, THE SDFs, Paris Agreement and Role of Engineering, Sustainable Development and the Engineering Profession, Key attributes of the Graduate Engineering.

**Sustainable Engineering Concepts**: Key concepts – Factor 4 and Factor 10: Goals of sustainability, System Thinking, Life Cycle Thinking and Circular Economy

|--|

**Contact Hours = 8 Hours** 

Sustainable Engineering and Concepts, Principles and Frame Work: Green Economy and Low Carbon Economy, Eco Efficiency, Triple bottom Line, Guiding principles of sustainable engineering, Frameworks for sustainable Engineering.

**Tools for sustainability Assessment:** Environmental Management System, Environmental Auditing, Cleaner Production Assessment, Environmental Impact Assessment, Strategic Environmental

#### Unit – III

Contact Hours = 8 Hours

#### Fundamentals of Life Cycle Assessment

Why and What is LCA, LCA Goal and Scope, Life cycle inventory, Life Cycle Impact Assessment, Interpretation and presentation of Results, Iterative Nature of LCA, Methodological Choices, LCI Databases and LCA Softwares, Strength and Limitations of LCA.

#### Unit – IV

Contact Hours = 8 Hours

**Environmental Life Cycle Costing, Social Life Cycle Assessment, and Life Cycle Sustainability Assessment**: Introduction, Environmental Life Cycle Costing, Social Life Cycle Assessment, Life Cycle Sustainability, LCA Applications in Engineering: Environmental Product Declarations and Product Category Rules, Carbon and Water Foot Printing, Energy systems, Buildings and the Built Environment, Chemical and Chemical Production Food and Agriculture

**Introduction to Environmental Economics**: Introduction – What Is Environmental Economics?, Valuing the Environment, Market-based Incentives (or Economic Instruments) for

Sustainability, Command-and-Control versus Economic Instruments, A Simple Model of Pollution Control

Unit – V	Contact Hours = 8 Hours						
Integrating Sustainability in Engineering Design: Problems Solving in Engineering, conventional to							
Sustainable Engineering Design Process, Design for Life Guidelines a	Sustainable Engineering Design Process, Design for Life Guidelines and Strategies, Measuring						
Sustainability, Sustainable Design through sustainable procurement	Sustainability, Sustainable Design through sustainable procurement criteria, Case studies on						
sustainable Engineering Design Process – Sustainable Process Design	, Sustainable Production						
Design Sustainable product design in Electronic Engineering							

Unit No.	I	II	III	IV	v
No. for Flipped Classroom Sessions	02	02	02	02	02

#### **Flipped Classroom Details**

	Books
	Text Books:
1.	Toolseeram Ramjeawon," Introduction to Sustainability for Engineers", CRC Press, 1 st Edn., 2020
2.	"Sustainability Engineering: Concepts, Design and Case studies", Prentice Hall, 1 st Edn, 2015
	Reference Books:
1.	Ni bin Chang, "System Analysis for sustainable Engineering: Theory and applications", McGraw Hill
	Publications,1 st Edn., 2010
2.	"Engineering for Sustainable development: Delivery a sustainable development goals", UNESCO,
	International Centre for Engineering Education, France, 1 st Edn., 2021
3	Rag. R.L. and Ramesh Lakshmi Dinachandran, "Introduction to Sustainable Engineering", PHI Learning
	Pvt. Ltd., 2 nd Edn, 2016
	Shill Ille
	E-resourses (NPTEL/SWAYAM, Any Other)- mention links
1.	https://nptel.ac.in/courses/127105018
2.	https:/https://nptel.ac.in/courses/107103081/ <u>www.macfound.org</u>

Course delivery methods			Assessment methods		
1.	Chalk and Talk	1.	IA tests		
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)		
3.	Flipped Classes	3.	Open Book Tests (OBT)		
4.	Online classes	4.	Course Seminar		
		5.	Semester End Examination		

Lea	Course Outcome (COs) Learning Levels: Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create									
	At the end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)						
1.	Elucidate the basics of sustainable development, sustainable engineering and its role in engineering	2	1,6,7	3						
2.	Application of Sustainable Engineering Concepts and Principles in Engineering	2	1,6,7	3						
3.	Apply the Principle, and methodology of Life Cycle Assessment Tool to engineering systems	2	1,6,7	3						
4.	Understand integration methods of sustainability to Engineering Design	2	1,6,7	3						

Components	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case study	Total
	tests	/Industry/Certification etc)	etc	Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

#### IA Test:

1. 10 marks questions in Part A of IA question paper should also include an OBE related question (max 2 marks).
 2. Remaining 20 marks questions in Part B & C should be descriptive

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

Eligibility for SEE:

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE.

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Scheme of Semester End Examination (SEE):								
1.	It will be conducted for 100 marks of 3 hours duration.							
2.	Minimum marks required in SEE to pass: Score should be > 35% &, however overall							
	score of CIE + SEE should be <u>&gt;</u> 40%.							
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out							
	of 7 questions in part A, 5 out of 10 questions choosing 1 question from each unit in							
	part B & 1 out of 2 questions in part C.							

CO-PO Mapping (Planned)								CO-PSO Mapping (Planned)							
со	РО	РО	РО	РО	PO	РО	РО	РО	РО	PO	PO	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1						٧	٧								V
2						٧	٧								V
3						V	٧								V
4						V	V								V

#### **RENEWABLE ENERGY SOURCES**

Course Code	22ETC15E	Course type	ETC	Credits L-T-P	3 – 0- 0
Hours/week: L-T-P	3-0-0	Total credits	3		
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	CIE Marks	50		
Flipped Classes content	05 Hours		SEE Marks	50	

	Course learning objectives				
1.	To understand energy scenario and their utilizations.				
2.	To explore society's present needs and future energy demands.				
3.	To study the principles of renewable energy conversion systems.				
4.	To exposed to energy conversion methods.				
5.	To exposed to Green Energy concepts.				

Pre-requisites : General idea on Renewable energy sources.

#### Unit – I

#### **Contact Hours = 8 Hours**

#### Introduction :

Principles of renewable energy; energy and sustainable development, fundamentals and social implications. worldwide renewable energy availability, renewable energy availability in India, brief descriptions on solar energy, wind energy, tidal energy, wave energy, ocean thermal energy, biomass energy, geothermal energy, oil shale. Introduction to Internet of energy (IOE).

Unit – II

Contact Hours = 8 Hours

**Solar Energy** :Fundamentals; Solar Radiation; Estimation of solar radiation on horizontal and inclined surfaces; Solar radiation Measurements- Pyrheliometers, Pyrometer, Sunshine Recorder. Solar Thermal systems: Flat plate collector; Solar distillation; Solar pond electric power plant. **Solar electric power generation**- Principle of Solar cell, Photovoltaic system for electric power generation, advantages, disadvantages and applications of solar photovoltaic system.

#### Unit – III

#### Contact Hours = 8 Hours

**Wind Energy**: Properties of wind, availability of wind energy in India, wind velocity and power from wind; major problems associated with wind power, Basic components of wind energy conversion system (WECS); Classification of WECS- Horizontal axis- single, double and multi -blade system. Vertical axis- Savonius and Darrieus types.

**Biomass Energy**: Introduction; Photosynthesis Process; Bio fuels; Biomass Resources; Biomass conversion technologies-fixed dome; Urban waste to energy conversion; Biomass gasification (Downdraft).

Unit – IV

Contact Hours = 8 Hours

**Tidal Power**: Tides and waves as energy suppliers and their mechanics; fundamental characteristics of tidal power, harnessing tidal energy, advantages anal limitations.

**Ocean Thermal Energy Conversion**: Principle of working, OTEC power stations in the world, problems associated with OTEC.

#### Unit –V

#### **Contact Hours = 8 Hours**

**Green Energy** :-Introduction, Fuel Cells, Classification of fuel cells— $H_2$ ; Operating principles, Zero energy Concepts. Benefits of hydrogen energy, hydrogen production technologies (electrolysis method only), hydrogen energy storage, applications of hydrogen energy, problem dissociated with hydrogen energy.

Filpped Classroom Details						
Unit No.	I	Ш	III	IV	V	
No. for Flipped Classroom Sessions	1	1	1	1	1	

	Books					
	Text Books:					
1.	Nonconventional Energy sources, G D Rai, Khanna Publication, Fourth Edition.					
2.	Energy Technology, S.Rao and Dr. B.B. Parulekar, Khanna Publication. Solar energy, Subhas					
2.	P Sukhatme, Tata Mc Graw Hill, 2"Edition, 19	996.				
3.						
	Reference Books:	EOF				
1.	Principles of Energy conversation, A. W. C	- · · · · ·				
2.	Non-("Convention Energy Resources. Shobh.					
	E-resources (NPTEL/SWAYAM Any Other)- mention links					
1.	YouTube Videos.					
2.	Web links and Video Lectures (e-Resources)		201			
3.	Web links and Video Lectures (e-Resources)		NS ZI			
1.	E-bookURL: <u>https://www.pdfdrive.com/non-</u>	conver	ntional-enerey-systems-nptel-			
	d17376903.html	h				
2.	E-book URL: <u>https://www.pdfdrive.com</u>	/renew	vable-energy-sources-and-their-applications-			
	e33423592.html		Rec.			
3.	E-bookURL:https://www.pdtdrive.corn/lectu	ure-not	es-on-renewable-energy-sources-			
	e3433914°9.html	r				
	Course delivery methods		Assessment methods			
1.	Chalk and Talk	1. IA tests				
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)			
3.	Flipped Classes	3.	Open Book Tests (OBT)			
4.	Online classes	4.	Course Seminar			
		5.	Semester End Examination			

	Course Outcome (COs)						
A	At the end of the course, the student will be able to (Highlight the <b>action verb</b> representing the						
	learning level.)						
Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)			
An -	Analysis; Ev - Evaluate; Cr - Create	Level	PO(S)	P30(3)			
1.	Apply the knowledge of smart materials and other emerging	L3	1	1			
1.	materials to engineering requirements.	LS	1	1			

#### **Flipped Classroom Details**

	Implement the knowledge of PFBC, BIM and IBIMS in						
2.	architecture, engineering, and construction industry to generate L3 1 1						
	better buildings and designs.						
2	Practice 3D modeling and 3D printing in manufacturing and	12	1	1			
5.	building sectors.	LZ	Ţ	Ŧ			

#### Scheme of Continuous Internal Evaluation (CIE) for Theory course

Components	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case study	Total
	tests	/Industry/Certification etc)	etc	Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

#### IA Test:

1. 10 marks questions in Part A of IA question paper should also include an OBE related question (max 2 marks).

2. Remaining 20 marks questions in Part B & C should be descriptive

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

71

#### Eligibility for SEE:

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE.

) 0

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	Scheme of Semester End Examination (SEE):					
1.	It will be conducted for 100 marks of 3 hours duration.					
2.	Minimum marks required in SEE to pass: Score should be $\geq$ 35% &, however overall score of					
	CIE + SEE should be <u>&gt;</u> 40%.					
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7					
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out					
	of 2 questions in part C.					

	CO-PO Mapping (Planned)					CO-PSO									
					0-201	паррп	ig (Fiai	meu)					Марр	oing(Pla	nned)
60	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	0	11	12	1	2	3
1	✓												✓		
2	✓												✓		
3	✓												✓		
		1	Ti	ck mar	k the (	со, ро	and P	SO ma	pping			1			

#### INTRODUCTION TO COMMUNICATION SYSTEMS

Course Code	22ETC15F	Course type		Credits L-T-P	3-0-0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	CIE Marks	100		
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives						
1.	To know the basics of Analog and Pulse Modulation Techniques						
2.	To know the Principles of Basic RF Digital Modulation Techniques.						
3.	To understand the working Principle of Transmitters and Receivers used in Communication						
4.	To know the current applications and standards used Digital Communication.						

Pre-requisites: Pre-university Mathematics and Physics.

Unit – IContact Hours = 8 HoursIntroduction to Analog communication systems, General Block diagram of Communication System ,<br/>difference between wired and wireless communication. Analog Modulation its need and types<br/>definition of AM, FM, PM Applications of Each.

Unit – II	Contact Hours = 8 Hours		
Introduction to sampling Theoren	n, Block Diagram of Digital Communication System. Basic RF Digital		
modulation techniques ASK, FSK, PSK (Block Diagram Representation). Definition of MODEM.			
Advantages of Digital Communication over Analog Communication.			

Unit – III	Contact Hours = 8 Hours
Trans receiver used in communication system, Block diagram of A	nalog Transmitters(AM and FM)
What is Heterodyning in communication, Its advantages, Block dia	gram of Analog Superheterodyne
Receivers (AM and FM). Definition of RADAR and its applications.	

Unit – IV	Contact Hours = 8 Hours		
Cellular Communication, Radio communications: satellite communications	nication, microwave		
communication, wireless communication and television broadcasting.			
Communication channels: coaxial cable, twisted pair cable, optica	fibre.		

Unit – V	Contact Hours = 8 Hours
Wired and Wireless Communication – Standards and protocols of	wired - ethernet, SPI, I2C, UART,
CAN (block diagram approach) and wireless communication-Bluet	ooth, WLAN, Zigbee, NFC, Wave
(vehicular communication) (block diagram approach), 4G, 5G.	

#### Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

Text Books:
George Kennedy, Bernard Davis, SRM Prasanna "Electronic Communication System", Tata-
McGraw Hill, 5 th Edition, 2009 onwards.
B Sklar, "Digital Communication Fundamentals and Applications ", 2 nd Edition Pearson
Education , 2009 and onwards.
Reference Books:
Simon Haykin, "Digital Communication", John Wiley, 2005 and onwards
E-resourses (NPTEL/SWAYAM Any Other)- mention links
ATOTE CLAR

	Course delivery methods	Assessment methods
1.	Chalk and Talk	1. IA tests
2.	PPT and Videos	2. Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3. Open Book Tests (OBT)
4.	Online classes	4. Course Seminar
		5. Semester End Examination

	Course Outcome (COs)							
At t	At the end of the course, the student will be able to (Highlight the action verb representing the learning							
	level.)							
Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning		PSO(s)				
An -	Analysis; Ev - Evaluate; Cr – Create	Level	PO(s)	P30(3)				
1.	Appraise the fundamental concepts, principles, theories, and	2	1,2,8,10					
1.	terminology used in the Radio communication systems.	2						
2.	Collaborate effectively within professional teams and		1,2,8,10					
2.	interdisciplinary contexts.	2						
	Apply effective oral, written and visual communication skills to		1,2,8,10					
3.	present a coherent and sustained argument to the public in a	2						
	specialist area.							
	Keep pace with the technological advancements in the relevant		1,2,8,10					
4.	course, to write good technical paper and participate in the	2						
	paper presentation competitions.							

#### Scheme of Continuous Internal Evaluation (CIE) for Theory course

Components	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case study	Total
	tests	/Industry/Certification etc)	etc	Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

IA Test:

1. 10 marks questions in Part A of IA question paper should also include an OBE related question (max 2 marks).

2. Remaining 20 marks questions in Part B & C should be descriptive

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

#### Eligibility for SEE:

#### -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE.

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be > 35% &, however overall score of
	CIE + SEE should be <u>&gt;</u> 40%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2
	questions in part C.
	WITH IT MADE

h

-

	CO-PO Mapping (Planned)							CO-PSO Mapping (Planned)							
~~~	РО	PO	PO	PO	РО	PO	РО	PO	PO	PO	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	\checkmark	✓						✓		\checkmark					
2	\checkmark	✓						✓		\checkmark					
3	✓	✓						✓		√					
4	\checkmark	✓						✓		√					
	Tick mark the CO, PO and PSO mapping														

Introduction to Internet of Things (IoT)

Course Code	22ETC15G	Course type	ETC	Credits L-T-P	3-0-0
Hours/week: L - T- P	3-0-0		Total credits	3	
Total Contact Hours	L = 40 Hrs; T = 0 H	lrs; P = 0 Hrs	CIE Marks	100	
	Total = 40 Hrs				100
Flipped Classes content	10 Hours		SEE Marks	100	

	Course learning objectives
1.	Understand the fundamentals of Internet of Things (IoT) and its building blocks along
	with their characteristics to solve the real world problems.
2.	Understand the recent application of IoT in everyday life
3.	Gain insights about the current trends of Associated IoT Technologies and IoT Analytics

Pre-requisites : Basics of Computer Networking

•

	2
Unit – I	Contact Hours = 8 Hours
Basics of Networking: Introduction, Network Types, Layered	network models Emergence of IoT:
Introduction, Evolution of IoT, Enabling IoT and the Complex I	Interdependence of Technologies, IoT
Networking Components	
Textbook 1: Chapter 1- 1.1 to 1.3 Chapter 4 – 4.1 to 4.4	

1

26.

Unit – II	Contact Hours = 8 Hours
IoT Sensing and Actuation: Introduction, Sensors, Sensor Charac	cteristics, Sensorial Deviations, Sensing
Types, Sensing Considerations, Actuators, Actuator Types, Actuat	or Characteristics.
Textbook 1: Chapter 5 – 5.1 to 5.9	

and the second	
Unit – III	Contact Hours = 8 Hours
IoT Processing Topologies and Types: Data Format, Importar	nce of Processing in IoT, Processing
Topologies, IoT Device Design and Selection Considerations, Proce	essing Offloading.
Textbook 1: Chapter 6 – 6.1 to 6.5	

Unit – IV	Contact Hours = 8 Hours
ASSOCIATED IOT TECHNOLOGIES Cloud Computing: Introduction,	Virtualization, Cloud Models, Service-
Level Agreement in Cloud Computing, Cloud Implementation, Sen	sor-Cloud: Sensors-as-a-Service.
IoT CASE STUDIES Agricultural IoT – Introduction and Case Studies	5
Textbook 1: Chapter 10– 10.1 to 10.6; Chapter 12- 12.1-12.2	

Unit – V	Contact Hours = 8 Hours
IOT CASE STUDIES AND FUTURE TRENDS : Vehicular IOT – Introduct	tion, Healthcare IoT – Introduction,
Case Studies IoT Analytics – Introduction	
Textbook 1: Chapter 13– 13.1; Chapter 14- 14.1-14.2; Chapter 17-	17.1

Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

	Books						
	Text Books:						
1.	Sudip Misra, Anandarup Mukherjee, Arijit Roy, "Introduction to IoT", Cambridge University Press						
	2021.						
	Reference Books:						
1.	Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on-Approach)",1st Edition, VPT,						
	2014						
2.	S. Misra, C. Roy, and A. Mukherjee, 2020. Introduction to Industrial Internet of Things and						
	Industry 4.0. CRC Press.						
	E-resourses (NPTEL/SWAYAM Any Other)- mention links						
1.	https://nptel.ac.in/noc/courses/noc19/SEM1/noc19-cs31/						

	Course delivery m	ethods	(D) C	Assessment methods			
1.	Chalk and Talk	1681	1.	IA tests			
2.	PPT and Videos	25/10	2.	Online Quizzes (Surprise and Scheduled)			
3.	Flipped Classes	48	3.	Open Book Tests (OBT)			
4.	Online classes	0	4.	Course Seminar			
		1150	< 5.₽	Semester End Examination			

At 1	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning level.)										
	Learning Levels: Re - Remember; Un - Understand; Ap -LearningPO(s)PSO(s)Apply;An - Analysis; Ev - Evaluate; Cr - CreateLevelPO(s)PSO(s)										
1.	Describe the evolution of IoT, IoT networking components, and addressing strategies in IoT.	Re	PO2	PSO1							
2.	Classify various sensing devices and actuator types	Un	PO2,PO6	PSO1,PSO2							
3.	Demonstrate the processing in IoT	Ар	PO4	PSO2							
4.	Explain Associated IoT Technologies	Re	PO1,PO2	PSO2							
5.	Illustrate architecture of IOT Applications	Un	PO1,PO2,PO6	PSO1,PSO2							

Scheme of Continuous Internal Evaluation (CIE) for Theory course

Components	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case study	Total
	tests	/Industry/Certification etc)	etc	Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

IA Test:

1. 10 marks questions in Part A of IA question paper should also include an OBE related question (max 2 marks).

2. Remaining 20 marks questions in Part B & C should be descriptive

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

Eligibility for SEE:

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE.

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sche	me of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be \geq 35% &, however overall score of
	CIE + SEE should be <u>></u> 40%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2
	questions in part C.
	AND COL

	CO-PO Mapping (Planned)								CO-PSO Mapping (Planned)						
~~~	РО	РО	РО	РО	РО	PO	РО	PO	PO	PO	PO	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		V			11	)	1		>		11		٧		
2		V				V	119	i a l	0		1		V	٧	
3				V	1					1				٧	
4	٧	V				254	1		/	LLK.				٧	
5	٧	V				V	2		14					V	
			Ti	ck mai	k the	со, ро	and P	SO ma	pping						

#### **Introduction to Cyber Security**

Course Code	de 22ETC15H Course type Theory				3
Hours/week: L-T-P	3-0-0		<b>CIE Marks</b>	100	
Total Contact Hours	L = 40Hrs; T = 0 Total = 40Hrs	L = 40Hrs; T = 0 Hrs; P = 0 Hrs Total = 40Hrs			
Flipped Classes content	10 Hours				

Cour	Course learning objectives							
1.	To understanding cybercrime, offences and botnets terminologies and perspectives.							
2.	To realize phishing and computer forensics.							
3.	To gain knowledge on tools and methods used in cybercrimes.							

#### Required Knowledge of: Basics knowledge of Networking

Unit – I	Contact Hours = 8 Hours	
Introduction to Cybercrime:		
Cybercrime: Definition and Origins	s of the Word, Cybercrime, and Information Security,	who are
Cybercriminals? Classifications of Cy	bercrimes, An Indian Perspective, Hacking and Indian Lav	vs, Global
Perspectives.		
Toythook 1 Chapter 1 (11 to 15 17	10	

Textbook:1 Chapter 1 (1.1 to 1.5, 1.7-1.9)

Unit – II

Cyber Offenses:

Contact Hours = 8 Hours

How Criminals Plan Them: Introduction, how criminals plan the attacks, Social Engineering, Cyber Stalking, Cyber-caafe & cybercrimes. Botnets: The fuel for cybercrime, Attack Vector.

Textbook:1 Chapter 2 (2.1 to 2.7)

Unit – III	Contact Hours = 8 Hours
Tools and Methods used in Cybercrime: Introduction, Proxy Service	vers, Anonymizers, Phishing, Password
Cracking, Key Loggers and Spyways, Virus and Worms, Trozen Hor	rses and Backdoors, Steganography, DoS
and DDOS Attackes, Attacks on Wireless networks.	
Textbook:1 Chapter 4 (4.1 to 4.9, 4.12)	

Unit – IV

**Contact Hours = 8 Hours** 

Phishing and Identity Theft: Introduction, methods of phishing, phishing, phising techniques, spear phishing, types of phishing scams, phishing toolkits and spy phishing, counter measures, Identity Theft. **Textbook:1 Chapter 5 (5.1. to 5.3)** 

Unit –V

**Contact Hours = 8 Hours** 

Understanding Computer Forensics: Introduction, Historical Background of Cyberforensics, Digital Foresics Science, Need for Computer Foresics, Cyber Forensics and Digital Evidence, Digital Forensic Life cycle, Chain of Custody Concepts, network forensics.

Textbook:1 Chapter 7 (7.1. to 7.5, 7.7 to 7.9)

#### Flipped Classroom Details

Unit No.	Ι	II	III	IV	V	
No. for Flipped Classroom Sessions	2	2	2	2	2	

Unit No.	Self-Study Topics
1	Cyber Security a Business Trip
2	A Construction Company Gets Hammered by A Keylogger
3	Stolen Hospital Laptop Causes Heartburn
4	Hotel CEO Finds Unwelcome Guests in Email Account
5	A Dark Web of Issues for A Small Government Contractor

Boo	oks
	Textbooks:
1.	Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)
	1. Sunit Belapure and Nina Godbole, "Cyber Security: Understanding Cyber Crimes, Computer
	Forensics and Legal Perspectives", Wiley India Pvt Ltd, ISBN: 978-81- 265-21791, 2011, First Edition
	(Reprinted 2018).

Cou	rse delivery methods	Ass	Assessment methods				
1.	Chalk and Talk	0 1	IA tests 🙎				
2.	PPT and Videos	0 2.	Open Book Assignments (OBA)/ Lab Project				
3.	Flipped Classes	3.	Lab Test				
4.	Virtual Labs (if present)	) 4.	Semester End Examination				

Cours	se Outcome (COs)				
Lear	ning Levels:	1	. Marke		
Re - I	Remember; Un - Understand; Ap – A	- Analysis; Ev - Evaluate; Cr	- Create		
At the	e end of the course, the student will	Learning	PO(s)	PSO(s)	
be abl	le to	Level	10(3)	PSO(S)	
CO1	To understand phishing and	L2	PO1, PO2, PO4, PO5, PO7,	PSO1, PSO2,	
COI	computer forensics.	L2	PO8, PO9, PO10, PO12	PSO3	
<u> </u>	To realize phishing and	1.2	PO1, PO3	PSO1	
CO2	computer forensics.	L3			
<b>CO</b> 2	To gain knowledge on tools and	1214	PO1, PO2, PO5, PO6	PSO1, PSO2	
CO3	methods used in cybercrimes.	L3, L4			

#### Scheme of Continuous Internal Evaluation (CIE) for Theory course

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification etc)	Course project (CP)/ Case study etc	Total Marks	
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100	

#### IA Test:

1. 10 marks questions in Part A of IA question paper should also include an OBE related question (max 2 marks).
 2. Remaining 20 marks questions in Part B & C should be descriptive

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

#### Eligibility for SEE:

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. -Lack of minimum score in IA test will make the student Not Eligible for SEE.

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sche	ome of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be $\geq$ 35% &, however overall score of
	CIE + SEE should be <u>&gt;</u> 40%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2
	questions in part C.

CO-P	O Maj	oping (	plann	ed)	1	SH H	2	211					CO-PS Mapp	SO ing(plai	nned)
00	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PSO	PSO	PSO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓		✓		1		~	n an	2	91	1.		✓		
2	✓	✓			~	1	2 X		78	~	11		✓	✓	
3	✓	✓		✓	1		1	1	1	1	1	✓	✓	✓	✓
Tick r	narks	the CO	), PO a	and PS	SO maj	pping				12		1			

Alle

THE OF TR

#### Introduction to Solar technology

Course Code	22ETC15I	Course type	ETC	Credits L-T-P	3-0-0
Hours/week: L - T- P	3 - 0 - 0			Total credits	3
Total Contact Hours $L = 40$ Hrs; $T = 0$ Hrs; $P = 0$ Hrs Total = 40 Hrs		CIE Marks	100		
Flipped Classes content     5 Hours		SEE Marks	100		

	Course learning objectives
1.	To understand the basics of solar energy systems and their advantages
2.	To understand the principals and design of solar PV systems
3.	To study the principals and design of solar thermal systems
4.	To understand the principal and working of various batteries used in solar PV systems.

#### **Pre-requisites :**BasicPhysics

Unit – I	<b>Contact Hours = 8 Hours</b>
Solar energy basics: Introduction, solar constant, basic s	sun-earth angles – definitions and
their representation, solar radiation geometry (numerical	l problems), estimation of solar
radiation of horizontal and tilted surfaces (numerical p	problems); measurement of solar
radiation data – Pyranometer and Pyrheliometer.	

Unit – II	Contact Hours = 8 Hours
Solar electric systems: Solar thermal elect	ric power generation – solar pond and
concentrating solar collector (parabolic trou	igh, parabolic dish, Central Tower Collector).
Advantages and disadvantages.	
Advantages and disadvantages.	Mand of 1990

Π
Π

**Contact Hours = 8 Hours** 

**Solar PV Systems**: Solar cell fundamentals, characteristics, classification, construction of module, panel and array, stand-alone and grid connected; Applications – Street lighting, domestic lighting and solar water pumping systems, case study.

#### Unit – IV

#### **Contact Hours = 8 Hours**

**Solar Thermal systems:** Principle of conversion of solar radiation into heat, solar water heaters (Flat Plate Collectors), solar cookers – Box type, concentrating dish type, solar driers, solar still, solar furnaces, solar green houses, case study.

#### Unit – V

#### **Contact Hours = 8 Hours**

**Applications of batteries in solar PV system:** Types of wires, choice of wires, wire sizing, Types of batteries, Series connection and parallel connection of batteries, estimation of energy storage, battery fault detection, and battery maintenance.

#### Flipped Classroom Details

Unit No.	Ι	II	III	IV	V
No. for Flipped Classroom Sessions	1	1	1	1	1

	Books Text Books:				
Text					
1.	Chetan Singh Solanki, "Solar Photovoltaic Technology and Systems", PHI				
2.	Khan B. H., "Non-Conventional Energy Resources", TMH, New Delhi, 2006.				
Refe	Reference Books:				
1.	S P Sukhatme and J K Nayak.," Solar Energy", Third Edition, TMH, 2005				
2.	G.D. Rai,"Non-Conventional Sources of Energy", 4th Edition, Khanna Publishers,				
	New Delhi, 2007.				
	E-resourses (NPTEL/SWAYAM Any Other)- mention links				
1.	https://nptel.ac.in/courses/117108141				
2.	https://www.edx.org/course/delftx-solar-energy				

	Course delivery	methods	E OF	Assessment methods
1.	Chalk and Talk	631	01.	IA tests
2.	PPT and Videos	THE	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	6	3.	Open Book Tests (OBT)
		70/	4.	Course Seminar
			5.	Semester End Examination

### utcome (COs)

At	Course Outcome (COs) the end of the course, the student will be able to (Highlight the level.)	action verb	representing the	elearning
Lea App	rning Levels: Re - Remember; Un - Understand; Ap - ly; An - Analysis; Ev - Evaluate; Cr - Create	Learning Level	PO(s)	PSO(s)
1.	To understand the conceptual knowledge of the technology related to solar PV and thermal systems and batteries	Un	1,6,7,9,12	1
2.	To explain various components used in solar PV and thermal systems.	Un	1,7,9,12	1,2
3.	To explain the various types of batteries used in solar PV systems.	Un	1,7,9,12	1
4.	To design and analyze of solar PV systems.	An	1,3,7,9,11,12	1

#### Scheme of Continuous Internal Evaluation (CIE) for Theory course

J

J

omponente	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case study	Total
omponents	tests	/Industry/Certification etc)	etc	Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

#### IA Test:

1. 10 marks questions in Part A of IA question paper should also include an OBE related question (max 2 marks).

2. Remaining 20 marks questions in Part B & C should be descriptive

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by

BOS) can be considered as a Course activity and awarded maximum of 10 marks.

#### Eligibility for SEE:

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE.

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Scheme of Semester End Examination (SE	<b>E</b> ):
----------------------------------------	-------------

1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be $\geq$ 35% &, however overall score of
	CIE + SEE should be <u>&gt;</u> 40%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2
	questions in part C.

				CC	)-PO N	Mappi	ng (Pla	nned)	E	100	1		C	O-PSO (Plaı	Mappin nned)	ng
С	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
0	1	2	3	4	5	6	⁰7	8	9	10	11	12	1	2	3	4
1	✓					1	1	S /E	1	200		1	✓			
2	✓					1	1		1	18	7	1	✓	✓		
3	✓					1	1	Wind	1		18	✓	✓			
4	✓		✓				1		~		1	<ul> <li>✓</li> </ul>	✓			

#### **Introduction to Electric Vehicles**

Course Code	22ETC15J	Course type	ETC	Credits L-T-P	3 – 0- 0
Hours/week: L-T-P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 H Total = 40 Hrs	rs; P = 0 Hrs		CIE Marks	100
Flipped Classes content	5 Hours			SEE Marks	100

Course	learning	objectives
Course	icai illing	objectives

comparison	between	
To study the EV architecture and configuration		
\$ 	& comparison	

**Pre-requisites :**Basic Physics

Unit – I	Contact Hours = 8 Hours
Introduction: EV	history, overview of electric vehicles in India, EV advantages, EV market,
importance of diffe	rent transportation development strategies to future oil supply, comparison
between conventior	al vehicle & electric vehicle, EV system, types of electric vehicle.

Unit – II **Contact Hours = 8 Hours** Motors & Characteristics: Transmission methods (arrangements), types of motors used in EV, speed transfer characteristics, torque transfer characteristics, power, and energy requirements.

Unit – III **Contact Hours = 8 Hours** EV Architectures and Configurations: Architectural structures and configurations, The major EV subsystems - drives, inverters, batteries and energy storage, chargers, sensors and controls, regenerative breaking.

Unit – IV	Contact Hours = 8 Hours
Storage for EV: Types of batteries, parameters of battery-	voltage rating, Ah rating, cut off
voltage, max charge voltage, open circuit voltage, terminal v	oltage, C-Rating, Specific Energy
, Specific Power, selection of battery for EV(energy density,	size & weight, terminal voltage,
mechanical withstanding, temperature, maintenance, safe).	
incenancear withstanding, temperature, maintenance, sare).	

Unit –V

**BMS & Charging stations:** Battery management system, controller, SOC, DOD, SOH, Cell Balancing, Cell Safety, types of EV charging schemes, construction, features, impact of EV.

#### **Flipped Classroom Details**

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	1	1	1	1	1

	Books
	Text Books:
1.	Electric Vehicle Technology Explained, James Larminie, John Lowry, 2nd Edition, wiley publication ISBN: 978-1-119-94273-3, September 2012.
2.	Electric Vehicle Engineering, Per Enge, Nick Enge, Stephen Zoepf, McGraw Hill, 1st Edition 2021
	Reference Books
1.	Electric Vehicle Technology, Prof. Suresh Pawar, Notion Press, September 2021.
2.	ELECTRIC and HYBRID VEHICLES Design Fundamentals, Iqbal Husain, CRC PRESS, Boca Raton London New York Washington, D.C.
	NPTEL sources
1.	https://nptel.ac.in/courses/108106170
2.	https://nptel.ac.in/courses/108102121

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Tests (OBT)
4.	Online classes	4.	Course Seminar
		5.	Semester End Examination

	Course Outcome (COs)			
At t	he end of the course, the student will be able to (Highlight the	action verb	representing th	e learning
	level.)			
Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)
An - Analysis; Ev - Evaluate; Cr - Create		Level	PO(S)	P30(S)
1.	Compare conventional and electric vehicles and Analyze the need of EV in transportation industry highlighting impact on global & environment.	An	1,7,12	1
2.	Explain the EV architecture and compare different types of motors for EV applications	Un	1,12	2
3.	Explain the BMS and different EV charging scheme	Un	1,2,12	1
4.	Select the suitable battery system for EV	Ар	1,7,12	1,3

#### Scheme of Continuous Internal Evaluation (CIE) for Theory course

Components	Addition of two IA	Two Assignments – (Open	Course project (CP)/ Case study	Total
	tests	/Industry/Certification etc)	etc	Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

IA Test:

1. 10 marks questions in Part A of IA question paper should also include an OBE related question (max 2 marks).

2. Remaining 20 marks questions in Part B & C should be descriptive

-Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

Eligibility for SEE:

-Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.

-Lack of minimum score in IA test will make the student Not Eligible for SEE.

-Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Scł	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be $\geq$ 35% &, however overall score of
	CIE + SEE should be <u>&gt;</u> 40%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2
	questions in part C.

				С	D-PO N	/lappir	ng (Plar	nned)	h		15		CO-PS	О Мар	ping(Pla	nned)
со	РО	РО	РО	РО	РО	РО	PO	PO	PO	PO1	PO	РО	PSO	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	11	12	1	2	3	4
1	✓						✓	1				✓	✓			
2	✓											$\checkmark$		✓		
3	✓	✓										✓	✓			
4	✓						✓					✓	✓		✓	
			Tio	ck mar	k the C	CO, PO	and P	SO ma	pping							

# Programming Language Courses (PLC)

#### INTRODUCTION TO WEB PROGRAMMING

Course Code	22PLC25A	Course type	Integrated	Credits L-T-P	2 - 0 - 1
Hours/week: L - T- P	2-0-2			Total credits	3
Total Contact Hours	L = 30 Hrs; T = 0 Hrs; P = 20 Hrs		CIE Marks	100	
	Total = 50 Hrs				100
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives
1.	To use the syntax and semantics of HTML and XHTML
2.	To develop different parts of a web page
3.	To understand how CSS can enhance the design of a webpage.
4.	To create and apply CSS styling to a webpage
5.	To get familiarity with the JavaScript language and understand Document Object Model
	handling of Java Script

#### Pre-requisites :

Unit In Tradition of UTBAL and VUITBAL	Construct House C House
Unit – I: Traditional HTML and XHTML:	Contact Hours = 6 Hours
First Look at HTML and XHTML, Hello HTML and XHTML World, HT	TML and XHTML: Version History,
HTML and XHTML DTDs: The Specifications Up Close, (X)HTML Do	cument Structure, Browsers and
(X)HTML, The Rules of (X)HTML, Major Themes of (X)HTML, The F	uture of Markup—Two Paths?
TextBook1: Chapter 1	

1415-

Unit – II: HTML5:	Contact Hours = 6 Hours
Hello HTML5, Loose Syntax Returns, XHTML5, HTML5: Embracing	the Reality of Web Markup,
Presentational Markup Removed and Redefined, HTML5 Documer	nt Structure Changes, Adding
Semantics, HTML5's Open Media Effort, Client-Side Graphics with	, HTML5 Form Changes, Emerging
Elements and Attributes to Support Web Applications	
TextBook1: Chapter 2	

Unit – III: Cascading Style Sheets (CSS)	Contact Hours = 6 Hours					
Introduction, CSS Overview , CSS Rules, Example with Type Selector	ors and the Universal Selector, CSS					
Syntax and Style, Class Selectors, ID Selectors, span and div Eleme	Syntax and Style, Class Selectors, ID Selectors, span and div Elements, Cascading, style Attribute, style					
Container, External CSS Files, CSS Properties, Color Properties, RG	B Values for Color, Opacity Values					
for Color, HSL and HSLA Values for Color, Font Properties, line-heig	ght Property, Text Properties,					
Border Properties, Element Box, padding Property, margin Proper	ty , Case Study: Description of a					
Small City's Core Area.						
TextBook2-: Chapter 3						

Unit – IV : Tables and CSS, Links and Images	Contact Hours = 6 Hours
Table Elements, Formatting a Data Table: Borders, Alignment, and	Padding, CSS Structural
PseudoClass Selectors, thead and tbody Elements, Cell Spanning, V	Veb Accessibility, CSS display
Property with Table Values, a Element, Relative URLs, Navigation \	Nithin a Web Page, CSS for Links,
Bitmap Image Formats: GIF, JPEG, PNG, img Element, Responsive I	mages, Positioning Images,
Shortcut Icon, iframe Element . TextBook2: 5.2 to 5.8, 6.2, 6.3, 6.6	., 6.7, 6.9, 6.10, 6.12, 7.2 to 7.4

#### Unit – V Introduction to JavaScript:

**Contact Hours = 6 Hours** 

Functions, DOM, Forms, and Event Handlers History of JavaScript, Hello World Web Page, Buttons, Functions, Variables, Identifiers, Assignment Statements and Objects, Document Object Model, Forms and How They're Processed: Client-Side Versus Server-Side, form Element, Controls, Text Control, Accessing a Form's Control Values, reset and focus Methods TextBook2: 8.2 to 8,13, 8.15, 8.16

	I	lipped Classroom D	etails		
Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2
	/	TUTE OF TEA	S		

	Books					
	Text Books:					
1.	HTML & CSS: The Complete Reference Thomas A. Powell, , Fifth Edition, Tata McGraw Hill,					
2.	WEB PROGRAMMING with HTML5, CSS and JavaScript, John Dean, Jones & Bartlett Learning,					
	First Edition					
	E-resourses (NPTEL/SWAYAM Any Other)- mention links					
1.	https://onlinecourses.swayam2.ac.in/aic20_sp11/preview					

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Tests (OBT)
4.	Online classes	4.	Course Seminar
		5.	Semester End Examination

	Course Outcome (COs)					
At t	At the end of the course, the student will be able to (Highlight the <b>action verb</b> representing the learning					
	level.)					
Lear	ning Levels: Re - Remember; Un - Understand; Ap -	Learning	PO(s)	PSO(s)		
Арр	ly; An - Analysis; Ev - Evaluate; Cr - Create	Level				
1.	Explain the historical context and justification for HTML	2	1,2	1		
1.	over XHTML	2				
	Develop HTML5 documents and adding various semantic		1,2,3,4,9,10	1,2,3		
2.	markup tags and analyzing the attributes, values and	5,6				
	types of CSS					
3	Implement core constructs and event handling	3	1,2,3,5,9,10,12	1,2,3		
5	mechanisms of JavaScript.	5				

#### Scheme of Continuous Internal Evaluation (CIE) for Integrated course

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test (COMPULSORY) will be part of the CIE. No SEE for Lab.

THEORY	(60 marks)	LAB (40 marks)		Tatal
IA test 1	IA test 2	Conduction	Lab test	Total
30 marks	s 30 marks	10 marks	30 marks	100 marks
IA Test:	·	·		·
1. 10 ma	rks questions in Part A o	f IA question paper sł	ould also include an O	BE related question
(max 2 m	narks).			
2. Remai	ning 20 marks questions	in Part B & C should	be descriptive.	
Conduct	of Lab:			
1. Condu	icting the experiment an	d journal: 5 marks		
2. Calcul	ations, results, graph, co	nclusion and Outcom	e: 5 marks	
Lab test:	(Batchwise with 15 stu	dents/batch)		
1. Test w	ill be conducted at the e	end of the semester		
2. Timeta	able, Batch details and e	xaminers will be decla	ared by Exam section	
3. Condu	icting the experiment an	d writing report: 5 m	arks	
4. Calcul	ations, results, graph and	d conclusion: 15 mark	SF TRO	
5. Viva v	oce: 10 marks	1250		
Eligibility	y for SEE:	74/		
	nt should score minimu			s. Lack of minimum
score in	IA test will make the stu	ident Not Eligible for	SEE	
2. Stude	nt should score minimu	m 40% of <mark>3</mark> 0 marks (i.	e. 12 marks) in Lab tes	st & should score
40% of 4	0 marks (i.e. 16 marks)	in Lab component.	228211	
3. Lab te	st is COMPULSORY	Man I Man	1 100	
	num score in CIE to be el			
5. Not el	igible in any one of the t	wo components will r	nake the student <b>Not I</b>	<b>ligible</b> for SEE
Scheme	of Semester End Examir	nation (SEE):	ALL CONTRACTOR	
1. It w	ill be conducted for 100	marks of 3 hours dura	ation.	
2. Min	imum marks required i	n SEE to pass: Score	should be <u>&gt;</u> 35% &, ł	nowever overall score
CIE -	+ SEE should be <u>&gt;</u> 40%.			
3. Que	stion paper contains 3	parts - A.B & C. wh	erein students have to	o answer any 5 out o

3. Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7 questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2 questions in part C.

	CO-PO Mapping (planned)							CO-PSO Mapping (planned)							
60	PO P						PSO	PSO	PSO						
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓											✓		
2	✓	✓	✓	✓					✓	√			√	✓	✓
3	✓	✓	✓		✓				✓	✓		✓	✓	✓	✓
	Tick mark the CO, PO and PSO mapping														

#### Lab Termworks

- 1. Create an XHTML page using tags to accomplish the following:
  - (i) A paragraph containing text "All that glitters is not gold". Bold face and italicize this text
  - (ii) Create equation:

$$x = 1/3(y_1^2 + z_1^2)$$

(iii) Put a background image to a page and demonstrate all attributes of background image

Create unordered list of 5 fruits and ordered list of 3 flowers

2. Create following table using XHTML tags. Properly align cells, give suitable cell padding and cell spacing, and apply background color, bold and emphasis necessary

	Sem1	SubjectA SubjectB SubjectC
Department	Sem2	SubjectE SubjectF SubjectG
	Sem3	SubjectH SubjectI SubjectJ

- 3. Use HTML5 for performing following tasks:
  - (i) Draw a square using HTML5 SVG, fill the square with green color and make 6px brownstroke width
  - (ii) Write the following mathematical expression by using HTML5 MathML. $d=x^2-y^2$
  - (iii) Redirecting current page to another page after 5 seconds using HTML5 meta tag
- 4. Demonstrate the following HTML5 Semantic tags- <article>, <aside>, <details>, <figcaption>,<figure>, <footer>, <header>, <main>, <mark>, <section> for a webpage that gives informationabout travel experience.
- 5. Create a class called **income**, and make it a background color of #0ff. Create a class called **expenses**, and make it a background color of #f0f. Create a class called **profit**, and make it a background color of #f00. Throughout the document, any text that mentions income, expenses, or profit, attach theappropriate class to that piece of text. Further create following line of text in the same document:

The current price is 50₹ and new price is 40₹

- 6. Change the tag **li** to have the following properties:
  - A display status of inline
  - A medium, double-lined, black border
  - No list style type

Add the following properties to the style for li:

- Margin of 5px
- Padding of 10px to the top, 20px to the right, 10px to the bottom, and 20px tothe left

Also demonstrate list style type with user defined image logos

7. Create following web page using HTML and CSS with tabular layout

Sign up today						
Name:						
E-mail:						
Password:						
Confirm password:						

8. Create following calculator interface with HTML and CSS

789541257*6	53	EOFT	Ear	
	С	%	ME	12
7 8	9	x	1	
4 5	6	-		
1 2	3	+		Ð.S.
0.	1	=	11 g. fm	N

- 9. Create following calculator interface with HTML and CSS.
- 10. Write a Java Script program that on clicking a button, displays scrolling text which moves from left to right with a small delay
- 11. Create a webpage containing 3 overlapping images using HTML, CSS and JS. Further when the mouse is over any image, it should be on the top and fully displayed

#### INTRODUCTION TO PYTHON PROGRAMMING

Course Code	22PLC25B	Course type		Credits L-T-P	2 - 0 - 1
Hours/week: L - T- P	2 - 0 - 2			Total credits	3
Total Contact Hours	L = 30 Hrs.; T = 0 Hrs.; P = 20 Hrs. Total = 50 Hrs.			CIE Marks	100
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives					
1.	1. To understand the basics of algorithmic and flow chart for problem solving.					
2.	To learn to solve problems using Python basics of Data expression and Statements					
3.	To learn to solve problems using Python conditionals , loops and functions					
4.	To use Python data structures – lists, tuples, dictionaries, strings to represent complex data					
	(D) A					

Unit – I	Contact Hours = 6 Hours				
Introduction to Programming: Meaning of problem solving, Definition of programming, Software bug,					
Programming errors, Natural language v/s Formal language, Programming Paradigm, interpreted v/s					
compiled, typed v/s type-less programming language.					
Algorithms: Definition, characteristics, building blocks of	Algorithms, Pseudo-code, flowcharts,				
Algorithmic problem solving, Simple strategies for developing a	algorithms, Examples,				

Introduction to Python: History, Salient features, Working with IDLE.

Unit – II	Contact Hours = 6 Hours					
Basics of Python programming: Keywords, Variables, Data types, Literals, Operators						
Input and output statements in python; String formatting options.						

Unit – III	Contact Hours = 6 Hours			
Decision making: if statement syntax, simple Programs (includir	ng algorithm and flow chart) If-else			
syntax, flow chart, simple Programs (including algorithm and flow chart) If-elif-else, syntax, flowchart,				
simple Programs (including algorithm and flow chart)				
Iteration: state, while loop: syntax, flowchart, simple Programs (in	cluding algorithm and flow chart)			

for loop: syntax, flow chart. simple Programs (including algorithm and flow chart).

Unit – IV	Contact Hours = 6 Hours			
Introductions to user-defined functions, syntax, simple programs on functions;				
Working with strings and simple programs;				
Working with Lists and simple programs.				

Unit – V	Contact Hours = 6 Hours
Working with Tuples and simple programs.	
Working with Dictionaries and simple programs.	

#### Flipped Classroom Details

Unit No.	I	II	III	IV	v
No. for Flipped Classroom Sessions	2	2	2	2	2

#### List of Experiments

Unit No.	No. of	Tonic(c) related to Evnewiment				
Unit NO.	Experiments	Topic(s) related to Experiment				
1	2	Write algorithms and explore Flowgorithm tool to draw flowcharts for				
		given programs.				
2	3	1)Operators				
		2)Input and output statements in python				
		3)String formatting options				
3	4	1) Decision making (if, if-else)				
		2) Iterating(looping) (for, while)				
4	3	1)Lists				
		2)Tuples				
		3)Dictionary				
5	2	1)Strings				
		2)Functions				

Unit No.	Self-Study Topics						
1.	Simple strategies for developing algorithms.						
2.	Python code using modules						
5.	Python File handling						

	Books
	Text Books:
1.	Al Sweigart, <b>"Automate the Boring Stuff with Python"</b> ,1stEdition, No Starch Press, 2015. (Available under CC-BY-NC-SA license at https://automatetheboringstuff.com/)
2.	S.A. Kulkarni, "Problem solving and python programming", 2 nd edition Yesdee publishing pvt. Ltd. 2019
	Reference Books:
1.	Allen B. Downey, <b>"Think Python: How to Think Like a Computer Scientist",</b> 2nd Edition, Green Tea Press, 2015.
	E-resources (NPTEL/SWAYAM. Any Other)- mention links
1.	https://onlinecourses.nptel.ac.in/noc22_cs32/preview
2.	https://onlinecourses.swayam2.ac.in/cec22_cs20/preview

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project
3.	Flipped Classes	3.	Lab Test

4.	Practice session/Demonstrations in Labs	4.	Semester End Examination
5.	Virtual Labs ( if present)		

	Course Outcome (COs)								
Lea	rning Levels:								
	Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create								
At th	ne end of the course, the student will be able to	Learning	PO(s)	PSO(s)					
		Level							
1.	Understand the problem solving through writing algorithms and	Un	1,3,5,10,12	1					
1.	flowcharts for given problems.	on	1,0,0,10,12	-					
	Explain basic principles of Python programming and Apply								
2.	them to write programs using the procedure oriented	Un,Ap	1,2,3,5,9,10,12	1,2,3					
	programming paradigm.								
3.	Explain the basic data structures of python and apply them	Un,Ap	1,2,3,5,9,10,12	1,2,3					
J.	suitably for given programs.	ση,Αρ	1,2,3,3,3,10,12	1,2,3					

#### Scheme of Continuous Internal Evaluation (CIE) for Integrated course

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test (COMPULSORY) will be part of the CIE. No SEE for Lab.

THEORY (60 marks)		LAB (40 marks)		Total
IA test 1	IA test 2	Conduction	Lab test	Total
30 marks	30 marks	10 marks	30 marks	100 marks
IA Test:		I AONE	1 28 4	
1. 10 marks qu	estions in Part A d	of IA question paper sl	hould also include an O	BE related question
(max 2 marks)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a mo	
2. Remaining 2	20 marks question	s in Part B & C should	be descriptive.	
Conduct of La	b:	3 Juli	ulle	
1. Conducting	the experiment ar	nd journal: 5 marks		
2. Calculations	s, results, graph, co	onclusion and Outcom	ie: 5 marks	
Lab test: (Bate	hwise with 15 stu	Idents/batch)		
1. Test will be	conducted at the	end of the semester		
2. Timetable, I	Batch details and e	examiners will be decla	ared by Exam section	
3. Conducting	the experiment ar	nd writing report: 5 m	arks	
4. Calculations	s, results, graph an	d conclusion: 15 marl	<s< td=""><td></td></s<>	
5. Viva voce: 1	.0 marks			
Eligibility for S	SEE:			
1. Student sho	ould score minimu	m 40% of 60 marks (i	.e. 24 marks) in IA test	s. Lack of minimum
score in IA tes	t will make the st	udent Not Eligible for	SEE	
2. Student sho	ould score minimu	m 40% of 30 marks (i	.e. 12 marks) in Lab tes	st & should score
40% of 40 ma	rks (i.e. 16 marks)	in Lab component.		
3. Lab test is C	OMPULSORY			
4. Minimum s	core in CIE to be e	ligible for SEE: 40 OU	T OF 100.	
5. Not eligible	in any one of the	two components will	make the student <b>Not E</b>	Eligible for SEE

Sch	cheme of Semester End Examination (SEE):						
1.	It will be conducted for 100 marks of 3 hours duration.						
2.	Minimum marks required in SEE to pass: Score should be $\geq$ 35% &, however overall score of						
	CIE + SEE should be <u>&gt;</u> 40%.						
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7						
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2						
	questions in part C.						

				C	O-PO N	Mappir	ng (plai	nned)						SO Map planned	
~	РО	РО	РО	PO	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	て		レ		レ					レ		レ	レ		
2	て	レ	レ		レ				レ	レ		く	レ	レ	レ
3	レ	レ	レ		レ		~	-	レ	レ		レ	レ	レ	レ
		1	Ti	ick mai	k the (	CO, PO	and P	SO ma	pping		1	1			



#### **BASICS OF JAVA PROGRAMMING**

Course Code	22PLC25C	Course type	Integrated	Credits L-T-P	2-0-1
Hours/week: L - T- P	2-0-2			Total	3
nouis, week. L - I - F	2-0-2	credits	5		
Total Contact Hours	L = 30 Hrs; T = 0 H	lrs; P = 20 Hrs		CIE Marks	100
Total contact hours	Total = 50 Hrs		100		
Flipped Classes content	10 Hours	SEE Marks	100		

	Course learning objectives					
1.	To understand the fundamentals of object-oriented programming in Java.					
2.	To demonstrate the object-oriented features such as encapsulation, inheritance and					
	polymorphism to design and develop programs in Java.					
3.	To understand exception handling mechanism and the concept of Packages and Interfaces in					
	Java.					
4.	To learn setting up Java JDK environment to create, debug and run simple Java programs.					

#### Pre-requisites : Procedure Oriented Programming Languages

Unit – I	Contact Hours = 6 Hours
An Overview of Java: Object-Oriented Programming, A I	First Simple Program, A Second Short Program,
Two Control Statements, Using Blocks of Code, Lexica	l Issues, The Java Class Libraries, Data Types,
Variables, and Arrays: Java Is a Strongly Typed Language	e, The Primitive Types, Integers, Floating-Point
Types, Characters, Booleans, A Closer Look at Litera	als, Variables, Type Conversion and Casting,
Automatic Type Promotion in Expressions, Arrays, A Fev	v Words About Strings
Text book 1: Ch 2, Ch 3	THE

6

Unit – II	
-----------	--

Contact Hours = 6 Hours

Operators: Arithmetic Operators, The Bitwise Operators, Relational Operators, Boolean Logical Operators, The Assignment Operator, The ? Operator, Operator Precedence, Using Parentheses, Control Statements: Java^s Selection Statements, Iteration Statements, Jump Statements. Text book 1: Ch 4, Ch

Unit – III	Contact Hours = 6 Hours
Introducing Classes: Class Fundamentals, Declaring Objects, Ass	signing Object Reference Variables,
Introducing Methods, Constructors, The this Keyword, Garbage (	Collection, The finalize() Method, A
Stack Class, A Closer Look at Methods and Classes: Overlo	ading Methods, Using Objects as
Parameters, A Closer Look at Argument Passing, Returning Obj	ects, Recursion, Introducing Access
Control, Understanding static, Introducing final, Arrays Revisited	
Text book 1: Ch 6, Ch 7 ( 7.1-7.9 )	

Unit – IV	Contact Hours = 6 Hours
Inheritance: Inheritance, Using super, Creating a Multilevel Hiera	rchy, When Constructors Are Called,
Method Overriding, Dynamic Method Dispatch, Using Abstract C	lasses, Using final with Inheritance,
The Object Class.	
Text book 1: Ch 8	

#### Unit – V

**Contact Hours = 6 Hours** 

Packages and Interfaces: Packages, Access Protection, Importing Packages, Interfaces.

Exception Handling: Exception-Handling Fundamentals, Exception Types, Uncaught Exceptions, Using try and catch, Multiple catch Clauses, Nested try Statements, throw, throws, finally, Java"s Built-in Exceptions, Creating Your Own Exception Subclasses, Chained Exceptions, Using Exceptions. Text book 1: Ch 9, Ch 1

#### Flipped Classroom Details

Unit No.	I	II		IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

- HE	O.F.	1	
List of E	xper	imen	its

Unit No.	No. of Experiments	Topic(s) related to Experiment
1	2	2-dimensional array.
		String handling.
2	2	Control /Selection Statements.
		Iteration Statements
3	2	Class and its Parameterized Methods and Constructors.
		Method Overloading.
4	2	Inheritance.
		Method overriding
5	2	Packages and interfaces.
		Exception handling

	Books
	Text Books:
1.	Herbert Schildt, Java The Complete Reference, 7th Edition, Tata McGraw Hill, 2007 onwards
2.	E Balagurusamy, Programming with Java A primer, Tata McGraw Hill companies.
	Reference Books:
1.	Kathy Sierra & Bert Bates, "Head First Java", O'Reilly, 2 nd Edition and onwards.
2.	Y. Daniel Liang: Introduction to JAVA Programming, 7 th Edition, Pearson Education, 2007.
	E-resourses (NPTEL/SWAYAM. Any Other)- mention links
1.	https://onlinecourses.nptel.ac.in/noc22_cs47/preview
2.	https://www.w3schools.com/java
3.	https://freecodecamp.org
4.	https://www.tutorialspoint.com/java8
5.	https://www.javatpoint.com

	Course delivery methods	Assessment methods				
1.	Chalk and Talk	1.	IA tests			
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project			
3.	Flipped Classes	3.	Lab Test			
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination			
5.	Virtual Labs ( if present)					

	Course Outcome (CO	s)		
Lear	ning Levels:			
	Re - Remember; Un - Understand; Ap - Apply; An - A	Analysis; Ev	- Evaluate; Cr - C	reate
At th	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)
1.	<b>Explain</b> classes, objects, members of a class and relationships among them needed for a specific problem.	Un	1,2,3,9,10,12	1,3
2.	<b>Apply</b> OOP principles (encapsulation, inheritance, polymorphism etc.) and proper program structure to write application programs.	Ар	1,2,3,5,9,10,12	1,2,3
3.	<b>Develop</b> skills in writing programs using exception handling techniques.	Ap	1,2,3,5,9,10,12	1,2,3
4.	<b>Experiment with</b> the concept of packages and interfaces.	Ар	1,3,9,10,12	1,3

## Scheme of Continuous Internal Evaluation (CIE) for Integrated course

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test (COMPULSORY) will be part of the CIE. No SEE for Lab.

THEORY (60 marl	ks)	LAB (40 marks)		Total							
IA test 1	IA test 2	Conduction	Lab test	TOLAI							
30 marks	30 marks	10 marks	100 marks								
IA Test:											
1. 10 marks quest	tions in Part A of IA	question paper shoul	d also include an OBE rela	ted question							
(max 2 marks).											
2. Remaining 20 r	marks questions in	Part B & C should be o	lescriptive.								
Conduct of Lab:											
1. Conducting the	1. Conducting the experiment and journal: 5 marks										
2. Calculations, re	esults, graph, concl	usion and Outcome: 5	marks								
Lab test: (Batchwise with 15 students/batch)											
1. Test will be cor	nducted at the end	of the semester									
2. Timetable, Bate	ch details and exan	niners will be declared	by Exam section								
3. Conducting the	e experiment and w	vriting report: 5 marks									
4. Calculations, re	esults, graph and co	onclusion: 15 marks									
5. Viva voce: 10 n	narks										

**Eligibility for SEE:** 

1. Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. Lack of minimum score in IA test will make the student Not Eligible for SEE

2. Student should score minimum 40% of 30 marks (i.e. 12 marks) in Lab test & should score 40% of 40 marks (i.e. 16 marks) in Lab component.

3. Lab test is COMPULSORY

4. Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

5. Not eligible in any one of the two components will make the student Not Eligible for SEE

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be $\geq$ 35% &, however overall score of
	CIE + SEE should be $\geq$ 40%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7 questions
	in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2 questions in
	part C.

UTE OF TE

	CO-PO Mapping (planned)										Мар	CO-PS ping(pl	O anned)		
~~~	PO	РО	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	DCOD
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	PSO3
1	٧	V	٧		VE	5%	1		√	V	-//	٧	V		V
2	٧	٧	٧		V		WID		V	V	3	V	V	V	V
3	٧	٧	٧		V	1	5	ĥ	V	V	5	V	V	V	٧
4	٧		٧		3	-			V	V		V	V		V
5	٧		V			24	ALL 1		V	V		V	٧		V
		-	Tick m	ark th	e CO,	PO an	d PSC	map	ping		1				

INTRODUCTION TO C++ PROGRAMMING

Course Code	22PLC25D	Course type	PLC	Credits L-T-P	2 - 0 - 1
Hours/week: L - T- P	2 - 0 - 2			Total credits	3
Total Contact Hours	L = 30 Hrs; T = 0 H Total = 50 Hrs	rs; P = 20 Hrs	CIE Marks	100	
Flipped Classes content	10 Hours		SEE Marks	100	

	Course learning objectives						
1.	To Understanding Object-Oriented Programming concepts.						
2.	To Understand importance of inline and virtual functions.						
3.	To study about constructor, destructor and its usage.						
4.	To study importance of inheritance, polymorphism in C++.						
5	To gain knowledge about exception handling in C++.						

Required Knowledge of: C programming

Unit – I

Contact Hours = 6 Hours

Introduction to Object Oriented Programming: Computer programming background, C++ overview, what is an object, Classes and methods, abstraction, encapsulation, inheritance and polymorphism., first C++program, C++ syntax, Tokens, Keywords, Identifiers, constants and Operators in C++, Scope resolution operator, Expressions and their types, Special assignment expressions.

Unit – II

Contact Hours = 6 Hours

Functions in C++: – Functions, Inline function, function overloading, friend and virtual functions, specifying a class, C++ program with a class, arrays within a class, Constructors, Multiple constructors in a class, Copy constructor, Dynamic constructor, Destructors.

Unit – III

Contact Hours = 6 Hours

Inheritance: Derived Classes, Single inheritance, multiple inheritance, Hierarchical, Inheritance, Hybrid Inheritance, Pointers to objects and derived classes, this pointer.

Unit – IV

Contact Hours = 6 Hours

Polymorphism: Polymorphism, Types of polymorphism, Function overloading, defining operator overloading, Overloading Unary and binary operators, Virtual and pure virtual functions.

Unit – V

Contact Hours = 6 Hours

Exception Handling: Introduction to Exception, Benefits of Exception handling, Try and catch block, Throw statement, pre-defined exceptions in C++.

Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

	List of Experiments
No. of	Topic(s) related to Experiment
Experiments	
1	Write a C++ program to sort the elements in ascending and descending order.
2	Write a C++ program to find the sum of all the natural numbers from 1 to n.
3	Write a C++ program to swap 2 values by writing a function that uses call by
	reference technique.
4	Write a C++ program to demonstrate function overloading for the following
	prototypes.
	add(int a, int b)
	add(double a, double b)
5	Create a class named Shape with a function that prints "This is a shape". Create
	another class named Polygon inheriting the Shape class with the same function
	that prints "Polygon is a shape". Create two other classes named Rectangle and
	Triangle having the same function which prints "Rectangle is a polygon" and
	"Triangle is a polygon" respectively. Again, make another class named Square
	having the same function which prints "Square is a rectangle". Now, try calling
	the function by the object of each of these classes.
6	Suppose we have three classes Vehicle, FourWheeler, and Car. The class Vehicle is
	the base class, the class FourWheeler is derived from it and the class Car is derived
	from the class FourWheeler. Class Vehicle has a method 'vehicle' that prints 'I am a
	vehicle', class FourWheeler has a method 'fourWheeler' that prints 'I have four
	wheels', and class Car has a method 'car' that prints 'I am a car'. So, as this is a
	multi-level inheritance; we can have access to all the other classes methods from
	the object of the class Car. We invoke all the methods from a Car object and print
	the corresponding outputs of the methods. So, if we invoke the methods in this
	order, car(), fourWheeler(), and vehicle(), then the output will be:
	I am a car
	I have four wheels
	I am a vehicle
7	Write a C++ program to demonstrate multilevel inheritance using this. Write a function which throws a division by zero exception and catch it in catch
/	block. Write a C++ program to demonstrate usage of try, catch and throw to
	handle exception.
8	Write a C++ program function which handles array of bounds exception using
	C++.
	1

Unit No.	Self-Study Topics
1	Escape Sequence in C++
2	Inline functions and Macros
3	Ambiguity in multiple inheritance
4	Run time polymorphism
5	Exceptions in Constructors and Destructors

	Books								
	Text Books:								
1.	Bhushan Trivedi, "Programming with ANSI C++", Oxford Press, Second Edition, 2012.								
2.	Balagurusamy E, Object Oriented Programming with C++, Tata McGraw Hill Education Pvt.Ltd , Fourth Edition 2010.								
	Weblinks and Video Lectures (e-Resources):								
3.	1. Basics of C++ - https://www.youtube.com/watch?v=BClS40yzssA								
	2. Functions of C++ - https://www.youtube.com/watch?v=p8ehAjZWjPw								
	Tutorial Link:								
4.	1. https://www.w3schools.com/cpp/cpp_intro.asp								
	2. https://www.edx.org/course/introduction-to-c-3								

alk and Talk	1. 2.	IA tests Open Book Assignments (OBA)/ Lab Project
	2.	Open Book Assignments (OBA)/ Lab Project
ped Classes	3.	Lab Test 🙍
ctice session/Demonstrations in Labs	4.	Semester End Examination
ual Labs (if present)		
(ctice session/Demonstrations in Labs	ctice session/Demonstrations in Labs 4.

	Course Outcome (COs)											
Lea	Learning Levels:											
	Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create											
Δt tk	e end of the course, the student will be able to	Learning	PO(s)	PSO(s)								
	le end of the course, the student will be able to	Level	FO(3)	1 50(3)								
1.	Explain the basic concepts of Object-Oriented programming	Re, Un	1,5	1								
2.	Appreciate the use the functions for modularity	Un, Ap	1,2,5	2								
3.	Implement the concepts of Object oriented programming	Un, Ap	1,2,3,4,	1,2								
5.	such as polymorphism, Inheritance	01, Ар	5									
4.	Implement and Appreciate the purpose of Exception	Un, Ap	1,2,3,4,	1,2								
4.	Handling	оп, Ар	5									

Scheme of Continuous Internal Evaluation (CIE) for Integrated course

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test (COMPULSORY) will be part of the CIE. No SEE for Lab.

THEORY (60 marks)		LAB (40 marks)	Total		
IA test 1 IA test 2		Conduction	Lab test	Total	
30 marks	30 marks	10 marks	30 marks	100 marks	

IA Test:

1. 10 marks questions in Part A of IA question paper should also include an OBE related question (max 2 marks).

2. Remaining 20 marks questions in Part B & C should be descriptive.

Conduct of Lab:

1. Conducting the experiment and journal: 5 marks

2. Calculations, results, graph, conclusion and Outcome: 5 marks

Lab test: (Batchwise with 15 students/batch)

1. Test will be conducted at the end of the semester

- 2. Timetable, Batch details and examiners will be declared by Exam section
- 3. Conducting the experiment and writing report: 5 marks
- 4. Calculations, results, graph and conclusion: 15 marks

5. Viva voce: 10 marks

Eligibility for SEE:

part C.

1. Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests. Lack of minimum score in IA test will make the student Not Eligible for SEE

2. Student should score minimum 40% of 30 marks (i.e. 12 marks) in Lab test & should score

40% of 40 marks (i.e. 16 marks) in Lab component.

3. Lab test is COMPULSORY

4. Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

5. Not eligible in any one of the two components will make the student Not Eligible for SEE

Scheme of Semester End Examination (S	SEE):
---------------------------------------	-------

It will be conducted for 100 marks of 3 hours duration.
Minimum marks required in SEE to pass: Score should be \geq 35% &, however overall score of CIE + SEE should be \geq 40%.
Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7 questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2 questions in
•

	CO-PO Mapping (planned)									CO-PSO Mapping (planned)					
~	PO	РО	РО	РО	РО	РО	РО	PO	РО	РО	РО	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓				✓								✓		
2	✓	✓			✓									✓	
3	✓	✓	✓	✓	✓								✓	✓	
4	✓	✓	✓	✓	✓								✓	✓	
	Tick mark the CO, PO and PSO mapping														

Communicative and Professional Writing Skills in English

Communicative English

Course Code	22ENG16 Course Theory Theory		Credits L-T-P	1-0-0	
Hours/week: L - T- P	1 - 0 - 0			Total credits	1
Total Contact Hours	L = 15 Hrs; $T = 0$ Hrs; $P = 0$ Hrs Total = 15 Hrs			CIE Marks	50
Flipped Classes content	3 Hours		SEE Marks	50	

	Course learning objectives
1.	Comprehend the Fundamentals of Communicative English
2.	Identify the Nuances of Phonetics, Intonations, and Stress, to Enhance Pronunciation Skills for Better Communication Skills.
3.	Impart Basic English Grammar and English Vocabulary to Develop Language Proficiency for Effective Communication.
4.	Adopt the Techniques of Information Transfer through the presentation.

Pre-requisites: Conversant [familiar] with rudimentary English Grammar.
Ability to understand spoken English or to speak, read, and write/frame simple and grammatically correct sentences in English.

Unit Introduction to Communicative English	Contact Hours = 3 Hours
Content of the Unit: Communicative English fundamentals and	1 Importance, Process of
Communicative English, Barriers to Effective Communicative E	nglish, Different styles and levels in
Communicative English. Interpersonal and Intrapersonal Commu	inication Skills.

d

Unit – IIIntroduction to PhoneticsContact Hours = 3 HoursContent of the Unit: Phonetic Transcription, Pronunciation Guidelines to consonants & vowels,
Syllables, Stress and Intonation, Silent Letters, [Spelling Rules] and Words often Misspelt.

Unit – III Basic English Communicative Grammar and		Contact Hours = 3 Hours
Vocabulary	PART - I	
Content of the Unit: Parts of Speech, Articles. Question Tags, One Word Substitutes, Strong and		
Weak forms of w	vords, Introduction to Vocabulary, All Types of V	ocabulary – Exercises on it.

Unit – IV Basic English Communicative Grammar and		Contact Hours = 3 Hours
Vocabulary	PART - II	
Content of the Unit: Words formation - Prefixes and Suffixes, Contractions and Abbreviations. Word		
Pairs (Minimal Pairs)	- Exercises, Types of tenses and Exercises	on it.

Unit – V Skills for Employment		Contact Hours = 3 Hours
Content of the Uni	t: Oral Presentation and its Practice-Differenc	e between extempore/Public
Speaking. Mother T	ongue Influence (MTI), Various Techniques f	or Neutralization of Mother Tongue
Influence. Reading a	and Listening Comprehensions – Exercises.	-

Flipped Classroom Details

			•••••		
Unit No.	Ι	II	III	IV	V
No. for Flipped Classroom Sessions	**	**	1 class	1 class	1 class
Classi uulii Sessiulis					

	Books
	Text Books:
1.	Communication Skills by Sanjay Kumar & Pushpa Lata, Oxford University Press India Pvt Ltd - 2019.
2.	A Textbook of English Language Communication Skills (ISBN-978-81-955465-2-7),
	Published by InfiniteLearning Solutions, Bengaluru - 2022.
	Reference Books:
1.	Technical Communication by Gajendra Singh Chauhan Et al (ISBN-978-93-5350-050-4),
	Cengage Learning India Pvt Limited [Latest Revised Edition] - 2019.
2.	English for Engineers by N.P. Sudarshan and C. Savitha, Cambridge University Press – 2018.
3.	Practical English Usage by Michael Swan, Oxford University Press – 2016.
	E-resources
1.	Esol courses: <u>https://www.esolcourses.com</u>
2.	Business vocabulary: https://www.cambridgeenglish.org/images/22099-vocabulary-list.pdf
	THE OF THE

Course delivery methods		STE DO	Assessment methods		
1.	Chalk and Talk	1.	IA tests		
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)		
3.	Flipped Classes	3.	Assignments		
4.	Online classes	4.	Semester End Examination		

Course Outcome (COs)

At	the end of the course, the student will be able to (Highlight the action level.)	n verb repres	enting the	e learning
	ning Levels: Re - Remember; Un - Understand; Ap – Apply: Analysis; Ev - Evaluate; Cr - Create	Learning Level	PO(s)	PSO(s)
1.	Comprehend the Fundamentals of Communicative English	L1 (Re)	10	
2.	Identify The Nuances of Phonetics, Intonations, and Stress, and Enhance Pronunciation Skills for Better Communication Skills.	L2 (Un)	10	
3.	Impart Basic English Grammar, Enhance English Vocabulary to Develop Language Proficiency for Effective Communication.	L2 (Un)	10	
5.	Adopt the Techniques of Information Transfer through the presentation.	L3 (Ap)	10	

Scheme of Continuous Internal Evaluation (CIE):

Γ

Components	Addition of two IA tests	OA/ Course Seminar/ Activity	Total Marks
<mark>Marks</mark>	<mark>15+15 = 30</mark>	<mark>10 + 10 = 20</mark>	<mark>50</mark>
Minimum sco	re to be eligible f	or SEE: 20 OUT OF 50	

Scheme of Semester End Examination (SEE):

<mark>1.</mark>	It will be conducted for 50 marks of 1 hour duration.
	-Student should score minimum 40% of 30 marks (i.e. 12 marks) in IA tests.
	-Lack of minimum score in IA test will make the student Not Eligible for SEE.
2.	Passing Score should be \geq 35% ,however overall score of CIE + SEE should be \geq 40%
3.	Question paper will be of MCQ type with questions from all units.

	CO-PO Mapping (Planned)								CO-PSO Mapping (Planned)						
C O	P 0 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
1															
2															
3															
4															
5							/		1						
	Tick Mark the CO, PO and PSO mapping														

Professional Writing Skills in English

Course Code	22PWS26	Course type	Theory	Credits L-T-P	1-0-0
Hours/week: L - T- P	1 - 0 - 0		Total credits	1	
Total Contact Hours	L = 15 Hrs; T = 0 Hrs P = 0 Hrs			CIE Marks	50
	Total = 15 Hrs				
Flipped Classes content	3 Hours			SEE Marks	50

	Course learning objectives					
1.	Identifying Common Errors in Writing and Speaking English					
2.	Acquire Nature and Style of Sensible Writing Skills					
3.	Attain Better Technical Writing and Presentation Skills for Employment.					
4.	Impart Employment and Workplace Communication Skills.					

Contact Hours = 3 Hours

Pre-requisites:

• Ability to write/frame simple and grammatically correct sentences in English.

Unit – I

Identifying Common Errors in Writing and Speaking English

Content of the Unit: Common errors identification in parts of speech, phrasal verbs, Auxiliary verbs and their forms, Subject Verb Agreement (Concord Rules), Sequence of Tenses and errors identification in Tenses. Words Confused/Misused.

Unit – II	Nature and Style of sensible writing:	Contact Hours = 3 Hours
Organizing	and a luce	

Content of the Unit: Principles of Paragraphs in Documents, Writing Introduction andConclusion, Importance of Proper Punctuation, Precise writing and Techniques in Essay writing, Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words.

Unit – III Practices	Technical Reading and Writing	Contact Hours = 3 Hours
Content of the Unit	: Technical writing process, Introduction to	Technical Reports writing,

Significance of Reports, Types of Reports. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical Proposals. Scientific Writing Process. Grammar – Voices and Reported Speech, Spotting Error& Sentence Improvement, Cloze Test and Theme Detection Exercises.

Unit – IV	Professional Communication for	Contact Hours = 3 Hours
Employment		
Content of the	Unit: Listening Comprehension, Types of Listen	ning, Listening Barriers, Improving
Listening Skills	. Reading Comprehension, Tips for productive r	eading. Job Applications, Types of
official/employ	ment/business Letters, Resume vs. Bio Data,	Profile, CV. Writing an effective
resume for emp	loyment, Emails.	

Unit – V	Professional Communication	Contact Hours = 3 Hours
Workplace		

Content of the Unit: Group Discussion and Professional Interviews, Characteristics and Strategies of a GD and PI, Intra and Interpersonal Communication Skills at the workplace, Non-Verbal Communication Skills and their importance in GD Interviews. Presentation skills.

Flipped Classroom Details						
Unit No.	Ι	II	III	IV	V	
No. for Flipped Classroom Sessions	**	**	1 class	1 class	1 class	

	Books
	Text Books:
1.	"Professional Writing Skills in English" published by Fillip Learning – Education (ILS),
	Bangalore – 2022.
2.	"Functional English" (As per AICTE 2018 Model Curriculum) (ISBN-978-93-5350-047-4)
	Cengage learningIndia Pvt Limited [Latest Edition 2019].
	Reference Books:
1.	English for Engineers by N.P.Sudharshana and C.Savitha, Cambridge University Press – 2018.
2.	Technical Communication - Principles and Practice, Third Edition by Meenakshi Raman and
	Sangeetha Sharma, Oxford University Press 2017.
3.	High School English Grammar & Composition by Wren and Martin, S Chandh & Company Ltd
	- 2015.
	E-resourses
1.	Proficiency Level Tests: https://examenglish.com
2.	Write and Improve: <u>https://writeandimprove.com</u>

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)	
3.	Flipped Classes	3.	Assignments	
4.	Online classes	4.	Semester End Examination	

Course Outcome (COs)

At	At the end of the course, the student will be able to (Highlight the action verb representing the learning level.)				
Learning Levels: Re - Remember; Un - Understand; Ap - Apply;LearningAn - Analysis; Ev - Evaluate; Cr - CreateLevelPO(s)PSO					
1.	Identifying Common Errors in Writing and Speaking English	L1 (Re)	10		
2.	Acquire Nature and Style of Sensible Writing Skills	L2 (Un)	10		
3.	Attain Better Technical Writing and Presentation Skills for Employment.	L2 (Un)	10		
4.	Employment and Workplace Communication Skills.	L3 (Ap)	10		

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA tests	OA/ Course Seminar/ Activity	Total Marks			
<mark>Marks</mark>	<mark>15+15 = 30</mark>	<mark>10 + 10 = 20</mark>	<mark>50</mark>			
Minimum score to be eligible for SEE: 20 OUT OF 50						

<mark>1.</mark>	It will be conducted for 50 marks of 1 hour duration.								
	-Student should score minimum 40% of 30 marks (i.e. 12 marks) in IA tests.								
	-Lack of minimum score in IA test will make the student Not Eligible for SEE.								
2.	Passing Score should be \geq 35%, however overall score of CIE + SEE should be \geq 40%								
3.	Question paper will be of MCQ type with questions from all units.								

	CO-PO Mapping (Planned)								CO-PSO Mapping (Planned)						
С	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PS
0	1	2	3	4	5	6	7	8	9	10	11	12	1	2	03
1															
2															
3															
4							-	1	-						
5						/				\checkmark					
	•		Tic	k Mar	k the (CO, PC) and l	PSO m	apping	B		•			

Indian Constitution

Indian Constitution

Course Code	22ICO17	Course type	Credits L-T- P	1-0-0
Hours/week: L - T- P	1-0-0	I I	Total credits	1
Total Contact Hours	L = 15 Hrs; T = 0 $Total = 15 Hrs$	CIE Marks	50	
Flipped Classes content	05 Hours		SEE Marks	50

	Course learning objectives							
1.	1. To know about the basic structure of Indian Constitution.							
2.	2. To know the Fundamental Rights (FR's), DPSP's and Fundamental Duties (FD's) of our							
	constitution.							
3.	3. To know about our Union Government, political structure & codes, procedures.							
4.	To know the State Executive and Elections system of India.							

Pre-requisites : English language, Social studies

Unit – I	Contact Hours = 3 Hours
Indian Constitution: Necessity of the Constitution, Societie	s before and after the Constitution
adoption. Introduction to the Indian constitution, Making	of the Constitution, Role of the
Constituent Assembly.	

Unit – II

Contact Hours = 3 Hours

Salient features of India Constitution. Preamble of Indian Constitution & Key concepts of the Preamble. Fundamental Rights (FR's) and its Restriction and limitations in different Complex Situations. building.

Unit – III

Contact Hours = 3 Hours

Directive Principles of State Policy (DPSP's) and its present relevance in Indian society. Fundamental Duties and its Scope and significance in Nation, Union Executive: Parliamentary System, Union Executive — President, Prime Minister, Union Cabinet.

Unit – IV	Contact Hours = 3 Hours
Parliament - LS and RS, Parliamentary Committees, Import	ant Parliamentary Terminologies.
Judicial System of India, Supreme Court of India and oth	er Courts, Judicial Reviews and
Judicial Activism.	

Unit – VContact Hours = 3 HoursState Executive and Governor, CM, State Cabinet, Legislature - VS & VP, ElectionCommission, Elections & Electoral Process. Amendment to Constitution, and ImportantConstitutional Amendments till today. Emergency Provisions.

Unit No.	Ι	II	III	IV	V
No. for Flipped Classroom Sessions	01	01	01	01	01

	Books
	Text Books:
1.	"Constitution of India" (for Competitive Exams) - Published by Naidhruva
	Edutech Learning Solutions, Bengaluru. — 2022.
2.	"Introduction to the Constitution of India", (Students Edition.) by Durga Das Basu(DD Basu):Prentice —Hall, 2008.
	Reference Books:
1.	"Constitution of India, Professional Ethics and Human Rights" by ShubhamSingles, Charles E. Haries, and et a1: published by Cengage Learning India, Latest Edition — 2019.
2.	"The Constitution of India" by Merunandan K B: published by Merugu Publication, Second Edition, Bengaluru.
3.	"Samvidhana Odu" - for Students & Youths by Justice HN Nagamohan Dhas,
	Sahayana, kerekon.
4.	M.Govindarajan, S.Natarajan, V.S.Senthilkumar, "Engineering Ethics", Prentice —
	Hall, 2004.
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	
2.	

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos 2. Online Quizzes (Surprise and Scheduled		Online Quizzes (Surprise and Scheduled)	
3.	Flipped Classes	3. Open Book Tests (OBT)		
4.	Online classes	4.	Course Seminar	
		5.	Semester End Examination	

Course Outcome (COs)

At the end of the course, the student will be able to (Highlight the **action verb** representing the learning

level.)

	rning Levels: Re - Remember; Un - Understand; Ap - Apply; Analysis; Ev - Evaluate; Cr - Create	Learning Level	PO(s)	PSO(s)					
1.	Understand the requirement, history and the basic structure of Indian Constitution.	Un	6, 8,12	4					
2.	Understand the components of Indian Constitution viz People and Government and basics of Legislative, Judiciary and Executive aspects.		6, 8,12	4					

Scheme of Continuous Internal Evaluation (CIE):

Minimum score to be eligible for SEE: 20 OUT OF 50							
<mark>Marks</mark>	<mark>15+15 = 30</mark>	<mark>10 + 10 = 20</mark>	<mark>50</mark>				
Components	Addition of two IA tests	OA/ Course Seminar/ Activity	Total Marks				

Scheme of Semester End Examination (SEE):

1	•	It will be conducted for 50 marks of 1 hour duration.
		-Student should score minimum 40% of 30 marks (i.e. 12 marks) in IA tests.
		-Lack of minimum score in IA test will make the student Not Eligible for SEE.
2	•	Passing Score should be \geq 35% , however overall score of CIE + SEE should be \geq 40%
3	•	Question paper will be of MCQ type with questions from all units.

	CO-PO Mapping (Planned)							CO-PSO Mapping (Planned)								
	P 0 1	PO 2	P 0 3	P 0 4	PO 5	PO 6	PO 7	PO 8	P 0 9	PO 10	PO 11	PO 12	PSO 1	PS O 2	PS O3	PSO 4
1						V	21	\checkmark	10	12	2	\checkmark				\checkmark
2						\checkmark		V	M			\checkmark				
Tic	k mar	k the	CO, P	O an	d PSO	map	oing	1	-	J					•	

Scientific Foundations for Health

Scientific Foundations for Health

Course Code	22SFH18/28	Course type	Theory	Credits L-T-P	1-0-0
Hours/week: L - T- P	1-0-0	Total credits	1		
Total Contact Hours	L = 15 Hrs; T = 0 H Total = 15 Hrs	lrs; P = 0 Hrs		CIE Marks	50
Flipped Classes content				SEE Marks	50

	Course learning objectives					
1.	To know about Health and wellness (and its Beliefs) & It's balance for positive mindset.					
2.	To Build the healthy lifestyles for good health for their better future.					
3.	To Create a Healthy and caring relationships to meet the requirements of good/social/positive					
	life.					
4.	To learn about Avoiding risks and harmful habits in their campus and outside the campus for					
	their bright future					
5.	To Prevent and fight against harmful diseases for good health through positive mindset					

Unit – I Good Health & It's balance for positive mindset:	Contact Hours = 3 Hours					
Health -Importance of Health, Influencing factors of Health, H	Health beliefs, Advantages of good					
health, Health & Behavior, Health & Society, Health & family,	Health & Personality, Psychological					
disorders-Methods to improve good psychological health, Changir	ng health habits for good health.					

A sile

EQL Y

Contact Hours = 3 Hours

Unit – II Building of healthy lifestyles for better future:

Developing healthy diet for good health, Food & health, Nutritional guidelines for good health, Obesity & overweight disorders and its management, Eating disorders, Fitness components for health, Wellness and physical function, How to avoid exercise injuries.

Unit – III Creation of Healthy and caring relationships :	Contact Hours = 3 Hours				
Building communication skills, Friends and friendship - Education, the value of relationship a					
communication skills, Relationships for Better or worsening of life, understanding of basic instincts					
life (more than a biology), Changing health behaviours through so	cial engineering.				

Unit – IV Avoiding risks and harmful habits :	Contact Hours = 3 Hours
Characteristics of health compromising behaviors, Recognizin	g and avoiding of addictions, how
addiction develops, Types of addictions, influencing factors of	of addictions, Differences between
addictive people and non addictive people & their behaviors. Eff	ects of addictions Such as, how to
recovery from addictions.	

Unit – V Preventing & fighting against diseases for good	Contact Hours = 3 Hours				
health:					
How to protect from different types of infections, How to reduce risks for good health, Reducing risk					
& coping with chronic conditions, Management of chronic illness f	or Quality of life, Health &				

Wellness of youth :a challenge for upcoming future, Measuring of health & wealth status.

	Books
	Text Books:
1.	"Scientific Foundations of Health" – Study Material Prepared by Dr. L Thimmesha, Published in VTU - University Website.
2.	"Scientific Foundations of Health", (ISBN-978-81-955465-6-5) published by Infinite Learning Solutions, Bangalore – 2022.
3.	Health Psychology - A Textbook, FOURTH EDITION by Jane Ogden McGraw Hill Education
	(India) Private Limited - Open University Press.
	Reference Books:
1.	Health Psychology (Second edition) by Charles Abraham, Mark Conner, Fiona Jones and Daryl O'Connor – Published by Routledge 711 Third Avenue, New York, NY 10017.
2.	HEALTH PSYCHOLOGY (Ninth Edition) by SHELLEY E. TAYLOR - University of California, Los Angeles, McGraw Hill Education (India) Private Limited - Open University Press.
	E-resourses (NPTEL/SWAYAM. Any Other)- mention links
L	

	Course delivery methods	The second second	Assessment methods
1.	✓ Chalk and Talk	1.	IA tests
2.	✓ PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)
3.	Flipped Classes	3.	Open Book Tests (OBT)
4.	Online classes	4.	✓ Course Seminar
		5.	✓ Semester End Examination

At t	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning level.)						
	ning Levels: Re - Remember; Un - Understand; Ap - Apply; Analysis; Ev - Evaluate; Cr – Create	Learning Level	PO(s)	PSO(s)			
1.	To understand and analyse about Health and wellness (and its Beliefs) & It's balance for positive mindset.	Un	6				
2.	Develop the healthy lifestyles for good health for their better future.	Un	6				
3.	Build a Healthy and caring relationships to meet the requirements of good/social/positive life.	Un	6				
4.	To learn about Avoiding risks and harmful habits in their campus and outside the campus for their bright future.	Re	6				
5.	Prevent and fight against harmful diseases for good health through positive mindset.	Un	6				

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA tests	OA/ Course Seminar/ Activity	Total Marks				
<mark>Marks</mark>	<mark>15+15 = 30</mark>	<mark>10 + 10 = 20</mark>	<mark>50</mark>				
Minimum score to be eligible for SEE: 20 OUT OF 50							

Sch	cheme of Semester End Examination (SEE):						
<mark>1.</mark>	It will be conducted for 50 marks of 1 hour duration.						
	-Student should score minimum 40% of 30 marks (i.e. 12 marks) in IA tests.						
	-Lack of minimum score in IA test will make the student Not Eligible for SEE.						
2.	Passing Score should be \geq 35% , however overall score of CIE + SEE should be \geq 40%						
3.	Question paper will be of MCQ type with questions from all units.						

	CO-PO Mapping (Planned)								CO-PSO Mapping (Planned)						
	PO	РО	РО	PO	PO	PO	PO	РО	PO	PO	PO	РО	PSO	PSO	PSO
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1						18	100		11	9 (
2					4	-√8		1 1		0	7				
3					1	10	/	-	1	5.					
4					11	1)	1		>)						
5						-	140	d a f	10		1				
			Ti	ick mai	k the	CO, PO	and P	SO ma	pping	12	5				
						34	1	M	2	UNE					

Samskrutika Kannada and Balake Kannada

Samskrutika Kannada

ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ – ಕನ್ನಡ ಬಲ್ಲ ಮತ್ತು ಮಾತೃಭಾಷೆಯ ವಿದ್ಯಾಥಿ೯ಗಳಿಗೆ ನಿಗದಿಪಡಿಸಿದ ಪಠ್ಯಕ್ರಮ

Course Code	22 KSK 17/27	Course type	Theory	Credits	01
Hours/week: L - T- P	1-0-0	·		Total credits	01
Total Contact Hours of Pedagogy	15 Hours			CIE Marks	50
Flipped Classes content				SEE Marks	50

	Course learning objectives : ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ ಪಠ್ಯ ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳು :					
1.	ಪದವಿ ವಿದ್ಯಾರ್ಥಿಗಳಾಗಿರುವುದರಿಂದ ಕನ್ನಡ ಭಾಷೆ, ಸಾಹಿತ್ಯ ಮತ್ತು ಸಂಸ್ಕೃತಿಯ ಪರಿಚಯ ಮಾಡಿಕೊಳ್ಳುವುದು.					
2.	ಕನ್ನಡ ಸಾಹಿತ್ಯದ ಪ್ರಧಾನ ಭಾಗವಾದ ಆಧುನಿಕಪೂವ೯ ಮತ್ತು ಆಧುನಿಕ ಕಾವ್ಯಗಳನ್ನು ಪರಿಚಯಿಸುವುದು.					
3.	ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಸಾಹಿತ್ಯ, ಮತ್ತು ಸಂಸ್ಕೃತಿಯ ಬಗ್ಗೆ ಅರಿವು ಹಾಗೂ ಆಸಕ್ತಿಯನ್ನು ಮೂಡಿಸುವುದು.					
4.	ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯವನ್ನು ಹಾಗೂ ಅವರುಗಳ ಸಾಧಿಸಿದ ವಿಷಯಗಳನ್ನು ಪರಿಚಯಿಸುವುದು.					
5.	ಸಾಂಸ್ಕೃತಿಕ, ಜನಪದ ಹಾಗೂ ಪ್ರವಾಸ ಕಥನಗಳ ಪರಿಚಯ ಮಾಡಿಕೊಳ್ಳುವುದು.					

Pre-requisites :

Unit – I ಘಟಕ-1 ಕನ್ನಡ ಸಂಸ್ಕೃತಿ ಮತ್ತು ಭಾಷೆ ಕುರಿತಾದ ಲೇಖನಗಳು	Contact Hours = 8 Hours					
Content of the Unit : 1. ಕರ್ನಾಟಕ ಸಂಸ್ಕೃತಿ : ಪಂಪ ನಾಗರಾಜಯ್ಯ						
2. ಕರ್ನಾಟಕದ ಏಕೀಕರಣ: ಒಂದು ಅಪೂರ್ವ ಚರಿತ್ರೆ – ಜೆ. ವೆಂಕಟಸುಬ್ಬಯ್ಯ						
3. ಆಡಳಿತ ಭಾಷೆಯಾಗಿ ಕನ್ನಡ – ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ ಮತ್ತು ಪ್ರೋ. ವಿ. ಕೇಶವಮೂರ್ತಿ						
a la a la						

Unit – II ಆಧುನಿಕ ಪೂವ೯ದ ಕಾವ್ಯಭಾಗ 🐂 🤍 🔍 🔍	Contact Hours = 8 Hours					
Content of the Unit : 1. ವಚನಗಳು : ಬಸವಣ್ಣ, ಅಕ್ಕಮಹಾದೇವಿ, ಅಲ್ಲಮಪ್ರಭು, ಆಯ್ದಕ್ಕಿ ಮಾರಯ್ಯ,						
ಜೇಡರದಾಸಿಮಯ್ಯ , ಆಯ್ದಕ್ಕಿ <mark>ಲ</mark> ಕ್ಕಮ್ಮ						
2. ಕೀರ್ತನೆಗಳು : ಅದರಿಂದೇನು ಫಲ ಇದರಿಂದೇನು ಫಲ – ಪುರಂದರದಾಸರು						
ತಲ್ಲಣಿಸದಿರು ಕಂಡ್ಯ ತಾಳು ಮನವೇ – ಕನಕದಾಸರು						
3. ತತ್ವಪದಗಳು : ಸಾವಿರ ಕೊಡಗಳ ಸುಟ್ಟು – ಶಿಶುಸ	ರಾಳ ಶರೀಫ					

Unit – III ಆಧುನಿಕ ಕಾವ್ಯಭಾಗ	Contact Hours = 8 Hours					
Content of the Unit : 1. ಡಿವಿಜಿ ರವರ ಮಂಕುತಿಮ್ಮನ ಕಗ್ಗದಿಂದ ಆಯ್ದ ಕೆಲವು ಭಾಗಗಳು						
2. ಕುರುಡು ಕಾಂಚಾಣ : ದ. ರಾ. ಬೇಂದ್ರೆ						
3. ಹೊಸಬಾಳಿನ ಗೀತೆ : ಕುವೆಂಪು						

Unit – IV ತಾಂತ್ರಿಕ ಪ	ಶ್ಯಕ್ತಿಗಳ ಪರಿಚ ಯ	Contact Hours = 8 Hours
Content of the Unit:	1. ಡಾ. ಸರ್. ಎಂ. ವಿಶ್ವೇಶ್ವರಯ್ಯ : ವ್ಯಕ್ತಿ ಮತ್ತು ಐತಿಕ	ಕ್ಯ – ಎ. ಎನ್. ಮೂರ್ತಿರಾವ್
	2. ಕರಕುಶಲ ಕಲೆಗಳು ಮತ್ತು ಪರಂಪರೆಯ ವಿಜ್ಞಾನ	: ಕರೀಗೌಡ ಬೀಚನಹಳ್ಳಿ

Unit –	V ಸಾಂಸ್ಕೃತಿಕ , ಜನಪದ ಕಥೆ ಮತ್ತು ಪ್ರವಾಸ ಕಥನ	Contact Hours = 8 Hours						
Conte	Content of the Unit : 1. ಯುಗಾದಿ : ವಸುಧೇಂದ್ರ							
	2. ಮೆಗಾನೆ ಎಂಬ ಗಿರಿಜನ ಪವ೯ತ : ಹಿ. ಚಿ. ಬೋರಲಿಂಗಯ್ಯ							
Course	Outcome (Course skill set)							
	ೃತಿಕ ಕನ್ನಡ (22KSK17/27)							
	end of the course the student will be able to :							
CO 1	ಕನ್ನಡ ಭಾಷೆ, ಸಾಹಿತ್ಯ ಮತ್ತು ಸಂಸ್ಕೃತಿಯ ಕುರಿತು ಅರಿವು ಮೂಡಿಸುತ್ತದೆ.							
CO 2	ಕನ್ನಡ ಸಾಹಿತ್ಯದ ಆಧುನಿಕ ಪೂವ೯ ಮತ್ತು ಆಧುನಿಕ ಕಾವ್ಯಗಳನ್ನು ಸಾಂ	ಕೇತಿಕವಾಗಿ ಕಲಿತು ಹೆಚ್ಚಿನ ಅವಧಿಗೆ ಮತ್ತು						
00 -	ಜ್ಞಾನಕ್ಕೆ ಸ್ಪೂರ್ತಿ ಮೂಡುತ್ತದೆ.							
CO 3	ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಸಾಹಿತ್ಯ, ಮತ್ತು ಸಂಸ್ಕೃತಿಯ ಬಗ್ಗೆ ಅರಿವು ಹಾಗೂ ಆಸಕ್ತಿಯನ್ನು ಮೂಡುತ್ತದೆ.							
CO 4	ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯವನ್ನು ಹಾಗೂ ಅವರುಗಳ ಸಾಧಿಸಿದ ವಿಷಯಗಳ ಪರಿಚಯವಾಗುತ್ತದೆ.							
CO 5	ಸಾಂಸ್ಕೃತಿಕ, ಜನಪದ ಹಾಗೂ ಪ್ರವಾಸ ಕಥನಗಳ ಪರಿಚಯವಾಗುತ್ತದೆ.							
Asses	sment Details (both CIE and SEE)							

The weight age of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

Two Unit Tests each of 15 Marks (duration 1/2 hour)

- First test after the completion of 30-40 % of the syllabus
- Second test after completion of 80-90% of the syllabus

One Improvement test before the closing of the academic term may be conducted if necessary. However best two tests out of three shall be taken into consideration

Two assignments each of 10 Marks

The teacher has to plan the assignments and get them completed by the students well before the closing of the term so that marks entry in the examination portal shall be done in time. Formative (Successive) Assessments include Assignments/Quizzes/Seminars/ Course projects/Field surveys/ Case studies/ Hands-on practice (experiments)/Group Discussions/ others. The Teachers shall choose the types of assignments depending on the requirement of the course and plan to attain the Cos and POs. (to have a less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course). CIE methods /test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

The sum of two tests, two assignments, will be out of 50 marks.

Semester End Examinations (SEE)

SEE paper shall be set for **50 questions, each of the 01 mark**. The pattern of the **question paper is MCQ** (multiple choice questions). The time allotted for SEE is **01 hour.** The student must secure a minimum of 35% of the maximum

,	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the learning level.) ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ ಪಠ್ಯ ಕಲಿಕೆಯ ನಂತರ ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ :							
	ning Levels: Re - Remember; Un - Understand; Ap - Apply; Analysis; Ev - Evaluate; Cr - Create	Learning Level	PO(s)	PSO(s)				
1.	ಕನ್ನಡ ಭಾಷೆ, ಸಾಹಿತ್ಯ ಮತ್ತು ಕನ್ನಡದ ಸಂಸ್ಕೃತಿಯ ಕುರಿತು ಅರಿವು ಮೂಡಿರುತ್ತದೆ.	Re / Un	10					
2.	ಕನ್ನಡ ಸಾಹಿತ್ಯದ ಆಧುನಿಕಪೂರ್ವ ಮತ್ತು ಆಧುನಿಕ ಕಾವ್ಯಗಳನ್ನು ಸಾಂಕೇತಿಕವಾಗಿ ಕಲಿತು ಹೆಚ್ಚಿನ ಓದಿಗೆ ಮತ್ತು ಜ್ಞಾನಕ್ಕೆಸ್ಟೂರ್ತಿ ಮೂಡುತ್ತದೆ	Re / Un	10					
3.	ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಸಾಹಿತ್ಯ, ಮತ್ತು ಸಂಸ್ಕೃತಿಯ ಬಗ್ಗೆ ಅರಿವು ಹಾಗೂ ಆಸಕ್ತಿ ಹೆಚ್ಚಾಗುತ್ತದೆ.	Re / Un	10					
4.	ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯವನ್ನು ಹಾಗೂ ಅವರುಗಳ ಸಾಧಿಸಿದ ವಿಷಯಗಳನ್ನು ತಿಳಿದುಕೊಂಡು ನಾಡಿನ ಇನ್ನಿತರ ವ್ಯಕ್ತಿಗಳ ಬಗ್ಗೆ ತಿಳಿದುಕೊಳ್ಳಲು ಕೌತುಕತೆ ಹೆಚ್ಚಾಗುತ್ತದೆ.	Re / Un	10					
5.	ಸಾಂಸ್ಕೃತಿಕ, ಜನಪದ ಹಾಗೂ ಪ್ರವಾಸ ಕಥನಗಳ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು.	Re / Un	10					

Scheme of Continuous Internal Evaluation (CIE): Theory course

Components	Addition of two IA tests	Online Quiz	Addition of two Assignments	Course Seminar	Total Marks
<mark>Marks</mark>	<mark>15 + 15 = 30</mark>	ł	<mark>10+10 =20</mark>	ł	<mark>50</mark>

Minimum score to be eligible for SEE: 20 OUT OF 50

Scheme of Semester End Examination (SEE):

1.	It will be conducted for 50 marks of 01 hours duration.
	-Student should score minimum 40% of 30 marks (i.e. 12 marks) in IA tests.
	-Lack of minimum score in IA test will make the student Not Eligible for SEE.
2.	SEE Score should be \geq 35% ,however overall score of CIE + SEE should be \geq 40%
3.	Question paper will be of MCQ type and will cover the entire unit of course. It will contain 50
	questions, each of the 01 mark.

University Prescribed Textbook:

ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ ಡಾ. ಹಿ.ಚಿ. ಬೋರಲಿಂಗಯ್ಯ ಮತ್ತು ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ ಪ್ರಕಟಣೆ : ಪ್ರಸಾರಂಗ ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ

ವಿಶೇಷ ಸೂಚನೆ : 1.ಮೇಲಿನ ಪಠ್ಯಕ್ರಮಕ್ಕೆ ಸೀಮಿತವಾಗಿ ಅಂತಿಮ ಪರೀಕ್ಷೆಯ ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆ ಇರುತ್ತದೆ. 2. ಮೇಲಿನ ಪಠ್ಯಕ್ರಮವನ್ನು ಹೊರತುಪಡಿಸಿದ ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ ಪಠ್ಯಪುಸ್ತಕದಲ್ಲಿನ ಉಳಿದ ಪದ್ಯ ಮತ್ತು ಗದ್ಯ ಭಾಗ ಹಾಗೂ ಇತರ ಲೇಖನಗಳನ್ನು ಹೆಚ್ಚುವರಿ ಪೂರಕ ಓದಿಗಾಗಿ ಬಳಸಿಕೊಳ್ಳಬಹುದು.

	CO-PO Mapping (Planned)									CO-PSO Mapping (Planned)					
со	РО	РО	PO	РО	PO	РО	PO	PO	РО	PO	РО	РО	PSO	PSO	PSO
co	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1										✓					
2								-		✓					
3						/	1			\checkmark					
4						15	1	EOF	TE	-					
5					/	~	5/	2G	Nº4	1					
	Tick mark the CO, PO and PSO mapping														

Balake Kannada

		Credits L-T-P	1-0-0
)-0		Total credits	01
5 hours		CIE Marks	50
		SEE Marks	50
	-		hours CIE Marks

	Course learning objectives					
1.	To Create the awareness regarding the necessity of learning local language for comfortable and healthy life.					
2.	To enable learners to Listen and understand the Kannada language properly.					
3.	To speak, read and write Kannada language as per requirement.					
4.	To train the learners for correct and polite conservation.					
5.	To know about Karnataka state and its language, literature and General information about this state.					

Pre-requisites :

Unit –	I
--------	---

Contact Hours = 3 Hours

 Introduction, Necessity of learning a local language. Methods to learn the Kannada language.
 Easy learning of a Kannada Language: A few tips. Hints for correct and polite conservation, Listening and Speaking Activities, Key to Transcription.

3. Personal pronouns, Possessive Forms, Interrogative words

Unit – II	Contact Hours = 3 Hours					
1.Possessive forms of nouns, dubitive question and Relative nouns.						
2. Qualitative, Quantitative a nd Colour Adjectives, Numerals adjectives.						
3. Predictive Forms, Locative Case						

Unit – III

Contact Hours = 3 Hours

- 1. Dative Cases, and Numerals.
- 2. Ordinal numerals and Plural markers.
- 3. Defective/Negative Verbs & Colour Adjectives

Unit – IV

Contact Hours = 3 Hours

1. Permission, Commands, encouraging and Urging words (Imperative words and sentences)

- 2. Accusative Cases and Potential Forms used in General Communication
- 3. Helping Verbs "iru and iralla", Corresponding Future and Negation Verbs

4. Comparitive, Relationship, Identification and Negation Words

Unit – V	Contact Hours = 3 Hours
Unit – V	Contact Hours = 3 Hours

1.Different types of Tense, Time and Verbs

2. Formation of Past, Future and Present Tense Sentences with Verb Forms

3. Kannada Words in Conversation

	Books						
	Text Books:						
1.	Name of the author(s), Title of the Book, Publisher, Edition/Year and onwards						
2.	BALAKE KANNADA						
	Reference Books:						
1.	Name of the author(s), Title of the Book, Publisher, Edition/Year and onwards						
	E-resourses (NPTEL/SWAYAM. Any Other)- mention links						

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)	
3.	Flipped Classes	3.	Open Book Tests (OBT)	
4.	Online classes	4.	Course Seminar	
		5.	Semester End Examination	
	1 J# June			

	Course Outcome (COs)								
At t	At the end of the course, the student will be able to (Highlight the action verb representing the learning								
	level.)								
Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)					
An -	Analysis; Ev - Evaluate; Cr - Create	Level	PO(S)	P30(3)					
1.	To understand the necessity of learning of local language for comfortable life.	Re / Un	10						
2.	To speak, read and write Kannada language as per requirement.	Re / Un	10						
3.	To communicate (converse) in Kannada language in their daily life with kannada speakers.	Re / Un	10						
4.	To Listen and understand the Kannada language properly.	Re / Un	10						
5.	To speak in polite conservation.	Re / Un	10						

Scheme of Continuous Internal Evaluation (CIE): Theory course

Components	Addition of	Online Quiz	OBA	Course	Total				
components	two IA tests	Offinite Quiz	00/1	Seminar	Marks				
<mark>Marks</mark>	<mark>15+15= 30</mark>	-	<mark>10 + 10</mark>	<mark>-</mark>	<mark>50</mark>				
OBA - Open Book Assignment									
Minimum score to be eligible for SEE: 20 out of 50									

	• •
1.	It will be conducted for 50 marks of 1 hour duration.
	-Student should score minimum 40% of 30 marks (i.e. 12 marks) in IA tests.
	-Lack of minimum score in IA test will make the student Not Eligible for SEE.
2.	SEE Score should be \geq 35% ,however overall score of CIE + SEE should be \geq 40%
3.	Question paper will be of MCQ type and will cover the entire unit of course. It will contain 50
	questions, each of the 01 mark.

	CO-PO Mapping (Planned)											SO Map Planned			
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1										✓					
2										✓					
3										✓					
4										✓					
5							6	1	-	✓					
	Tick mark the CO, PO and PSO mapping														

Idea to Innovation Lab

Idea to Innovation Lab

Course Code	2211L18/28	22IIL18/28 Course type		Credits L-T-P	0-0-1			
Hours/week: L-T-P	0-0-2			Total credits	1			
Total Contact Hours	Fotal Contact HoursL = 0; T = 0; P = 24 Hrs, Total = 24Hrs				100 marks			
Flipped Classes content			SEE Marks 00 mai					
Course learning objectives								

L	ourse rearining objectives									
	1	To familiarize the students about the design thinking approach.								
	2	To prepare the students for problem analysis and solving.								
	3	To create awareness amongst the students about the significance of different engineering disciplines in product development.								
	4	To enable students to understand the importance of basic skilling for domestic applications.								
	5	To enable the students to apply ethical and sustainability perspectives.								

S.No	(PART A) - List of Experiments
1	Experiment on sensor tracking data and Arduino based circuit operation
2	Experiment on motor control by Simulink, MATLAB
3	Experiment on development of android app using MIT app
4	Experiment on data analysis and visualization using MS excel
5	Experiment on demonstration of front end and backend of software using MS Access
	(PART B) - List of Experiments
6	Experiment on design of an electrical extension box
7	Experiment on disassembly and assembly of a Gas Stove
8	Experiment on disassembly and assembly of the flush tank
9	Experiment on building battery pack using dry cells
10	Experiment on fixing of spare wheel for a blown out tyre

	List of software (Open Source)								
1	Gear Simulator, Mechanalyser, Gear Generator								
2	NI Multisim, Arduino studio (IDE), Eagle layout editor								
3	MS Excel, MIT APP								
	Books								
	Text Books:								
1	C. Starkey, "Basic Engineering Design", Butterworth-Heinemann Publisher 1988.								
2	Ken Hurst, "Engineering Design Principles", Elsevier publication, Swan Press, 2010								
3	Richard G Budynas and J Keith Nisbett, Shigley's "Mechanical Engineering Design", Mc Graw								
	Hill, 9 th Edition, 2011								

4	Kenneth Ayala, "The 8051 Microcontroller, Architecture, Programming, and Applications", West
	publishing Company.
5	K. K. Chitkara, "Construction Project Management", 4th Edition, Tata McGraw-Hill, 2019.
6	B. L. Theraja, "A textbook of Electrical Technology", S. Chand Publication.
	Reference Books:
1	Rattan, S.S. "Theory of Machines", 3rd Edition, Tata McGraw-Hill, 2009.
2	Yousef Haik, SangarappillaiSivaloganathan, Tamer M. Shahin, "Engineering Design Process",
	Cengage learning, 2011.
3	Hugh Jack, "Engineering Design, Planning, and Management", Academic press 2013.
4	Boylsted, "Electronic Devices and Circuits", Person publication, 2013.
5	R. P. Jain, "Modern Digital Electronics" 2/e, TMH publication
6	Jeremy Blum, "Exploring Arduino: Tools and Techniques for Engineering Wizardry 1st Edition,
	Wiley publication, 2015.
7	Simon Monk, "Programming Arduino Next Steps: Going Further with Sketches", McGraw Hill /
	Tab Electronics.
8	Massimo Banzi, "Make: Getting Started with Arduino, 3 rd Edition", Shroff Publications, 2014.
9	Stuart Yarnold "Arduino in Easy Steps", In Easy Steps Publications, 2015.
10	Blum, "Arduino Programming in 24 Hours, Sams Teach Yourself", 1st Edition, Pearson
	Publications, 2015
11	V. K. Mehta, "Principles of Electronics", S. Chand Publication, 2014
12	A guide to the Project Management Body of Knowledge (PMBOK) 6th Edition
	E-resources (NPTEL/SWAYAM. Any Other)- mention links
1	http://epics.ieee.org/

	Course delivery methods		Assessment methods
1	Concept Explanation	1	Activity records
2	Demonstration	2	Product reviews
3	Hands on experience	3	Model Making

	Course Outcome (COs) At the end of the course, the student will be able to (Highlight there presenting learning level).									
	Learning Levels: L1- Remember; L2 - Understand; L3 - Apply; L4 Learnin L4 PO(s)									
-Ar	Describe the problem statement by Applying the design thinking skills and Engineering ethics.	3	1,2							
2	Analyze the problem statement, Identify and apply the suitable methods / processes required for execution and product development.	4	2,4,8							
3	Select the appropriate mechanisms and mode of power transmission for the product.	3	3							

4	Optimize the source of electrical power systems, software and	3	3,5
	hardware requirement for the product.		
5	Apply the knowledge of basic skilling for domestic application	3	1,12
	throughout.		

Scheme of Continuous Internal Evaluation (CIE):

- Each individual experiment will be evaluated for 10 marks
- Split marks will be : Conduction 05 marks and Viva Voce 05 marks.

Part A	Part B	Total Marks
Marks	Marks	(Part A+ Part B)
50	50	100

Minimum score to be pass the course is: 40 out of 100 in CIE

Note: Certification of journal and project is mandatory.

	CO-PO Mapping (planned)											
C O	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO 12
1	\checkmark	\checkmark						\checkmark				
2		\checkmark		\checkmark								
3			\checkmark									
4												
5	\checkmark											\checkmark

Prepared by:

Verified by:

Prof. M A Kori and Prof. P H Kulkarni

Prof. A A Kulkarni and Dr. H B Kulkarni