KARNATAK LAW SOCIETY'S GOGTE INSTITUTE OF TECHNOLOGY UDYAMBAG, BELAGAVI-590008

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi)

(APPROVED BY AICTE, NEW DELHI)

Third to Fourth semester B.E.
(2022 Scheme and Syllabus)
COMPUTER SCIENCE AND ENGINEERING

Head of The Department
Computer Science & Engineering
Gogte Institute of Technolog?
Bulagavi 590 088, India

INSTITUTION VISION

Gogte Institute of Technology shall stand out as an institution of excellence in technical education and in training individuals for outstanding caliber, character coupled with creativity and entrepreneurial skills.

MISSION

To train the students to become Quality Engineers with High Standards of Professionalism and Ethics who have Positive Attitude, a Perfect blend of Techno-Managerial Skills and Problem solving ability with an analytical and innovative mindset.

QUALITY POLICY

- Imparting value added technical education with state-of-the-art technology in a congenial, disciplined and a research oriented environment.
- Fostering cultural, ethical, moral and social values in the human resources of the institution.
- Reinforcing our bonds with the Parents, Industry, Alumni, and to seek their suggestions for innovating and excelling in every sphere of quality education.

DEPARTMENT VISION

To be a center of Excellence for Education, Research and Entrepreneurship in Computer Science and Engineering in creating professionals who are competent to meet emerging challenges to benefit society

MISSION

To impart and strengthen fundamental knowledge of students, enabling them to cultivate professional skills, entrepreneurial and research mindset with right attitude and aptitude.

	PROGRAM EDUCATIONAL OBJECTIVES (PEOs)						
1.	The graduates will acquire core competence in basic-science and engineering fundamentals necessary to formulate, analyze, and solve engineering problems and to pursue advanced						
	study.						
2.	The graduates will acquire capabilities to succeed as computer engineering professionals with						
۷.	an aptitude for higher education and entrepreneurship.						
3.	The graduates will have the curiosity and desire of learning for life and self-confidence to adapt						
5.	to changes.						
	The graduates will maintain high professionalism and ethical standards, effective oral and						
4.	written communication skills, work as part of teams on multidisciplinary projects under diverse						
4.	professional environments, and relate engineering issues to the society, global economy and						
	to emerging technologies.						

	PROGRAM OUTCOMES (POs)				
1.	Engineering Knowledge: Apply the knowledge of mathematics, science, engineering				
1.	fundamentals and an engineering specialization to the solution of complex engineering problems.				
2.	<u>Problem Analysis:</u> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and Engineering sciences.				
	<u>Design/Development of solutions:</u> Design solutions for complex engineering problems and				
2	design system components or processes that meet the specified needs with appropriate				
3.	consideration for the public health and safety, and the cultural, societal, and environmental				
	considerations.				
	<u>Conduct investigations of complex problems:</u> Use research-based knowledge and research				
4.	methods including design of experiments, analysis and interpretation of data, and synthesis of				
	the information to provide valid conclusions.				
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern				
5.	engineering and IT tools including prediction and modeling to complex engineering activities with				
	an understanding of the limitations.				
	<u>The engineer and society:</u> Apply reasoning informed by the contextual knowledge to assess				
6.	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to				
	the professional engineering practice.				
	Environment and sustainability: Understand the impact of the professional engineering solutions				
7.	in societal and environmental contexts, and demonstrate the knowledge of, and need for				
	sustainable development.				
8.	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms				
0.	of the engineering practice.				
9.	<u>Individual and team work:</u> Function effectively as an individual and as a member or leader in				
<i>J</i> .	diverse teams, and in multidisciplinary settings.				
	<u>Communication:</u> Communicate effectively on complex engineering activities with the				
10.	engineering community and with society at large, such as, being able to comprehend and write				
10.	effective reports and design documentation, make effective presentations, and give and receive				
	clear instructions.				

	<u>Project management and finance:</u> Demonstrate knowledge and understanding of the
11.	engineering management principles and apply these to one's own work, as a member and leader
	in a team, to manage projects and in multidisciplinary environments.
12	<u>Life-long learning:</u> Recognize the need for and have the preparation and ability to engage in

12.	Life-long learning: Recognize the need for and have the preparation and ability to engage in
12.	independent and lifelong learning in the broadest context of technological change.

	PROGRAM SPECIFIC OUTCOMES (PSOs)
	Problem solving skills: Ability to identify and analyze problems of varying complexity and
1.	propose solutions by applying fundamental knowledge acquired in the field of Computer
	Science and Engineering.
2.	Project development skills: Ability to apply design principles and demonstrate best practices
۷.	of software development processes to solve real life problems.
2	<u>Career advancement:</u> Ability to demonstrate professional and leadership qualities required to
3.	pursue opportunities in Information Technology/self-employment/ higher studies.

KLS Gogte Institute of Technology 3rd to 8thsem B.E.

Scheme of Teaching and Examination- 2022 Outcome-Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2023-24)

Total credits for B.E. Program: 160

Credit definition:

Offline Courses	Online Courses
• 1-hour Lecture (L) per week = 1 Credit	04 weeks =1 Credit
 2 hours Tutorial (T) per week = 1 Credit, 	08 weeks = 2 Credit
• 2 hours Practical /Drawing (P) per week = 1 Credit	12 weeks = 3 Credit

Semester wise distribution of credits for B.E program

Year	Semester	Credits	Total/Year	Cumulative Credits
1 st	1	20	40	40
1	II	20	40	40
2 nd	III	20	40	90
Z	IV	20	40	80
3 rd	V	22	40	120
3	VI	18	40	120
4 th	VII	VII 24	40	160
4	VIII	16	40	160
	Total		160	

Curriculum frame work:

Structure of Undergraduate Engineering program

S.No.	Category of courses	VTU Breakup of credits	KLSGIT Breakup of credits
1	Humanities and Social Sciences including Management	9	10
1	courses (English, Kannada, Indian Constitution, Environmental Sciences, Health and Management)	9	10
2	Basic Science courses	22	22
3	Engineering Science courses including ETC, PLC & Drawing	24	24
4	Professional Core Courses	54	54
5	Professional Elective courses relevant to chosen specialization/branch	12	12
6	Open subjects – Electives from other technical, emerging, arts, commerce	9	9
7	Mini, Project, Major Project work and Seminar	10	10
8	Summer Internship and Research /Industrial Internship	10	10
9	Ability Enhancement Courses, including Research Methodology, NCC/NSS/ Sports/Ex- Curricular, Online Certification Course	8	7
10	Universal Human Values	2	2
	TOTAL	160	160

L-T-P Model for Courses

		Conta	Cred	its		
S.No.	L-T-P Lecture Tutorial Practical		L-T-P	Total		
1	3 - 0 - 0	3	0 0		3 - 0 - 0	3
2	3 - 2 - 0	3	2 0		3 - 1 - 0	4
3	3 - 0 - 2	3	0	2	3 - 0 - 1	4
4	2 - 0 - 2	2	0	2	2 - 0 - 1	3
	1 - 0 - 4	0-4 1 0		4	1 - 0 - 2	3

Theory courses having the corresponding lab are converted to integrated type course. Also, the electives (if possible) can also be made integrated type.

Integrated courses (Professional Core/Electives): Integrated courses will have Theory Syllabus with Practical Syllabus of the same course. In such a course there could be no Semester End Examination (SEE) for the practical syllabus of the course, however, Continuous Internal Evaluation (CIE) will be conducted for the practical topics. SEE can include questions from practical topics.

SDA-Skill Development Activities, TD/PSB- Teaching Department / Paper Setting Board, ASC-Applied Science Course, ESC- Engineering Science Courses, ETC- Emerging Technology Course, AEC- Ability Enhancement Course, HSMS-Humanity and Social Science and Management Course, SDC- Skill Development Course,

KLS Gogte Institute of Technology

2ndYear B.E. Scheme of Teaching and Examination 2022

3 rd Semester				eme of reaching and		urs/w		Total contact		Examination																														
S.No.	Course Type	Course Code	Course Title	Teaching Dept.	L	Т	Р	hours/week	Credits	CIE	SEE	Total																												
1	BSC	22MATCS31/ 22MATIS31	Fundamentals of Statistics and Probability for Data Science	Maths	3	0	0	03	3	100	100	200																												
2	IPCC	22CS32/ 22IS32	Software Engineering and Design	CSE	3	0	2	05	4	100	100	200																												
3	IPCC	22CS33/ 22IS33	Object Oriented Programming using Java	CSE	3	0	2	05	4	100	100	200																												
4	PCC	22CS34/ 22IS34	Data Structures and Applications	CSE OF TO	3	0	0	03	3	100	100	200																												
5	ESC	22CS35X/ 22IS35X	ESC/ETC/PLC	CSE	2	0	2	04	3	100	100	200																												
6	UHV	22CS36/ 22IS36	Social Connect and Responsibility	CSE	0	0	2	02	1	100		100																												
7	AEC/ SEC	22AECCS37x/ 22AECIS37X	Ability Enhancement Course/Skill Enhancement Course - III	CSE	If the course is a Theory 1 0 0 If a course is a laboratory		0 e is a	01	1	50	50	100																												
			- She	4 1 7	0	0	2	02																																
		22CS381/ 22IS381	National Service Scheme (NSS)	NSS coordinator																																				
8	MC	22CS382/ 22IS382	Physical Education (PE) (Sports and Athletics) and Yoga	Physical Education dept & Yoga instructor	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2		0	100		100
		22CS383/ 22IS383	Clubs- Social, Cultural & Academic	Coordinators																																				
9	PCCL	22CSL39/ 22ISL39	Data Structures Laboratory using C	CSE	0	0	2	02	1	50	50	100																												
	Total									800	600	1400																												

	Engineering Science Course (PLC)								
22CS351/	Object Oriented December 1997 Co. (2.0.2)	22CS353/	Disital Florencies (2.0.2)						
22IS351	Object Oriented Programming using C++ (2-0-2)	22IS353	Digital Electronics (2-0-2)						
22CS352/	22CS352/		Dether December A Dectical Assessed (2.0.2)						
22IS352	Web Programming - A Practical Approach (2-0-2)	22IS354	Python Programming - A Practical Approach(2-0-2)						
	Ability Enhancement (Course – III							
22AECCS371	Design Thinking	22AECCS373	Software Tools and Technologies						
22AECCS372	Introduction to Embedded Systems and IoT - A Hands-on Approach	22AECCS374	Data Visualization Tools and Techniques						
22AECCS375 Mathematics – I									

Professional Core Course (IPCC): Refers to Professional Core Course Theory Integrated with practicals of the same course. Credit for IPCC can be 04 and its Teaching—Learning hours (L:T:P) can be considered as (3:0:2) or (2:2:2). The theory part of the IPCC shall be evaluated both by CIE and SEE. The practical part shall be evaluated by only CIE (no SEE). However, questions from the practical part of IPCC shall be included in the SEE question paper. For more details, the regulation governing the Degree of Bachelor of Engineering /Technology (B.E./B.Tech.) 2022-23 may please be referred.

National Service Scheme /Physical Education/Yoga/Clubs: All students have to register for any one of the courses namely National Service Scheme (NSS), Physical Education (PE)(Sports and Athletics), Yoga(YOG) and Clubs with the concerned coordinator of the course during the first week of III semesters. Activities shall be carried out between III semester to the VI semester (for 4 semesters). Successful completion of the registered course and requisite CIE score is mandatory for the award of the degree. The events shall be appropriately scheduled by the colleges and the same shall be reflected in the calendar prepared for the NSS, PE, Yoga and Club activities. These courses shall not be considered for vertical progression as well as for the calculation of SGPA and CGPA, but completion of the course is mandatory for the award of degree.

			4 th Semester		Hou	ırs/w	reek	Total		Ex	Examination																			
S.No.	Course Type	Course Code	Course Title	Teaching Dept.	L	Т	Р	contact hours/week	Credits	CIE	SEE	Total																		
1	PCC	22CS41/22IS41	Operating Systems	CSE	3	0	0	03	3	100	100	200																		
2	IPCC	22CS42/22IS42	Design and Analysis of Algorithms	CSE	3	0	2	05	4	100	100	200																		
3	IPCC	22CS43/22IS43	Database Management Systems	CSE	3	0	2	05	4	100	100	200																		
4	ESC	22CS44x/22IS44x	ESC/ETC/PLC	CSE	2	0	2	04	3	100	100	200																		
5	AEC/	AEC/ Ability Enhancement Course/Skill		If the course is Theory		ry	01	1		50																				
5	SEC 22AECCS45x Enhancement Course- IV		CSE TE OF TECHNO	If the course is a lab			02	1	50	50	100																			
6	BSC	22CS46/22IS46	Biology For Engineers 🦉 🔻	CSE	3/	0	0	03	3	100	100	200																		
7	UHV	22CS47/22IS47	Universal Human Values	CSE	<u>0</u> 1	0	0	01	1	50	50	100																		
		22CS481/ 22IS481	National Service Scheme (NSS)	NSS coordinator	1	>/	/																							
		22CS482/		Physical	1	13																								
8	MC	22IS482	Physical Education (PE) (Sports and Athletics) and Yoga	Education dept & Yoga	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0 2	0 2		0	100		100
		22CS483/22IS483 Clubs- Social, Cultural & Academic	instructor																											
			Coordinators																											
9	PCCL	22CSL49/22ISL49	Operating Systems Lab	CSE	0	0	2	02	1	50	50	100																		
		<u> </u>	Total	<u>'</u>		•		<u>'</u>	20	750	650	1400																		

PCC: Professional Core Course, PCCL: Professional Core Course laboratory, UHV: Universal Human Value Course, MC: Mandatory Course (Non-credit), AEC: Ability Enhancement Course, SEC: Skill Enhancement Course, L: Lecture, T: Tutorial, P: Practical S= SDA: Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: Semester End Evaluation.

	Engineering Science Course (ESC/ETC/PLC)									
22CS441	Discrete indirementation of dotal es and Graph incory	22CS443/	Digital Flactronics (2.0.2)							
		22IS443	Digital Electronics (2-0-2)							
22CS442/	Mala Brancon and A Brantical August at (2.0.2)	22CS444/	Dethan Dunamanian A Dunatical Assurance (2.0.2)							
22IS442	Web Programming- A Practical Approach (2-0-2)	22IS444	Python Programming- A Practical Approach (2-0-2)							
Ability Enhancement Course / Skill Enhancement Course - IV										
22AECCS451	Design Thinking	22AECCS453	Software Tools and Technologies							
22AECCS452	Introduction to Embedded Systems and IoT - A	22AECCS454	Data Visualization Tools and Techniques							
	Hands-on Approach		Data visualization roots and rechiniques							
22AECCS455	Mathematics – II									

Professional Core Course (IPCC): Refers to Professional Core Course Theory Integrated with practical of the same course. Credit for IPCC can be 04 and its Teaching—Learning hours (L:T:P) can be considered as (3:0:2) or (2:2:2). The theory part of the IPCC shall be evaluated both by CIE and SEE. The practical part shall be evaluated by only CIE (no SEE). However, questions from the practical part of IPCC shall be included in the SEE question paper. For more details, the regulation governing the Degree of Bachelor of Engineering /Technology (B.E./B.Tech.) 2022-23.

National Service Scheme / Physical Education / Yoga / Clubs: All students have to register for any one of the courses namely National Service Scheme (NSS), Physical Education (PE) (Sports and Athletics), Yoga (YOG) and Clubs with the concerned coordinator of the course during the first week of III semesters. Activities shall be carried out between III semester to the VI semester (for 4 semesters). Successful completion of the registered course and requisite CIE score is mandatory for the award of the degree. The events shall be appropriately scheduled by the colleges and the same shall be reflected in the calendar prepared for the NSS, PE, Yoga and Club activities. These courses shall not be considered for vertical progression as well as for the calculation of SGPA and CGPA, but completion of the course is mandatory for the award of degree.

KLS Gogte Institute of Technology 3rdYear B.E. Scheme of Teaching and Examination 2022

			5 th Semester		Ηοι	ırs/v	week	Total contact		Examination		
S.No.	Course Type	Course Code	Course Title	Teaching Dept.	L	Т	Р	hours/week	Credits	CIE	SEE	Total
1	HSMS	22CS51	Software Project Management	CSE	3	0	0	03	3	100	100	200
2	IPCC	22CS52	Formal Languages and Automata Theory	CSE	3	0	2	05	4	100	100	200
3	PCC	22CS53	Micro-Controllers and Embedded Systems	CSE	4	0	0	04	4	100	100	200
4	PEC	22CS54x	Professional Elective Course	CSE	3	0	0	03	3	100	100	200
5	PROJ	22CS55	Research Based Mini Project	CSE	0	0	4	04	2	100	-	100
6	MC	22CS56	Environmental Studies		2	0	0	02	2	100	100	200
7	AEC	22CS57	Research Methodology and Intellectual Property Rights	CSE	2	0	0	02	2	100	100	200
8	AEC	22AECCS58A	Employability Skills -1	Bizotic	1/2	0	0	01	1	100	-	100
	МС	22CS58B1	National Service Scheme (NSS)	NSS coordinator	Jan Y	0	11		0	100	-	
9		22CS58B2	Physical Education (PE) (Sports and Athletics) and Yoga	Physical Education dept & Yoga instructor	0		2					100
		22CS58B3	Clubs- Social, Cultural & Academic	Coordinators								
10	PCCL	22CSL59	Micro-Controllers and Embedded Systems Laboratory	CSE	0	0	2	02	1	50	50	100
			Total						22	950	650	1600
				nal Elective Cou	rse							
22CS5	41		Data Visualization	22CS543				Advanced	Java (2-0-2)		
22CS5	42	Object	Oriented Modelling and Design	22CS544	1	Robo	otic Pro	cess Automation (2-	(Industry S 0-2)	Support	ed Elec	tive)
22CS5	45	Data	Warehousing and Data Mining		·							

PCC: Professional Core Course, PCCL: Professional Core Course laboratory, UHV: Universal Human Value Course, MC: Mandatory Course (Non-credit), AEC: Ability Enhancement Course, SEC: Skill Enhancement Course, L: Lecture, T: Tutorial, P: Practical S= SDA: Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: Semester End Evaluation.PROJ: Project /Mini Project. PEC: Professional Elective course

Professional Core Course (IPCC): Refers to Professional Core Course Theory Integrated with practicals of the same course. Credit for IPCC can be 04 and its Teaching—Learning hours (L:T:P) can be considered as (3:0:2) or (2:2:2). The theory part of the IPCC shall be evaluated both by CIE and SEE. The practical part shall be evaluated by only CIE (no SEE). However, questions from the practical part of IPCC shall be included in the SEE question paper. For more details, the regulation governing the Degree of Bachelor of Engineering /Technology (B.E./B.Tech.) 2022-23

National Service Scheme /Physical Education/Yoga/Clubs: All students have to register for any one of the courses namely National Service Scheme (NSS), Physical Education (PE)(Sports and Athletics), Yoga(YOG) and Clubs with the concerned coordinator of the course during the first week of III semesters. Activities shall be carried out between III semester to the VI semester (for 4 semesters). Successful completion of the registered course and requisite CIE score is mandatory for the award of the degree. The events shall be appropriately scheduled by the colleges and the same shall be reflected in the calendar prepared for the NSS, PE, Yoga and Club activities. These courses shall not be considered for vertical progression as well as for the calculation of SGPA and CGPA, but completion of the course is mandatory for the award of degree.

Mini-project work: Mini Project is a laboratory-oriented/hands on course that will provide a platform to students to enhance their practical knowledge and skills by the development of small systems/applications etc. Based on the ability/abilities of the student/s and recommendations of the mentor, a single discipline or a multidisciplinary Mini- project can be assigned to an individual student or to a group having not more than 4 students.

CIE procedure for Mini-project:

- (i) Single discipline: The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two faculty members of the Department, one of them being the Guide. The CIE marks awarded for the Mini-project work shall be based on the evaluation of the project report, project presentation skill, and question and answer session in the ratio of 50:25:25. The marks awarded for the project report shall be the same for all the batches mates.
- (ii) Interdisciplinary: Continuous Internal Evaluation shall be group-wise at the college level with the participation of all the guides of the project. The CIE marks awarded for the Mini-project, shall be based on the evaluation of the project report, project presentation skill, and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

No SEE component for Mini-Project.

Professional Elective Courses (PEC): A professional elective (PEC) course is intended to enhance the depth and breadth of educational experience in the Engineering and Technology curriculum. Multidisciplinary courses that are added supplement the latest trend and advanced technology in the selected stream of engineering. Each group will provide an option to select one course. The minimum number of students' strengths for offering a professional elective is 10. However, this conditional shall not be applicable to cases where the admission to the program is less than 10.

6 th Semester						Н	ours/w	eek	Total		Exa	aminat	ion
S.No.	Course Type	Course Code	Course Title		Teaching Dept.	L	Т	Р	contact hours/week	Credits	CIE	SEE	Total
1	IPCC	22CS61	Artificial Intelligence and Ma Learning	chine	CSE	3	0	2	05	4	100	100	200
2	PCC	22CS62	Computer Networks		CSE	4	0	0	04	4	100	100	200
3	PEC	22CS63x	Professional Elective Cou	rse	CSE	3	0	0	03	3	100	100	200
4	OEC	22CS64x	Open Elective Course		CSE	3	0	0	03	3	100	100	200
5	PROJ	22CS65	Major Project Phase I		CSE	0	0	4	04	2	100		100
6	AEC/SDC	22AECCS66	Employability Skills -2	!	Bizotic	1	0	0	01	1	100	-	100
		22CS671	National Service Scheme (I	NSS)	NSS coordinator	6	1			0			
7	MC	22CS672	Physical Education (PE) (Spor Athletics) and Yoga	ts and	Physical Education dept& Yoga instructor	0	0	2			100		100
		22CS673 Clubs- Social, Cultural & Academic		demic	Coordinator	200	>	1					
8	PCCL	22CSL68	Computer Networks La	b	CSE	0	0	2	02	1	50	50	100
			Total	- Sylvin	AA		W.	•		18	750	450	1200
			P	rofessio	nal Elective Cou	ırse	No.						
22CS63	31	Agile Soft	ware Development	22CS63	34				Compiler D	Design			
22CS63	32	Digital	Twin Technology	22CS63	35	Intro	duction	n to Sale	esforce (2- 0 - 2)(Industry	Suppor	ted Ele	ctive)
22CS63	33	Internet	of Things (2 – 0 – 2)										
			Open Ele	ctive Co	urse for Non CS	E Stud	ents						
22CS641 Data Structures 22CS64			13				Python Progr	amming					
22CS64	42	Robotic F	Process Automation	22CS64	14				Web Progra	mming			
			Open E	lectives	offered for all l	branch	es						
22MA	Г641	App	olied Statistics	22CH6	41			Nand	science and Na	anotechno	ology		
22MA	Г642	Liı	near Algebra	22INT6	1				Marketing Ma	nagement			

PCC: Professional Core Course, PCCL: Professional Core Course laboratory, UHV: Universal Human Value Course, MC: Mandatory Course (Non-credit), AEC: Ability Enhancement Course, SEC: Skill Enhancement Course, L: Lecture, T: Tutorial, P: Practical S= SDA: Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: Semester End Evaluation.PROJ: Project /Mini Project. PEC: Professional Elective Course. PROJ: Project Phase -I, OEC: Open Elective Course

Professional Core Course (IPCC): Refers to Professional Core Course Theory Integrated with practicals of the same course. Credit for IPCC can be 04 and its Teaching—Learning hours (L:T:P) can be considered as (3:0:2) or (2:2:2). The theory part of the IPCC shall be evaluated both by CIE and SEE. The practical part shall be evaluated by only CIE (no SEE). However, questions from the practical part of IPCC shall be included in the SEE question paper. For more details, the regulation governing the Degree of Bachelor of Engineering /Technology (B.E./B.Tech.) 2022-23

National Service Scheme /Physical Education/Yoga/Clubs: All students have to register for any one of the courses namely National Service Scheme (NSS), Physical Education (PE)(Sports and Athletics), Yoga(YOG) and Clubs with the concerned coordinator of the course during the first week of III semesters. Activities shall be carried out between III semester to the VI semester (for 4 semesters). Successful completion of the registered course and requisite CIE score is mandatory for the award of the degree. The events shall be appropriately scheduled by the colleges and the same shall be reflected in the calendar prepared for the NSS, PE, Yoga and Club activities. These courses shall not be considered for vertical progression as well as for the calculation of SGPA and CGPA, but completion of the course is mandatory for the award of degree.

Professional Elective Courses (PEC): A professional elective (PEC) course is intended to enhance the depth and breadth of educational experience in the Engineering and Technology curriculum. Multidisciplinary courses that are added supplement the latest trend and advanced technology in the selected stream of engineering. Each group will provide an option to select one course. The minimum number of students' strengths for offering professional electives is 10. However, this conditional shall not be applicable to cases where the admission to the program is less than 10.

Open Elective Courses:

Students belonging to a particular stream of Engineering and Technology are not entitled to the open electives offered by their parent Department. However, they can opt for an elective offered by other Departments, provided they satisfy the prerequisite condition if any. Registration to open electives shall be documented under the guidance of the Program Coordinator/ Advisor/Mentor. The minimum numbers of students' strength for offering Open Elective Course is 10. However, this condition shall not be applicable to class where the admission to the program is less than 10.

Project Phase-I: Students have to discuss with the mentor /guide and with their help he/she has to complete the literature survey and prepare the report and finally define the problem statement for the project work.

KLS Gogte Institute of Technology 4thYear B.E. Scheme of Teaching and Examination 2022

			7 th Semester			Hours/week _T		Total contact		Ex	kamina	tion	
S.No.	Course Type	Course Code	Course Title		Teaching Dept.	L	Т	Р	hours/week	Credits	CIE	SEE	Total
1	IPCC	22CS71	Big Data and Analytics		CSE	3	0	2	05	4	100	100	200
2	IPCC	22CS72	Unix System and Network Programming		CSE	3	0	2	05	4	100	100	200
3	PCC	22CS73	Distributed and Cloud Computir	ng	CSE	4	0	0	04	4	100	100	200
4	PEC	22CS74x	Professional Elective Course	/	CSE	3	0	0	03	3	100	100	200
5	OEC	22CS75x	Open Elective Course	1	CSE	3	0	0	03	3	100	100	200
6	PROJ	22CS76	Major Project Phase-II		CSE	0	0	10	10	5	100	100	200
7	AEC	22AECCS77	Indian Knowledge System	3		1	0	0	01	1	100	1	100
	Total						6	1		24	700	600	1300
			Prof	ession	nal Elective Cou	ırse	m	7					
22CS7	41	Cryptog	raphy and Network Security	22	2CS744	4 Cyber Security							
22CS7	42	Blo	ockchain Management	22	2CS745	Salesforce Lightning (2- 0 - 2)(Industry Supported Elective)							
22CS7	43	Business I	ntelligence and Data Analytics	(Want - 180	4		13					
			Open Electi	ve Co	urse for Non CS	SE stud	dent	S					
22CS7	51	D	isaster Management	22	2CS754	Machine Learning							
22CS7	52	Datab	ase Management System	22	2CS755	ILL			Introduction to C	yber Secur	ity		
22CS7	53	Object-Orie	ented Programming using JAVA		Jan Vale								
	•		Open Elec	ctives	offered for all b	branch	nes						
22MA	T751	Op	timization Techniques	22	2PH751	Introduction to Astronomy							
22MA	T752	Complex	Analysis and Special Functions	22	2INT71	Human Resource Management for Engineers							
DCC- I	Profession	al Core Course	PCCI · Professional Core Course labor	rator	, PFC · Professi	onal F	lecti	ive Coi	irse OFC: Onen F	lective Cou	rse DR.	Project	- Work

PCC: Professional Core Course, PCCL: Professional Core Course laboratory, PEC: Professional Elective Course, OEC: Open Elective Course PR: Project Work, L: Lecture, T: Tutorial, P: Practical S= SDA: Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: Semester End Evaluation. TD- Teaching Department, PSB: Paper Setting department, OEC: Open Elective Course, PEC: Professional Elective Course. PROJ: Project work

Note: VII and VIII semesters of IV years of the program

(1) Institutions can swap the VII and VIII Semester Schemes of Teaching and Examinations to accommodate research internships/ industry internships after the VI semester.

(2) Credits earned for the courses of VII and VIII Semester Scheme of Teaching and Examinations shall be counted against the corresponding semesters whether the VII or VIII semesters is completed during the beginning of the IV year or the later part of IV years of the program.

Professional Elective Courses (PEC): A professional elective (PEC) course is intended to enhance the depth and breadth of educational experience in the Engineering and Technology curriculum. Multidisciplinary courses that are added supplement the latest trend and advanced technology in the selected stream of engineering. Each group will provide an option to select one course. The minimum number of students' strengths for offering professional electives is 10. However, this conditional shall not be applicable to cases where the admission to the program is less than 10.

Open Elective Courses:

Students belonging to a particular stream of Engineering and Technology are not entitled to the open electives offered by their parent Department. However, they can opt for an elective offered by other Departments, provided they satisfy the prerequisite condition if any. Registration to open electives shall be documented under the guidance of the Program Coordinator/ Advisor/Mentor. The minimum numbers of students' strength for offering Open Elective Course is 10. However, this condition shall not be applicable to class where the admission to the program is less than 10.

PROJECT WORK: The objective of the Project work is

- (i) To encourage independent learning and the innovative attitude of the students.
- (ii) To develop interactive attitude, communication skills, organization, time management, and presentation skills.
- (iii) To impart flexibility and adaptability.
- (iv) To inspire team working.
- (v) To expand intellectual capacity, credibility, judgment and intuition.
- (vi) To adhere to punctuality, setting and meeting deadlines.
- (vii) To install responsibilities to oneself and others.
- (viii)To train students to present the topic of project work in a seminar without any fear, face the audience confidently, enhance communication skills, involve in group discussion to present and exchange ideas.

CIE procedure for Project Work:

(1) Single discipline: The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide.

The CIE marks awarded for the project work, shall be based on the evaluation of the project work Report, project presentation skill, and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

(2) Interdisciplinary: Continuous Internal Evaluation shall be group-wise at the college level with the participation of all guides of the college. Participation of external guide/s, if any, is desirable. The CIE marks awarded for the project work, shall be based on the evaluation of project work Report, project presentation skill, and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates. SEE procedure for Project Work: SEE for project work will be conducted by the two examiners appointed by the COE. The SEE marks awarded for the project work shall be based on the evaluation of project work Report, project presentation skill, and question and answer session in the ratio 50:25:25.

IKS (Indian Knowledge system) - VTU in compliance with UGC directive has introduced IKS (Indian Knowledge system) in the 6thsem as AEC (1 credit) for 2022 scheme. Hence after discussion it has been decided to introduce the IKS course (as 1 credit) in the 7thsem as an AEC.

Online courses in 8th sem (OEC & PEC)- OEC & PEC courses present in the 8th sem should be completed by the end of 7th semester & valid Certificates by Competent authority to be submitted to the Department. These are ONLINE courses suggested by the respective Board of Studies. The online courses can be NPTEL/SWAYAM/NASSCOM/Industry certified and for a minimum duration of 12 weeks. Details of these courses shall be made available for students on the college web portal

			8 th Semester		Н	ours/v	veek	T. 1. 1 1 1		Ex	amina	tion
S.No.	Course Type	Course Code	Course Title	Teaching Dept.	L	Т	Р	Total contact hours/week	Credits	CIE	SEE	Total
1	PEC	22CS81x	Professional Elective (Online Courses)	TD- PSB	3 0 0		0	03	3	100	-	100
2	OEC	22CS82x	Open Elective (Online Courses)	TD: PSB	3	0	0	03	3	100	-	100
3	INT	22CS83	Internship (Industry/Research) (14 - 20 weeks)	TD: PSB	0	0	20	20	10	100	100	200
	Total								16	300	100	400
	Professional Elective Course (Online courses)											
22CS811	22CS811 Practical Cyber Security for Cyber Security Practitioners 22CS					7		Cloud Comput	ing by			
	by Prof. Sandeep K. Shukla			> · ■ns	6)	1	-//	Prof. Soumya Kar	nti Ghosh			
https://onlinecourses.nptel.ac.in/noc24_cs85/preview					/ * L	nttps:/	/online	courses.nptel.ac.i	n/noc24	cs17/p	oreviev	<u>N</u>
22CS812		Data Struc	ture and Algorithms using Java by	22CS815	Operating System Fundamentals by							
			Prof. Debasis Samanta		Prof. Santanu Chattopadhyay							
	htt	os://onlineco	ourses.nptel.ac.in/noc24_cs96/preview		<u>h</u>	ttps:/	onlined	ourses.nptel.ac.ir	n/noc24_d	cs108/	previe	<u>w</u>
22CS813		Introdu	uction to Machine Learning by	22CS816	Advanced Web Technology by							
		Pr	of. Balaraman Ravindran		Prof. Kannan Moudgalya(swayam)							
	htt	os://onlineco	ourses.nptel.ac.in/noc24_cs51/preview		<u>htt</u>	tps://d	nlineco	ourses.swayam2.a	ıc.in/aic20) sp32	/previ	<u>ew</u>
			Open Elective Cou	rses (Online	Course	es)						
22CS821		Adva	nced Distributed Systems by	22CS823			Intro	duction to Interne	et of Thing	gs by		
		Pr	of. Smruti Ranjan Sarangi					Prof. Sudip N	⁄lisra	-		
		https://i	nptel.ac.in/courses/106102237		<u> </u>	nttps:/	/online	courses.nptel.ac.i	n/noc24	<u>cs35/</u> r	<u>orevie</u> v	<u>N</u>
22CS822			Software Testing by	22CS824								
		P	rof. Meenakshi D'souza		Prof. Indranil Sengupta							
	htt	os://onlineco	ourses.nptel.ac.in/noc24_cs91/preview		https://nptel.ac.in/courses/106105217							

L: Lecture, T: Tutorial, P: Practical S= SDA: Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: Semester End Evaluation. TD- Teaching Department, PSB: Paper Setting department, OEC: Open Elective Course, PEC: Professional Elective Course. PROJ: Project work, INT: Industry Internship / Research Internship / Rural Internship

Note: Professional Elective Course (Online courses): List of Courses will be displayed by BOS.

Note: VII and VIII semesters of IV years of the program

Swapping Facility

- Institution can swap VII and VIII Semester Scheme of Teaching and Examinations to accommodate **research internships/ industry internships/Rural Internship** after the VI semester.
- Credits earned for the courses of VII and VIII Semester Scheme of Teaching and Examinations shall be counted against the corresponding semesters whether VII or VIII semester is completed during the beginning of IV year or later part of IV year of the program.

Elucidation:

At the beginning of IV years of the program i.e., after VI semester, VII semester classwork and VIII semester Research Internship /Industrial Internship / Rural Internship shall be permitted to be operated simultaneously so that students have ample opportunity for an internship. In other words, a good percentage of the class shall attend VII semester classwork and a similar percentage of others shall attend to Research Internship or Industrial Internship or Rural Internship.

Research/Industrial /Rural Internship shall be carried out at an Industry, NGO, MSME, Innovation center, Incubation center, Start-up, center of Excellence (CoE), Study Centre established in the parent institute and /or at reputed research organizations/institutes.

The mandatory Research internship /Industry internship / Rural Internship is for 14 to 20 weeks. The internship shall be considered as a head of passing and shall be considered for the award of a degree. Those, who do not take up/complete the internship shall be declared to fail and shall have to complete it during the subsequent University examination after satisfying the internship requirements.

Research internship: A research internship is intended to offer the flavor of current research going on in the research field. It helps students get familiarized with the field and imparts the skill required for carrying out research.

Industry internship: Is an extended period of work experience undertaken by students to supplement their degree for professional development. It also helps them learn to overcome unexpected obstacles and successfully navigate organizations, perspectives, and cultures. Dealing with contingencies helps students recognize, appreciate, and adapt to organizational realities by tempering their knowledge with practical constraints.

Rural Internship: Rural development internship is an initiative of Unnat Bharat Abhiyan Cell, RGIT in association with AICTE to involve students of all departments studying in different academic years for exploring various opportunities in techno-social fields, to connect and work with Rural India for their upliftment. The faculty coordinator or mentor has to monitor the student's internship progress and interact with them to guide for the successful completion of the internship. The students are permitted to carry out the internship anywhere in India or abroad. University shall not bear any expenses incurred in respect of the internship.

With the consent of the internal guide and Principal of the Institution, students shall be allowed to carry out the internship at their hometown (within or outside the state or abroad), provided favorable facilities are available for the internship and the student remains regularly in contact with the internal

guide. **College shall not bear any cost involved in carrying out the internship by students.** However, students can receive any financial assistance extended by the organization.

Professional Elective /Open Elective Course: These are ONLINE courses suggested by the respective Board of Studies. The online courses can be NPTEL/SWAYAM/NASSCOM/Industry certified and for a duration of 12 weeks. Details of these courses shall be made available for students on the college web portal.

Detailed 3rd Semester Syllabus

FUNDAMENTALS OF STATISTICS AND PROBABILITY FOR DATA SCIENCE

Course Code:	22MATCS31	Course type	Theory	Credits L-T-P	3 – 0– 0
Hours/week: L-T-P	3-0-0		Total credits	3	
Total Contact Hours	CIE Marks	100			
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives								
At the	At the end of the course students should be able to								
1.	1. Fit a suitable curve for the data using regression.								
2.	Get knowledge about various probability distributions involving discrete /continuous random								
	variable.								
3.	Get familiar with various sampling distributions and estimation of various parameters.								
4.	Get acquainted with various hypothesis testing techniques.								
5.	Understand Joint discrete PDF and various stochastic processes.								

Pre-requisites: Basic statistics, Basic probability.

Unit – I Contact Hours = 8 Hours

Correlation and Regression: Curve fitting by least square method. Fitting the curve, y = a+bx, $y = ax^b$, $y = a+bx+cx^2$. Karl Pearson coefficient of correlation, Linear Regression: Problems. Multiple correlation and regression. Partial correlation and regression.

Unit – II Contact Hours = 8 Hours

Random Variable: Revision of basic probability, conditional probability upto Bayes theorem. Discrete and Continuous Random Variable, (DRV,CRV) Probability Distribution Functions (PDF) and Cumulative Distribution Functions(CDF), Expectations, Mean, Variance. Binomial, Poisson, Exponential and Normal Distributions. Practical examples.

Unit –III Contact Hours = 8 Hours

Joint PDF and Stochastic Process: Discrete Multivariable Joint PDF, Multivariable Conditional Joint PDF, Expectations (Mean, Variance and Covariance). Definition and classification of stochastic processes. Discrete state and discrete parameter stochastic process, Unique fixed probability vector, Regular Stochastic Matrix, Transition probability, Markov chain.

Unit – IV Contact Hours = 8 Hours

Hypothesis Testing: Null and alternate hypothesis, Critical region, Sampling, Sampling errors, Level of significance and confidence limits, Testing hypothesis of mean, Testing hypothesis of variance, Testing hypothesis of proportion.

Unit – V Contact Hours = 8 Hours

Sampling distribution: Sampling distribution, Sampling distribution of means, Test of significance for small and large samples. 't' and 'chi square' distributions, F- distribution. Practical examples.

Unit No.	Self-Study Topics
I	Regression models, Regression strategies.
II	Discrete and Continuous Random vectors in different areas such as Mutual funds, lottery
	draw, decision making, decision trees etc
Ш	Restate the research question as research hypothesis and a null hypothesis about the
	populations and determine the characteristics of the comparison distribution.
IV	Eliminating variability during gathering statistical data.
V	Monte Carlo Simulation.

	Books								
	Text Books:								
1.	B. S. Grewal: "Higher Engineering Mathematics", Khanna publishers, 42 Ed., 2021 onwards.								
2.	Erwin Kreyszig: "Advanced Engineering Mathematics, John Wiley & Sons Inc., 9 th Edition, 2006 and onwards.								
	Reference Books:								
1.	B.V. Ramana: "Higher Engineering Mathematics "McGraw-Hill Education, 11 th Ed., 2004 onwards.								
2.	Srimanta Pal &Subodh C. Bhunia: "Engineering Mathematics "Oxford University Press, 3 rd Ed., 2016 onwards								
3	N.P Bali and Manish Goyal: "A textbook of Engineering Mathematics Laxmi Publications, 10 th Ed., 2022 onwards								
4	C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics "McGraw –Hill Book Co., New York, 6 th Ed., 2017 onwards								
5	H. K. Dass and Er. Rajnish Verma: Higher Engineering Mathematics" S. Chand Publication, 3 rd Ed., 2014.								
	E-resources (NPTEL/SWAYAM. Any Other)- mention links								
1.	https://nptel.ac.in/courses/111106111								
2.	https://nptel.ac.in/courses/111104025								
3.	https://nptel.ac.in/courses/117105085								
4.	https://nptel.ac.in/courses/111105042								

	Course delivery methods	Assessment methods				
1.	Chalk and Talk	1.	IA tests			
2.	PPT and Videos	2.	Open Book Assignments (OBA)			
3.	Flipped Classes	3.	Course Seminar			
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination			
5.	Virtual Labs (if present)					

	Course Outcome (COs)										
Lear	Learning Levels:										
	Re - Remember; Un - Understand; Ap - Apply; An - Analysi	s; Ev - Evaluate;	Cr - Cre	ate							
At th	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)							
1.	Understand regression analysis for data analysis.	Ар	1	1							
2.	Apply the knowledge of Discrete and Continuous Random vectors in different areas such as Mutual funds, lottery draw, decision making, decision trees etc	Ар	1	1							
3.	Apply knowledge of Sampling distribution and Hypothesis Testing to conduct basic statistical analysis of data.	Ap	1	1							

Scheme of Continuous Internal Evaluation (CIE):

Components		Two Assignments – (Open /Industry/Certification etc)		Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

- -Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.
- -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.
- -Lack of minimum score in IA test will make the student Not Eligible for SEE
- -Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sche	Scheme of Semester End Examination (SEE):					
1.	It will be conducted for 100 marks of 3 hours duration.					
2.	Minimum marks required in SEE to pass: Score should be ≥35 &, however overall score of CIE+SEE					
	should be ≥40%.					
3.	Question paper contains three parts A, B and C. Students have to answer					
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.					
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each					
	Question Carries 10 Marks.					
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.					

	CO-PO Mapping (planned)								CO-PSO oing(pla				
СО	CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO 12								PSO1	PSO2	PSO3		
1	✓										✓		
2	✓										✓		
3	✓										✓		
	Tick mark the CO, PO and PSO mapping												

SOFTWARE ENGINEERING AND DESIGN

Course Code	22CS32 / 22IS32	Course type	IPCC	Credits L-T-P	3 - 0 - 1
Hours/week: L - T- P	3 - 0 - 2		Total credits	4	
Total Contact Hours	L = 40 Hrs; T = 0 H	rs; P = 20 Hrs	CIE Marks	100	
Flipped Classes content	Total = 60 Hrs 10 Hours		SEE Marks	100	

	Course learning objectives						
1.	Contrast use of Software Engineering and associated processes using standard models.						
2.	Identify the software functions and associated component to design architectural framework.						
3.	Decide the separation of concern and design relevant processes for the required operations.						
4.	Prepare test cards to measure project performance accomplishing specified requirements.						

Required Knowledge of: Basics of any programming language, software types, functions and steps of software development

Unit – I Contact Hours = 8 Hours

Introduction:

Professional software development, Software engineering ethics, Case studies.

Software Processes: Software Process models: The Waterfall model – A Case study, Incremental development, Reuse-oriented software engineering, Process activities: Software specification, Software design and implementation, Software validation, Coping with Change: Prototyping, Incremental Delivery, Boehm's Spiral Model.

Unit – II Contact Hours = 8 Hours

Requirements Engineering: Functional and non-functional requirements: Functional requirements. Non-functional requirements, Introduction to Requirements specification.

Agile Software Development: Agile methods- Plan driven and Agile Development, Introduction to Extreme Programming.

Unit – III Contact Hours = 8 Hours

Design and Implementation: Object-oriented design using UML: System Context and Interaction, Architectural design, Object Class identification, design Models, Interface Specification, Design Patterns, Implementation issues, Open Source development.

Unit – IV	Contact Hours = 8 Hours

Software Testing: Development Testing: Unit Testing, Choosing Unit Test Cases, Component Testing, System Testing, Test Driven Development, Release Testing: Requirements Based Testing, Scenario Testing, Performance Testing, User Testing. A Demo of Selenium.

Unit – V Contact Hours = 8 Hours

Quality Management: Introduction, Software quality, Software standards: The ISO 9001 standard framework, Reviews and inspection.

Configuration management: Introduction to Change management, Version management, System building, Release management.

Flipped Classroom Details

Unit No.	1	II	III	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

List of Experiments

Unit No. No. of Experiments		Topic(s) related to Experiment				
1	1	oftware Process Model				
2	2	Requirements Engineering: Plan-driven and Agile approaches				
3	3	Software Design & Development using UML diagrams.				
4	3	Software Testing				

Unit No.	Self-Study Topics								
I	Identification of requirements for any common software in use by business domain and the								
	advantages.								
II	Classification of functional and non-functional requirements of any software used in business								
	domain. Software Architectural patterns, implementation and uses.								
III	Object oriented software and UML: Business use-case Design and Activity diagrams								
IV	Software testing ISO 9001 series – Guidelines applicable to software industry								
V	Software Quality & Performance: Git-Hub based topics with ref. link:								
	https://github.com/ICTU/quality-time								
	Books								
To	ext Books:								
1. la	Ian Summerville: Software Engineering, Pearson Education, 9th Edition onwards								
R	Reference Books:								

1.	Roger .S. Pressman: Software Engineering-A Practitioners approach, 8th Edition and above, Tata
1.	McGraw Hill
2.	Paul C. Jorgensen: Software Testing Craftsman's Approach, 4th Edition CRC Press, Taylor Francis
۷.	Group
3.	Rajib Mall, Fundamentals of Software Engineering , 4thEdition onwards PHI Learning Pvt. Ltd.
4.	Pankaj Jalote: An Integrated Approach to Software Engineering, Wiley India, 2009 onwards
4.	Resources
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	NPTEL: https://nptel.ac.in/courses/106105182
2.	SWAYAM: https://onlinecourses.swayam2.ac.in/cec20_cs07/preview
3.	IIT Chennai: https://onlinedegree.iitm.ac.in/course_pages/BSCCS3001.html

	Course delivery methods	Assessment methods				
1.	Chalk and Talk	1.	IA tests			
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project			
3.	Flipped Classes	3.	Lab Test			
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination			
5.	Virtual Labs (if present)	1	1 5 C			

	Course Outcome (COs)								
Lea	Learning Levels:								
	Re - Remember; Un - Understand; Ap - App <mark>ly; An -</mark> Analysis; E <mark>v -</mark> Evaluate; Cr - Create								
At th	At the end of the course, the student will be able to Learning Level PO(s) PSO(s)								
	Explain professional practice for software development;								
1.	requirements for associated processes, feasibility and decide	Un	1, 2	1					
	the suitable model of software.								
2.	Choose software design accumulating information and the	Ар	2, 3, 5	1, 2					
۷.	functional components for the development.	Αþ	2, 3, 3	1, 2					
3.	Apply the software testing methods.to check the accuracy	Ар	3, 4, 5	1, 2					
٥.	based on the analysis of contextual requirement.								
	Analyze software that matches with industry needs and adapt								
4.	the changes based on demand for the continuous quality	An	4	2					
	improvement.								
5.	Design a course project by applying the learnings	Δn	2, 3, 5, 9, 10,	1, 2, 3					
3.	inculcated throughout the course.	Ар	11, 12						

Scheme of Continuous Internal Evaluation (CIE):

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test **(COMPULSORY)** will be part of the CIE. **No SEE for Lab**.

THEORY (60	0 marks)	LAB	Total	
IA test 1	IA test 2	Conduction Lab test		
30 marks	30 marks	10 marks	30 marks	100 marks

IA Test:

- 1. No objective part in IA question paper
- 2. All questions descriptive
- -Certification earned by passing the standard Online MOOCs course (of at least 8 hours defined by BOS) can be considered as a Course activity/Assignment and awarded maximum of 10 marks.

Conduct of Lab:

- 1. Conducting the experiment and journal: 5 marks
- 2. Calculations, results, graph, conclusion and Outcome: 5 marks

Lab test: (Batch wise with 15 students/batch)

- 1. Test will be conducted at the end of the semester
- 2. Time table, Batch details and examiners will be declared by Exam section
- 3. Conducting the experiment and writing report: 5 marks
- 4. Calculations, results, graph and conclusion: 15 marks
- 5. Viva voce: 10 marks

Eligibility for SEE:

- 1. 40% and above (24 marks and above) in theory component (No change)
- 2. Student should score minimum 40% of 30 marks (i.e. 12 marks) in Lab test & should score 40% of 40 marks (i.e. 16 marks) in Total.
- 3. Lab test is COMPULSORY
- 4. Not eligible in any one of the two components will make the student Not Eligible for SEE

Sch	Scheme of Semester End Examination (SEE):						
1.	It will be conducted for 100 marks of 3 hours duration.						
2. Minimum marks required in SEE to pass: Score should be ≥35 &, however overall score of CIE							
	should be ≥40%.						
3.	Question paper contains three parts A, B and C. Students have to answer						
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.						
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each						
	Question Carries 10 Marks.						
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.						

	CO-PO Mapping (planned)								CO-PSO Mapping (planned)						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	✓	✓											✓		
2		✓	✓		✓								✓	✓	
3			✓	✓	✓								✓	✓	
4				✓										✓	
5		✓	✓		✓				✓	✓	✓	✓	✓	✓	✓
	Tick mark the CO, PO and PSO mapping														

SI No	Skill & competence enhanced	Applicable Industry	Job roles students can take up
	after undergoing the course	Sectors & domains	after undergoing the course
1	Project development	FILE	Software Engineer
2	Software Design and	IT Sector	Software Developer
	development	STUTE OF TECK	

Object Oriented Programming using JAVA

Course Code	22CS33 / 22IS33	Course type	IPCC	Credits L-T-P	3 - 0- 1
Hours/week: L-T-P	3-0-2		Total credits	4	
Total Contact Hours	L = 40Hrs; T = 0Hrs Total = 60Hrs	s; P = 20Hrs	CIE Marks	100	
Flipped Classes content	10 Hours		SEE Marks	100	

	Course Learning Objectives									
1.	To understand the fundamentals of object-oriented programming and String class in Java.									
2.	To demonstrate the object-oriented features such as encapsulation, inheritance and									
	polymorphism to design and develop programs in Java.									
3.	To understand exception handling mechanism supported in Java.									
4.	To learn to use the data structures to organize data in the program using the collections									
	framework in Java.									
5.	To understand the concept of Packages, Interfaces and Lambda expressions in Java.									

Required Knowledge of: Procedure Oriented Programming Languages

Unit – I Contact Hours = 8 Hours

OOP Paradigm: The key attributes of object-oriented programming.

Java basics: The Java language, JDK, arrays, multidimensional arrays, alternative array declaration, assigning array references, using the length member, the for-each loop.

Introducing classes and objects: Class fundamentals, how objects are created, reference variables and assignment, String class

Unit – II Contact Hours = 8 Hours

Methods and classes: methods, returning from a method, returning a value, using parameters, constructors, parameterized constructors, the new operator revisited, garbage collection and finalizers, this keyword, controlling access to class members, pass objects to methods, argument passing, returning objects, method overloading.

Unit – III Contact Hours = 8 Hours

Inheritance: Inheritance basics, member access and inheritance, constructors, and inheritance, using super, multilevel hierarchy, when are constructors executed, superclass reference and subclass objects, method overriding, polymorphism, using abstract classes.

Interfaces: interface fundamentals, creating, implementing, and using interfaces, implementing multiple interfaces.

Unit – IV Contact Hours = 8 Hours

Packages: Package fundamentals, packages and member access, importing packages, static import. **Exception handling:** the exception hierarchy, exception handling fundamentals, exception types, uncaught exceptions, using try and catch, multiple catch clauses, catching subclass exceptions, nested try, throw, throws, finally, Java's built-in exceptions, creating your own exception subclasses.

Unit –V Contact Hours = 8 Hours

The Java Collections Framework: overview, the collections interfaces, the collections classes, accessing a collection via an Iterator.

Java Lambda Expressions: Syntax (0 parameter, 1 parameter, multiple parameters), Using Lambda expressions, examples

Flipped Classroom Details

Unit No.	I		III	IV	٧
No. for Flipped	2 /	TUT 2 OF TEO	2	2	2
Classroom Sessions	/<		10		

List of Experiments

Unit No.	No. of Experiments	Topic(s) related to Experiment		
I	2	2-dimensional array.		
		String handling.		
II	II 2 Class and its member methods.			
		Parameterized Methods and Constructors		
III	III 2 Inheritance and interfaces.			
		Method Overloading and overriding		
IV	2	Packages.		
Customized exception handling.		Customized exception handling.		
V	V 2 Collection classes and interfaces.			
		Lambda expressions.		

Unit No.	Self-Study Topics
1	String class

Books						
Text Books:						
1.	Herbert Schildt& Dale Skrien, "Java Fundamentals A Comprehensive Introduction", 7th Edition					
	onwards, Tata McGraw Hill, 2007.					

2.	E Balagurusamy, Programming with Java A primer, Tata McGraw Hill companies.						
	Reference Books:						
1.	Kathy Sierra & Bert Bates, "Head First Java", O'Reilly, 2 nd Edition and onwards.						
2.	Y. Daniel Liang: Introduction to JAVA Programming, 7 th Edition, Pearson Education, 2007.						
	E-resources:						
1.	https://www.w3schools.com/java						
2.	https://freecodecamp.org						
_							
3.	https://www.tutorialspoint.com/java8						

	Course delivery methods	Assessment methods			
1.	Chalk and Talk	1.	IA tests		
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project		
3.	Flipped Classes	3.	Lab Test		
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination		
5.	Virtual Labs (if present)	1			

	Course Outcome (COs)							
Lear	Learning Levels:							
	Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create							
At th	At the end of the course, the student will be able to Level PO(s) PSO(s)							
1.	Develop programs using OOP paradigm	Ap	1,2,3,5	1,2				
2.	Apply skills in writing programs using exception-handling techniques.	Ар	1,2,3,5	1,2				
3.	Make use of the type hierarchy in the Collections Framework and Lambda expressions.	Ар	1,3	1				
4.	Experiment with the concept of packages and interfaces.	Ар	1, 3	1				
5.	Develop a course project or present a course seminar by applying the learnings inculcated throughout the course.	Cr	2, 3, 5, 9, 10, 11, 12	1, 2, 3				

Scheme of Continuous Internal Evaluation (CIE):

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test **COMPULSORY)** will be part of the CIE. **No SEE for Lab**.

THEORY (60	LAB (4	LAB (40 marks)			
IA test 1	IA test 2	Conduction	Lab test	Total	
30 marks	30 marks	10 marks	30 marks	100 marks	
IA Test:					

- 1. No objective part in IA question paper
- 2. All questions descriptive
- -Certification earned by passing the standard Online MOOCs course (of at least 8 hours defined by BOS) can be considered as a Course activity/Assignment and awarded maximum of 10 marks.

Conduct of Lab:

- 1. Conducting the experiment and journal: 5 marks
- 2. Calculations, results, graph, conclusion and Outcome: 5 marks

Lab test: (Batch wise with 15 students/batch)

- 1. Test will be conducted at the end of the semester
- 2. Time table, Batch details and examiners will be declared by Exam section
- 3. Conducting the experiment and writing report: 5 marks
- 4. Calculations, results, graph and conclusion: 15 marks
- 5. Viva voce: 10 marks

Eligibility for SEE:

- 1. 40% and above (24 marks and above) in theory component (No change)
- 2. Student should score minimum 40% of 30 marks (i.e. 12 marks) in Lab test & should score 40% of 40 marks (i.e. 16 marks) in Total.

- 3. Lab test is COMPULSORY
- 4. Not eligible in any one of the two components will make the student Not Eligible for SEE

Sche	Scheme of Semester End Examination (SEE):					
1.	It will be conducted for 100 marks of 3 hours duration.					
2.	Minimum marks required in SEE to pass: Score should be ≥35 &, however overall score of CIE+SEE					
	should be ≥40%.					
3.	Question paper contains three parts A, B and C. Students have to answer					
	1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.					
	2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each					
	Question Carries 10 Marks.					
	3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.					

SI No	Skill & competence	Applicable try Sectors &	Job roles students can take up
	enhanced after	domains	after undergoing the course
	undergoing the course		
1	Good knowledge of OOP	IT Sector	Java Developer /
	concepts		Java Programmer
2	Familiarity with		
	development tools like		
	Eclipse		
3	Familiarity with popular		
	Java EE frameworks		

	CO-PO Mapping (planned)							CO-PSO Mapping(planned)							
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	✓	✓	✓		✓								✓	✓	
2	✓	✓	✓		✓								✓	✓	
3	✓		✓										✓		
4	✓		✓										✓		
5		✓	✓		✓				✓	✓	✓	✓	✓	✓	✓
	Tick mark the CO, PO and PSO mapping														

Data Structures and Applications

Course Code	22CS34 / 22IS34	Course type	PCC	Credits L-T-P	3-0-0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 H	lrs; P = 0 Hrs	CIE Marks	100	
rotal contact flours	Total = 40 Hrs			CIE WIGINS	100
Flipped Classes content	10 Hours		SEE Marks	100	

	Course learning objectives					
1.	To learn the fundamentals of data structure and realize their importance in designing variety of					
	applications.					
2.	To illustrate the implementation of data structures such as stack, queue and linked list and to					
	apply them for the given problem.					
3.	To introduce non linear data structures like Binary Tree, Heap and their applications and also to					
	provide insight of advanced searching techniques like Hashing.					
4.	To create and use appropriate data structures for solving real life problems.					

Pre-requisites: Basic computer concepts & C programming.

Unit – I Contact Hours = 8 Hours

Pointers, Structures: Introduction to Pointers, Pointers and Arrays, Pointers to Pointers to functions.

Introduction to Structures: Declaration, Initialization, Accessing Structures, Internal implementation of Structures.

Files in C: Text input output with respect to files in C, Basic file handling functions in C.

Unit – II Contact Hours = 8 Hours

Stacks & Queues:

Stacks: Basic Stack operations, Stack applications: Conversion of Expression (Infix to Postfix), Evaluation of Expressions.

Queues: Queues, Circular Queues, Queue applications

Unit – III Contact Hours = 8 Hours

Linked lists:

General linear lists: Basic operations, Implementation: circular linked lists, doubly linked lists, implementation of Stack and Queue using linked list.

Unit – IV Contact Hours = 8 Hours

Trees and Heaps: Basic tree concepts, Binary trees, Binary search tree (BST) concept, BST operations.

Heap: Basic concepts, Heap implementation, Heap applications

Unit – V Contact Hours = 8 Hours

Hashing

Hashing: Basic concept, Hashing methods: Division Method, Mid Square Method, Folding Method, Multiplication Method. Collision Resolution Techniques: Separate chaining (open hashing), Open addressing (closed hashing): Linear Probing, Quadratic Probing.

Flipped Classroom Details

Unit No.	1	II	III	IV	V
No. for Flipped	2	2	2	2	2
Classroom Sessions					

Books						
Text Books:						
Richard.F.Gilberg, Behrouz.A. Forouzan, Data Structures: A Pseudocode Approach with C,						
Cengage Learning, 2nd edition 2007 and onwards						
Horowitz, Sahni, Anderson-Freed, Fundamentals of Data Structures in C, Universities Press,						
2nd Edition, 2007 and onwards.						
Reference Books:						
Yedidyah, Augenstein, Tannenbaum: Data Structures Using C and C++, Pearson Education, 2nd						
Edition and onwards.						
ReemaThareja, Data structures using C, Oxford Higher Education, 1st edition, 2011 onwards						
E-resourses (NPTEL/SWAYAM Any Other)- mention links						
NPTELcourse link : https://nptel.ac.in/courses/106102064/						
SWAYAM course link: https://swayam.gov.in/course/1407-programming-and-data-structures						
edx course link: https://www.edx.org/course/data-structures-fundamentals						

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Open Book Tests (OBT)	
3.	Flipped Classes	3.	Course Seminar	
4.	Online classes	4.	Semester End Examination	

Course Outcome (COs)

At the end of the course, the student will be able to (Highlight the **action verb** representing the learning level.)

	rning Levels: Re - Remember; Un - Understand; Ap - Apply; Analysis; Ev - Evaluate; Cr - Create	Learning Level	PO(s)	PSO(s)
1.	Apply C constructs for implementing Data Structures	Ар	1	1
2.	Explain the fundamental concepts of various data structure	Un	2,3	1
3.	Develop solutions using different data structures like Stack, Queue, linked List and Tree.	Ар	2,3	1
4.	Develop programming skills to solve real life problems using appropriate data structures and build projects.	Cr	2, 3, 5, 9, 10, 11, 12	1, 2, 3

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification etc)	Course project (CP)/ Case study etc	Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

- -Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.
- -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.
- -Lack of minimum score in IA test will make the student Not Eligible for SEE
- -Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Scheme of Semester End Examination (SEE):

- 1. It will be conducted for 100 marks of 3 hours duration.
- Minimum marks required in SEE to pass: Score should be ≥ 35%, however overall score of CIE + SEE should be > 40%.
- 3. Question paper contains three parts **A, B and C**. Students have to answer
 - 1. From Part A answer any 5 out of 7 questions, each Question Carries 6 Marks.
 - 2. From Part B answer 5 out of 10 questions choosing any one full question from each unit, each Question Carries 10 Marks.
 - 3. From Part C answer 1 out of 2 questions, each Question Carries 20 Marks.

	CO-PO Mapping (Planned)							CO-PSO Mapping (Planned)							
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	✓												✓		
2		✓	✓										✓		
3		✓	✓										✓		
4		✓	✓		✓				✓	✓	✓	✓	✓	✓	✓
	1	1	T	ick ma	rk the	CO, PC	and F	SO ma	pping	ı	I	I			

SI No	Skill & competence enhanced after undergoing the course	Applicable Industry Sectors & domains	Job roles students can take up after undergoing the course	
1	Programming and Problem solving	IT Sector	Software Developer, Freelancer	
2	skills	IT Sector, Academics	Researcher	

Object Oriented Programming using C++ (Project-based)

Course Code	22CS351/ 22IS351	Course type	Integrated Project based	Credits L-T-P	2-0-1
Hours/week: L - T- P	2-0-2			Total credits	3
Total Contact Hours	L = 20 Hrs; T = H Total = 40 Hrs	L = 20 Hrs; T = Hrs; P = 20 Hrs Total = 40 Hrs			100
Flipped Classes content	5 Hours			SEE Marks	100

	Course learning objectives					
1.	1. To introduce the basic concepts of Object Oriented Programming.					
2.	2. To Analyze the problem statement and build object oriented system model.					
3.	3. To Explain function overloading, operator overloading and virtual functions.					
4.	To Solve the problem with object oriented approach.					

Required Knowledge of : C Programming Concepts

Unit – I Contact Hours = 8 Hours

Beginning with C++ and its features: What is C++?, Applications and structure of C++ program, Different Data types, Variables, Different Operators, expressions, operator overloading.

Unit – II Contact Hours = 8 Hours

Functions, classes and Objects: Functions, Inline function, function overloading, friend and virtual functions, Specifying a class, C++ program with a class, memory allocation to objects.

Unit – III Contact Hours = 8 Hours

Constructors, Destructors and Operator overloading: Constructors, Multiple constructors in a class, Copy constructor, Dynamic constructor, Destructors.

Unit – IV Contact Hours = 8 Hours

Inheritance, Pointers, Virtual Functions, Polymorphism: Derived Classes, Single, multilevel, multiple inheritance, Pointers to objects and derived classes, this pointer, Virtual functions, and polymorphism.

Unit – V Contact Hours = 8 Hours

Streams and working with files: C++ streams and stream classes, Unformatted I/O operations, Managing output with manipulators, Classes for file stream operations, opening and closing a file.

Flipped Classroom Details

		1 1			
Unit No.	I	II	III	IV	V
No. for Flipped	1	1	1	1	1
Classroom Sessions					

List of Experiments

Unit No.	No. of Experiments	Topic(s) related to Experiment
		1. Class and object
		2. Reference type in C++
П	5	3. Function overloading
••		4. Dynamic memory management in C++
		5. Array of objects
111	2	6. Constructors and destructors
•••		7. Operator overloading
IV	2	8. Inheritance
IV	2	9. Virtual functions and pure virtual functions
V	1	10. File streams

Unit No.	Self-Study Topics
1	Control structures in C++
2	Array of objects
3	Overloading Unary and binary operators
4	Pure virtual functions #
5	Detecting EOF

	Books					
	Text Books:					
1.	E. Balagurusamy, "Object Oriented Programming with C++", Tata McGraw Hill, 6th edition onwards.					
	AND ARCO					
	Reference Books:					
1.	Robert Lafore, "Object Oriented Programming using C++", Programming in C, Galgotia publication 2010 onwards					
	E-resourses (NPTEL/SWAYAM Any Other)- mention links					
1.	NPTEL Link: https://nptel.ac.in/noc/individual_course.php?id=noc18-cs32					
2.	edx Link: https://www.edx.org/course/object-oriented-programming-2					

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	IA tests- Theory & Lab based	
2.	PPT and Videos	2.	Project phase 1 & 2	
3.	Flipped Classes	3.	SEE- Project evaluation	
4.	Practice session/Demonstrations in Labs	4.	SEE- Solving an Open ended problem	
5.	Virtual Labs (if present)			

Course Outcome (COs) Learning Levels: Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create Learning At the end of the course, the student will be able to PO(s) PSO(s) Level **Explain** the salient features of C++ Programming Un 1 1 1. Language. **Develop** programs using the concept of 2. Aр 1,2,3 1 encapsulation to implement data hiding. **Apply** the concept of object instantiation and 3. Aр 1,2,3 1 operator overloading. **Apply** the concept of static and dynamic polymorphism and streams for file handling. to Aр 1,2,3 1 solve real world problems. 2, 3, 5, 9, 10, 11, 1, 2, 3 **Develop** a course project by applying the learnings 5. Cr 12 inculcated throughout the course.

Scheme of Continuous Internal Evaluation (CIE):

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test **(COMPULSORY)** will be part of the CIE.

THEORY (40 marks)		00/1				
IA test (Theory)	IA test (Lab)	Project Phase 1	Project Phase 2	Project report	Total	
25 marks	15 marks	25 <mark>m</mark> arks	25 marks	10 marks	100 marks	

Theory IA test should be of one-hour duration.

Lab IA test should be of two/three-hour duration.

Project batch will ideally consist of 2 students (maximum of 3).

Project Phase 1 presentation will be conducted after 6 weeks and Project Phase 2 presentation will be conducted after 13 weeks from the start of the semester.

Submitting Project report is compulsory.

- 1. 40% and above (16 marks and above) in theory component
- 2. 40% and above (24 marks and above) in project component
- 3. Not eligible in any one of the two components will make the student Not Eligible for SEE

Semester End Examination (SEE):

1.	It will be conducted for 100 marks having 3 hours duration.						
	Lab	Open ended program/problem/experiment					
	Wri	te-up & execution (1 open ended expt)- (20 marks write-up +	50 marks				
	20 r	marks algorithm/flowchart + 10 marks execution)					
	Pro	ect evaluation					
	a.	Initial write up stating the objectives, methodology and the	10 marks				
2.		outcome		100 marks			
	b.	Hardware project: Exhibiting and demonstration of working of					
		project.	30 marks				
		Software project: Demonstration of the programming					
		capabilities by writing flowchart, algorithm and codes related to a section of the project.					
	c. Viva-voce 10 marks						
3.	Minimum marks required in SEE to pass: Score should be ≥ 35%, however overall score of						
	CIE + SEE should be \geq 40%.						
4.	SEE	will be conducted in project batches by Internal & External exar	niners toget	her.			

	CO-PO Mapping (planned)					CO-PSO Mapping (planned)									
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	✓					-	00	广	10 D	80	-//		✓		
2	✓	✓	✓		3	(4		/1	~	13		✓		
3	✓	✓	✓		3	1	1 1	70 0	The same	3/	N. C.		✓		
4	✓	✓	✓			2	V		A	1			✓		
5		✓	✓		✓	3	دريا		1	1	✓	✓	✓	✓	✓
	I	I	1	ick ma	rk the	CO, PO	O and F	SO ma	pping		I	I			

SI No	Skill & competence enhanced after undergoing the course	Applicable Industry Sectors & domains	Job roles students can take up after undergoing the course
1	Well verse with Object Oriented	IT Sector Application	Software Engineer
	Programming and Concepts	Domain	

Web Programming- A Practical Approach (Project based)

Course Code	22CS352/ 22IS352	Course type	Integrated Project based	Credits L-T-P	2-0-1
Hours/week: L - T- P 2 - 0 – 2			Total credits	3	
Total Contact Hours	L = 20 Hrs; T = Hrs; P = 20 Hrs Total = 40 Hrs			CIE Marks	100
Flipped Classes content	5 Hours		SEE Marks	100	

	Course learning objectives					
1.	To learn the basics of web development and develop basic web applications using HTML5, CSS3					
	and JavaScript					
2.	To develop advanced web applications using Tailwind and JavaScript frameworks					
3.	To understand and implement the concepts of responsive design and retina ready websites					
4.	To deploy applications on AWS and generate static websites					
5.	To understand the working of web APIs and use them in building web applications					

Required Knowledge of: Basic Programming knowledge and basics of computer science

Unit – I	Contact Hours = 8 Hours
LITAGE - A ANAIG	

HTML and AWS

Writing HTML code using Header Tags, Paragraphs, Ordered and Unordered lists, Forms, Links and Tables, Iframes and Images, Text Formatting, Image Maps, Creating an Amazon Web Services, AWS) account and how to deploy a static website to AWS Simple Storage Service, \$3

Working Encoding URL, Introduction to XHTML, Using HTML5 introduced features, Handling of multiple file upload using multiple attribute, HTML5 Local Storage, HTML5 form validate /novalidate, HTML5 canvas, embedding audio and video in a webpage, Drag and drop, HTML5 web workers and server sent events

Introduction to Figma, Working with UI- Design, Components, Mobile App design

Unit – II	Contact Hours = 8 Hours
CSS3	

Styling of HTML elements-text; Links, lists and tables; Different ways to write CSS e.g. external, internal, inline; Creating Navigation Bars; Writing Media Rules; Hide visibility of an element; CSS Image Sprites and Gradients; CSS Pseudo Classes and Pseudo Elements

CSS3 Text Effects using different text fonts; Creating 2D and 3D transformations; Applying animations and transitions to HTML elements; CSS3 resize UI and multiple columns feature

Unit – III	Contact Hours = 8 Hours

Tailwind CSS and JavaScript

What is Tailwind CSS? advantages of tailwind CSS, comparison of tailwind CSS and bootstrap, getting started with tailwind, colors, element sizing, flexbox and grid, padding and margins, styling text, typography, borders and shadows.

Java Script datatypes; Variables and arrays; Creating loops and writing if-else decision-making statements; Defining and calling JavaScript functions on events; Manipulating DOM elements.

Unit – IV Contact Hours = 8 Hours

Twitter Bootstrap

Getting started with Twitter Bootstrap 3; Bootstrap features like fixed drop-down menu; Carousel, text and image grids; Custom Thumbnails; Bootstrap modal; Using Font Awesome Icons

Building a real-world website using Twitter; Bootstrap 3 features like bootstrap fixed dropdown menu; Carousel; Bootstrap modal; Font awesome icons; custom Thumbnails; Text and Image grids; Accordions; Signin/Signup form and Jumbotron

Unit – V	Contact Hours = 8 Hours
Web ADIs Alex	

Web APIs, Ajax

Bootstrap ScrollSpy AJAX XML; Http Request object; Making an AJAX call and retrieving the response; Working with Google APIs Adding social plugins on your web page provided by LinkedIn, Facebook, Quora and Twitter, Web APIs, Introduction to CI/CD, Using git-commands and concepts, hosting a static website on GitHub Pages.

Flipped Classroom Details

Unit No.	I			IV	V
No. for Flipped	1	1	1	1	1
Classroom Sessions	/	TE OF	TE (1)		

List of Experiments

Unit No.	No. of Experiments	Topic(s) related to Experiment
1	2	Figma, HTML5, and AWS
Ш	2	CSS transformations, UI and multi column features
III	2	Tailwind and JavaScript
IV	2	Twitter Bootstrap, Jumbotron
V	2	Git and AJAX

	Books
	Text Books:
1.	Robert Sebesta, Programming the World wide web, 6th Edition
2.	Jennifer Robbins, Learning Web Design, 5th Edtion, 2018
3.	Noel Rappin, Modern CSS with Tailwind: flexible styling without the fuss, programmatic
	bookshelf, 2021
	Reference Books:
1.	DarioCalonaci, Designing user interfaces, BB publications, 2021
2.	David Cochran, Twitter Bootstrap Web development-How to, packt publishing, 2012
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	Responsive Web Design https://www.freecodecamp.org/learn/2022/responsive-web-design/
2.	Front End Development Libraries https://www.freecodecamp.org/learn/front-end-
	development-libraries

	Course delivery methods	Assessment methods			
1.	Chalk and Talk	1.	IA tests- Theory & Lab based		
2.	PPT and Videos	2.	Project phase 1 & 2		
3.	Flipped Classes	3.	SEE- Project evaluation		
4.	Practice session/Demonstrations in Labs	4.	SEE- Solving an Open ended problem		
5.	Virtual Labs (if present)				

	Course Outcome (COs)								
	rning Levels:								
R	e - Remember; Un - Understand; Ap - Apply; An - Analys		ate; Cr - Cr	eate					
At th	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)					
1.	Explain the basic concepts of frontend web development using HTML5, CSS3 and other libraries	Un	1	1					
2.	Analyse the real world problem and Create a wireframe model of the application	Cr	1, 3, 5, 9 , 10, 12	1,2,3					
3.	Demonstrate the use of concepts learnt and integrate them to build real world applications	Ар	1, 3, 5, 9 , 10, 12	1,2,3					
4.	Make use of hosting services to deploy the application.	Ар	5	2					

Scheme of Continuous Internal Evaluation (CIE):

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test **(COMPULSORY)** will be part of the CIE.

THEORY	(40 marks)	3 F			
IA test (Theory)	IA test (Lab)	Project Phase 1	Project Phase 2	Project report	Total
25 marks	15 marks	25 marks	25 marks	10 marks	100 marks

- -Theory IA test should be of one-hour duration.
- -Lab IA test should be of two/three-hour duration.
- -Project batch will ideally consist of 2 students (maximum of 3).
- -Project Phase 1 presentation will be conducted after 6 weeks and Project Phase 2 presentation will be conducted after 13 weeks from the start of the semester.
- -Submission of Project report is compulsory.

- 1. 40% and above (16 marks and above) in theory component
- 2. 40% and above (24 marks and above) in project component
- 3. Not eligible in any one of the two components will make the student Not Eligible for SEE

Semester End Examination (SEE):

		` '					
1.	It w	rill be conducted for 100 marks having 3 hours duration.					
	Lab	Lab Open ended program/problem/experiment					
	Write-up & execution (1 open ended expt)- (20 marks write-up + 50 marks						
	20 ı	marks algorithm/flowchart + 10 marks execution)					
	Pro	ject evaluation					
	a. Initial write up stating the objectives, methodology and the 10 marks						
2.	outcome b. Hardware project: Exhibiting and demonstration of working of						
	b.						
		project. Software project: Demonstration of the programming	30 marks				
		capabilities by writing flowchart, algorithm and codes related					
		to a section of the project.					
	c. Viva-voce 10 marks						
3.	Minimum marks required in SEE to pass: Score should be ≥ 35%, however overall score of						
	CIE + SEE should be ≥ 40%.						
4.	SEE	will be conducted in project batches by Internal & External exar	miners toget	her.			

	CO-PO Mapping (planned)								SO Map planned						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	✓				1	10		~		JEC			✓		
2	✓		✓		1	1	15		14	-	-//	✓	✓	✓	✓
3	✓		✓		1	(Thy -	1	4	1 3	✓	✓	✓	✓
4					1				1	9/	×			✓	
	I	I	1	ick ma	rk the	CO, PC	and I	SO ma	pping	MARKE		l .			

SI No	Skill & competence enhanced	Applicable Industry	Job roles students can take up	
	after undergoing the course	Sectors & domains	after undergoing the course	
1	Website Development	IT Sector	Web Developer	
2	Ajax programmer	TI Sector	Developer	

Digital Electronics (Project based)

Course Code	22CS353/ 22IS353	Course type	Integrated Project based	Credits L-T-P	2-0-1
Hours/week: L - T- P	2 - 0 - 2	2			3
Total Contact Hours	L = 20 Hrs; T = F Total = 40 Hrs	L = 20 Hrs; T = Hrs; P = 20 Hrs Total = 40 Hrs			100
Flipped Classes content	· I S HOURS			SEE Marks	100

	Course learning objectives				
1.	Understand the basics of Digital Electronics.				
2.	Comprehend the knowledge of digital circuits to construct combinational and sequential sub-				
	systems useful for digital system designs.				
3.	Implement digital circuits for a particular application using simulation and Virtual Lab platform.				
4.	Analyse digital circuits and systems to model using Verilog HDL.				

Required Knowledge of : Basic Electronics

Unit – I Contact Hours = 8 Hours

Introduction: Revision of Logic gates and Boolean algebra, Simplification of Boolean functions using Basic Logic gates, Universal Gates, SOP, POS form, K-Map Simplification (up to 4 variables), Don't-care Condition.

Unit – II Contact Hours = 8 Hours

Data Processing Circuits: Multiplexers, De-multiplexers, Decoder, Encoders and implementation of Boolean functions using multiplexer and Decoders, Magnitude Comparators (1 bit and 2 bit).

Unit – III Contact Hours = 8 Hours

Clocks and Flip Flops: Clock waveforms, TTL clock, RS Flip Flops, Gated flip-flops, Edge triggered RS Flip-Flops, Edge triggered D Flip-Flops, and Edge triggered JK Flip-Flops, JK master slave Flip Flops, various representations of Flip Flops

Unit – IV Contact Hours = 8 Hours

Analysis of Sequential Circuits: Conversion of flip flops: A synthesis example, Types of Shift Register, SISO, SIPO, PISO and PIPO, Applications of Shift Registers as Ring Counter, Johnson Counter, Serial Adder.

Counters: Asynchronous counters (4 bit), Synchronous Counters (4 bit), changing the counter Modulus.

Unit – V	Contact Hours = 8 Hours			
Content of the Unit				
Introduction to HDL: Types of Model, Syntax for Data Flow model				

Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped	1	1	1	1	1
Classroom Sessions					

List of Experiments

Unit No.	No. of Experiments	Topic(s) related to Experiment
	1	Verification and interpretation of truth table for AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR gates.
ı	2	Construction of half and full adder using XOR and NAND gates and verification of its operation.
	3	Realization of logic functions with the help of Universal Gates (NAND, NOR).
	4	Verify Binary to Gray and Gray to Binary conversion using NAND gates only.
	5	To Study and Verify Half and Full Subtractor.
11	6	Implementation and verification of decoder or de-multiplexer and encoder using logic gates.
	7	Implementation of 4x1 multiplexer and 1x4 demultiplexer using logic gates.
	8	Verify the truth table of one bit and two bit comparator using logic gates.
	9	Construction of a NOR gate latch and verification of its operation.
III	10	Verify the truth table of RS, JK, T and D flip-flops using NAND and NOR gates.
	11	Design and Verify the 4-Bit Serial In - Parallel Out Shift Registers.
IV	12	Design and verify the 4- Bit Synchronous or Asynchronous Counter using JK Flip Flop.
	13	Develop HDL (Verilog) code to implement simple SOP equation.
V	14	Develop HDL (Verilog) code to implement Multiplexer.
	15	Develop HDL (Verilog) code to implement Adder.

	Books
	Text Books:
1.	Donald P Leach, Albert Paul Malvino and GoutamSaha: Digital Principles and Applications, 7th
	Edition and onwards, Tata McGraw Hill, 2011.
	Reference Books:
1.	Donald Givone: Digital Principles and Design, Palgrave Macmillan, 2003 and onwards.
2.	R D Sudhaker Samuel: Illustrative Approach to Logic Design, Sanguine-Pearson, 2012 and
	onwards.
3.	Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss: Digital Systems Principles and Applications, 10th
	Edition, Pearson Education, 2007 and onwards.
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	https://nptel.ac.in/courses/117106086/

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	IA tests- Theory & Lab based
2.	PPT and Videos	2.	Project phase 1 & 2
3.	Flipped Classes	3.	SEE- Project evaluation
4.	Practice session/Demonstrations in Labs	4.	SEE- Solving an Open ended problem
5.	Virtual Labs (if present)		

	Course Outcome (COs)						
Lea	rning Levels:						
F	Re - Remember; Un - Understand; Ap - Apply; An - Analys	is; Ev - Eval	uate; Cr - Cr	eate			
At th	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)			
1.	Apply the knowledge of Digital Electronics to design digital systems.	Ар	1,2,3,5	1,2			
2.	Design Combinational and Sequential Circuits for digital systems.	Ар	1,2,3,5	1,2			
3.	Utilize the simulation tool/ Virtual Lab platform to implement the digital circuits.	Ар	1,2,3,5	1,2			
4.	Analyse the digital circuits developed using HDL Verilog.	An	1,2,3,5	1,2			
5.	Apply the learnings inculcated throughout the course and develop a course project.	Ар	1,2,3,5, 9,10,11,12	1,2,3			

Scheme of Continuous Internal Evaluation (CIE):

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test **(COMPULSORY)** will be part of the CIE.

THEORY	(40 marks)				
IA test (Theory)	IA test (Lab)	Project Phase 1 Project Phase		Project report	Total
25 marks	15 marks	25 marks	25 marks	10 marks	100 marks

Theory IA test should be of one-hour duration.

Lab IA test should be of two/three-hour duration.

Project batch will ideally consist of 2 students (maximum of 3).

Project Phase 1 presentation will be conducted after 6 weeks and Project Phase 2 presentation will be conducted after 13 weeks from the start of the semester.

Submitting Project report is compulsory.

- 1. 40% and above (16 marks and above) in theory component
- 2. 40% and above (24 marks and above) in project component
- 3. Not eligible in any one of the two components will make the student Not Eligible for SEE

Semester End Examination (SEE):

1.	It w	It will be conducted for 100 marks having 3 hours duration.						
	Lab	Lab Open ended program/problem/experiment						
	Write-up & execution (1 open ended expt)- (20 marks write-up + 50 marks							
	20 marks algorithm/flowchart + 10 marks execution)							
	Pro	ject evaluation						
	a.	Initial write up stating the objectives, methodology and the	10 marks					
2.		outcome		100 marks				
	b.	Hardware project: Exhibiting and demonstration of working of						
		project. Software project: Demonstration of the programming	30 marks					
		capabilities by writing flowchart, algorithm and codes related						
		to a section of the project.						
	c. Viva-voce 10 marks							
3.	. Minimum marks required in SEE to pass: Score should be ≥ 35%, however overall score of							
	CIE + SEE should be ≥ 40%.							
4.	SEE	will be conducted in project batches by Internal & External exar	miners toget	her.				

				(СО-РО	Mappi	ng (pla	nned)		010	\			SO Mar planned	
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	✓	✓	✓		✓)0		~~	1	98	7		✓	✓	
2	✓	✓	✓		1	6	/			51	1.		✓	✓	
3	✓	✓	✓		1	-)	3/5		2/3	~	11		✓	✓	
4	✓	✓	✓		1	1	7 2	n g	100	1	A.		✓	✓	
5	✓	✓	✓		1	4	V		1	1	✓	✓	✓	✓	✓
	Tick mark the CO, PO and PSO mapping														

SI No	Skill & competence enhanced	Applicable Industry	Job roles students can take up
	after undergoing the course	Sectors & domains	after undergoing the course
1	Digital Circuit Design, Logic	Electronics Industry	Digital Circuit Designer
	Design and Analysis		
2	Digital System Simulation	Semiconductor Industry	FPGA Engineer
3	Microcontrollers and Embedded	Embedded Systems	Embedded Systems Engineer
	Systems		

Python Programming- A Practical Approach (Project based)

Course Code	22CS354/ 22IS354	Course type	Integrated Project based	Credits L-T-P	2-0-1
Hours/week: L - T- P	2 - 0 - 2			Total credits	3
Total Contact Hours	L = 20 Hrs; T = Hrs; P = 20 Hrs Total = 40 Hrs			CIE Marks	100
Flipped Classes content	5 Hours			SEE Marks	100

	Course learning objectives					
1.	Gain knowledge about basic Python language syntax and semantics to write Python programs					
	using the procedure oriented programming paradigm.					
2.	Appreciate the usage of high level data constructs provided by Python and work with file and					
	exception handling mechanisms.					
3.	Write Python applications using the object-oriented programming paradigm.					
4.	Become acquainted with the development of database and GUI applications and usage of					
	various packages.					

Required Knowledge of: Procedure Oriented and Object Oriented Programming Languages

Unit – I	Contact Hours = 8 Hours

Python Fundamentals:

An Introduction to Python programming: Introduction to Python, IDLE to develop programs

How to write your first programs: Basic coding skills, data types and variables, numeric data, string data, five of the Python functions

Control statements: Boolean expressions, selection structure, iteration structure

Unit – II Contact Hours = 8 Hours

Define and use Functions and Modules: define and use functions, more skills for defining and using functions and modules, create and use modules, standard modules

Higher Data Constructs:

Lists and tuples: Basic skills for working with lists, list of lists, more skills for working with lists, tuples **Dictionaries:** get started with dictionaries, more skills for working with dictionaries

Unit – III Contact Hours = 8 Hours

Files, Exception Handling, Database Programming

File I/O: An introduction to file I/O, text files, CSV files, binary files

Exception Handling: handle a single exception, handle multiple exceptions

Work with a database: An introduction to relational databases, SQL statements for data manipulation, SQLite Manager to work with a database, use Python to work with a database

Unit – IV Contact Hours = 8 Hours

Object Oriented Programming:

Define and use your own classes: An introduction to classes and objects, define a class, object composition, encapsulation

Inheritance: Inheritance, override object methods

Packages:

How to build a GUI Program: Create a GUI that handles an event

Numpy Basics: Arrays and Vectorized Computation: Creating ndarrays, Data Types for ndarrays, Operations between Arrays and Scalars, Basic Indexing and Slicing, Indexing with slices, Boolean Indexing, Transposing Arrays and Swapping Axes

Getting started with Pandas: Introduction to Pandas Data Structures, Summarizing and Computing Descriptive Statistics, Handling missing data

Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped Classroom Sessions	1	1	1	1	1

List of Experiments

Unit No.	No. of Experiments	Topic(s) related to Experiment
	1	Functions and lists
II	2	Functions and dictionaries
111	3	File I/O and exception handling mechanisms
III	4	Implement a Python program to work with a database
1) /	5	Object composition and encapsulation
IV	6	Inheritance and polymorphism
.,	7	GUI application o
V	8	NumPy and Pandas packages

	Books
	Text Books:
1.	Michael Urban and Joel Murach, Python Programming, Shroff/Murach, 2016
2.	Wes McKinney, Python for Data Analysis, OReilly, 1st Edition, 2012
	Reference Books:
1.	SciPy and NumPy, O`Reilly, 1st Edition, 2012
2.	Mark Lutz, Programming Python, O`Reilly, 4th Edition, 2010
	E-resourses (NPTEL/SWAYAM. Any Other)- mention links
1.	The joy of computing using python - https://onlinecourses.nptel.ac.in/noc21_cs32/preview
2.	Programming in python- https://onlinecourses.swayam2.ac.in/cec22_cs20/preview

	Course delivery methods	Assessment methods				
1.	Chalk and Talk	1.	IA tests- Theory & Lab based			
2.	PPT and Videos	2.	Project phase 1 & 2			
3.	Flipped Classes	3.	SEE- Project evaluation			
4.	Practice session/Demonstrations in Labs	4.	SEE- Solving an Open-ended problem			
5.	Virtual Labs (if present)					

	Course Outcome (COs)									
Lea	Learning Levels:									
F	Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create									
At th	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)						
1.	Illustrate basic principles of Python programming and Develop programs using the procedure-oriented programming paradigm.	Ар	1,3,5	1,2						
2.	Develop Python programs for file operations, exception handling, GUI, database operations and Make use of different packages for computing and manipulation.	Ар	1,3,5	1,2						
3.	Explain the concepts of object-oriented programming paradigm and Apply the same to develop programs.	Ар	1,3,5	1,2						
4.	Apply the learnings inculcated throughout the course by developing a course project.	Ар	1,2,3,5, 9,10,11,12	1,2,3						

Scheme of Continuous Internal Evaluation (CIE):

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test (COMPULSORY) will be part of the CIE.

THEORY	(40 marks)	3			
IA test IA test (Theory) (Lab)		Project Phase 1	Project Phase 2	Project report	Total
25 marks	15 marks	25 marks	25 marks	10 marks	100 marks

Theory IA test should be of one-hour duration.

Lab IA test should be of two/three-hour duration.

Project batch will ideally consist of 2 students (maximum of 3).

Project Phase 1 presentation will be conducted after 6 weeks and Project Phase 2 presentation will be conducted after 13 weeks from the start of the semester.

Submitting Project report is compulsory.

- 1. 40% and above (16 marks and above) in theory component
- 2. 40% and above (24 marks and above) in project component
- 3. Not eligible in any one of the two components will make the student Not Eligible for SEE

Semester End Examination (SEE):

1.	It will be conducted for 100 marks having 3 hours duration.								
	Lab Open ended program/problem/experiment								
	Write-up & execution (1 open ended expt)- (20 marks write-up +	50 marks							
	20 marks algorithm/flowchart + 10 marks execution)								
	Project evaluation								
	a. Initial write up stating the objectives, methodology and the	10 marks							
2.	outcome		100 marks						
	b. Hardware project: Exhibiting and demonstration of working of								
	project. Software project: Demonstration of the programming	30 marks							
	capabilities by writing flowchart, algorithm and codes related								
	to a section of the project.								
	c. Viva-voce	10 marks							
3.	Minimum marks required in SEE to pass: Score should be ≥ 35%, however overall score of CIE + SEE								
	should be <u>></u> 40%.								
4.	SEE will be conducted in project batches by Internal & External examiners together.								

	CO-PO Mapping (planned)									CO-PSO Mapping (planned)					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	✓		✓		✓ ,	_0	Dec.		9	15			✓	✓	
2	✓		✓		✓) 0		~		100	1		✓	✓	
3	✓		✓		1	1	0.0		12 6	70	-//		✓	✓	
4	✓	✓	✓		1	(4	353	1	1	11	✓	✓	✓	✓
	Tick mark the CO, PO and PSO mapping									ı					

SI No	Skill & competence enhanced	Applicable Industry	Job roles students can take up
	after undergoing the course	Sectors & domains	after undergoing the course
1	Procedure Oriented		
	Programming using Python		Python Developer
2	Object Oriented Programming	Healthcare, Finance,	Software Developer
	using Python	Retail, Agriculture,	Data and Research Analyst
3		Manufacturing,	Senior Backend / Software Developer Python
	Use of various packages	Networks, Security, Big Data, etc,	Big Data Developer Python Framework Developer - Al Developer, etc.

SOCIAL CONNECT AND RESPONSIBILITY

Course Code	22CS36 / 22IS36	Course type	UHV	Credits L-T-P	0-0-1
Hours/week: L - T- P	0-0-2			Total credits	1
Total Contact Hours	16 Hours of engag	gement		CIE Marks	100
Flipped Classes content			SEE Marks		

	Course learning objectives							
1.	Bridging the gap between theory and practice through community engagement							
2.	Interaction with the community for identification and solution to real life problems							
	faced by the community							
3.	Catalyzing acquisition of values and responsibilities for public service to make better citizens							

Required Knowledge of: Interpersonal skills, Communication skills

Activities to be planned and conducted by the Department Associations are:

- 1. Linking learning with the community through Knowledge Sharing: In this the students can apply their knowledge and skills to improve the lives of the people. The knowledge available with the students can be shared to the school students of the local community. It can be in the form of engaging the classes, developing projects which can used by the students and teachers, training sessions on MS word, Excel, PPT for students and teachers etc.
- 2. Creating Awareness about health and hygiene: The students can arrange talks on Importance of cleanliness, health, and hygiene by taking help of Doctors, Public Health Organizations, NGOs etc.
- **3. Including the Practitioners as teachers:** Arrange the invited talks by experts in agriculture for the farmers in the local community to create awareness about Organic farming, new methods of agriculture such as hydroponics, vertical farming etc.
- **4. Environmental Sustainability:** Students can take initiatives to educate the local community regarding protecting our environment through tree plantations, preserving water bodies etc.
- 5. Social Innovations for Rural development

Course Outcome (COs) **Learning Levels:** Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create Learning At the end of the course, the student will be able to PO(s) Level 1. Un 6,9 Gain knowledge about the culture and societal realities Develop sense of responsibility and bond with the local 6,9 2. Un community Make significant contributions to the local community and 3. 6,9 Aр the Society at large Identify opportunities for contribution to the Socio-economic Eν 6,9 development

Scheme of Continuous Internal Evaluation (CIE):

 Students must maintain the diary of the activities conducted The activities can be conducted in groups/batches. 	d.
 Faculty members can design the evaluation system wherein 	weightage can be
given to presentation of activities conducted & report writing	ng.

	CO-PO Mapping (Planned)											
СО	РО	РО	РО	РО	PO	РО	PO	PO	РО	РО	РО	РО
CO	1	2	3	4	5	6	1	8	9	10	11	12
1				10	1	91	med		1			
2						1	1	/	1			
3				34	1	~		· MAR	✓			
4					والإج	1	المليلة		✓			
5	5											
	Tick mark the CO, PO and PSO mapping											

Design Thinking

Course Code	22AECCS371	Course type	AEC	Credits L-T-P	0 - 0 - 1
Hours/week: L - T- P	0-0-2		Total credits	1	
Total Contact Hours	L = 0 Hrs; T = 0 Hrs Total = 20 Hrs	s; P = 20 Hrs	CIE Marks	50	
Flipped Classes content				SEE Marks	50

	Course learning objectives
1.	Describe and explain what Design Thinking is and how to incorporate it in problem solving.
2.	Manage the requirements gathering process to determine customer needs.
3.	Ideate and adopt MVP's and prototypes to quickly get feedback and iterate on designs.

Required Knowledge of : Digital Electronics, Computer Organization

Lab Experiment – I	Contact Hours = 4 Hours
Break the Ice and Introduction to Design Thinking.	
Lab Experiment – 2	Contact Hours = 4 Hours
Empathize (search for rich stories)	VE /
Lab Experiment – 3	Contact Hours = 4 Hours
Define (user need and insights – their POV)	
Lab Experiment – 4	Contact Hours = 4 Hours
Ideate (ideas, ideas)	Who
Lab Experiment – 5	Contact Hours = 4 Hours
Prototype (build to learn); Test the prototype.	l

	Books
	Text Books:
1.	Michael Lewrick, Patrick Link, Larry Leifer 2018, The Design Thinking Playbook: Mindful Digital
	Transformation of Teams, Products, Services, Businesses and Ecosystems, First Ed., John Wiley
	& Sons [ISBN: 9781119467472]
2.	Michael Lewrick, Patrick Link, Larry Leifer 2020, The Design Thinking Toolbox: A Guide to
	Mastering the Most Popular and Valuable Innovation Methods, First Ed., John Wiley & Sons
	New York, United States [ISBN: 9781119629191]
	E-resources (NPTEL/SWAYAM Any Other)- mention links
1.	http://www.dschool.stanford.edu/resource s/

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	PPT & demos
2.	PPT and Videos	2.	Semester End Examination
3.	Hands on DIY group activities		

Course Outcome (COs)

Learning Levels:

Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create

At th	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)
1.	Explain the various stages involved in the process of design thinking.	Un	1	1
2.	Identify the problem statement and formulate objectives	Ар	2	1
3.	Experiment and brainstorm to generate ideas/ alternatives to address the problem identified.	Ар	2,3	1
4.	Assess the alternatives to the problem at hand in order to arrive at the optimal alternative for various test cases.	Ev	3,4,5	1,2
5.	Develop a course project by applying the learnings inculcated throughout the course.	Cr	2, 3, 5, 9, 10, 11, 12	1, 2, 3

Scheme of Continuous Internal Evaluation (CIE):

Conduction of experiments & viva-voce	Journal	Lab project/ Open ended experiment	Lab Test	Total
20 marks	5 marks	10 marks	15	50 marks

Conduct of Lab:

- 1. Conduction of the experiment: 15 marks + Viva voce: 5 marks = 20 marks
- 2. Calculations, results, graph, conclusion and Outcome recorded in Journal: 5 marks
- 3. Lab project/ Open ended experiment: 10 marks
- 4. Lab Test: 15 marks

- 1. 40% and above (20 marks and above)
- 2. Lab test is COMPULSORY

Sch	Scheme of Semester End Examination (SEE):					
1.	It will be conducted for 50 marks of 2/3 hours duration.					
2.	Minimum marks required in SEE to pass: Score shou	ıld be ≥35% , however ov	erall score of CIE+SEE			
	should be ≥40%.					
3.	. One or Two experiments to be conducted.					
4.	. Minimum marks required in SEE to pass: 20 out of 50					
	Initial write up	10 marks				
	Conduct of experiments, results and conclusion 20 marks					
	One mark question 10 marks					
	Viva- voce 10 marks					
5.	5. Viva-voce shall be conducted for individual student and not in a group.					

				C	О-РО	Mappi	ng (pla	nned)	V					SO Mar planned	
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	٧				1		3/	011	3	0	\wedge		✓		
2		✓	✓		- /	J	1		(11)	100			✓		
3		✓	✓		12	0	Mark			N N	7		✓		
4			✓	✓	✓	10		~		JA	1		✓	✓	
5		✓	✓		1	1	3(5			1	-/-	✓	✓	✓	✓
	I		T	ick ma	rk the	CO, PO	and F	SO ma	pping	1	13	I.			
					100	SANS	V V	T	J	MARKER	de la companya de la				

SI No	Skill & competence enhanced	Applicable Industry	Job roles students can take up			
	after undergoing the course	Sectors & domains	after undergoing the course			
1	Problem solving, critical	Health Care and	Strategist, Brand Experience			
	thinking, creativity, leadership,	Medicine, Public sector,	Design.			
	collaboration and	Space exploration,	Lead, Innovation.			
	communication	Education, The world of	Design Researcher.			
		retail Food and beverage	User Experience (UX) Designer.			
		industry, Entertainment,	Head of Product Design.			
		The banking industry	Service Designer.			

Introduction to Embedded Systems and IoT- A Hands-on Approach

Course Code	22AECCS372	Course type	AEC	Credits L-T-P	0 - 0 - 1
Hours/week: L - T- P	0 - 0 - 2		Total credits	1	
Total Contact Hours	L = 0 Hrs; T = 0 Hrs Total = 20 Hrs	s; P = 20 Hrs		CIE Marks	50
Flipped Classes content				SEE Marks	50

	Course learning objectives			
1.	Understand the architecture of Microcontroller.			
2.	. Programming Microcontroller for simple applications.			
3.	Programming 8051 Microcontroller timer/counter and serial port.			
4.	Interfacing sensors and peripherals with the Microcontroller.			

Required Knowledge of : Digital Electronics	V 10 00 V		
Lab Experiment – I	Contact Hours = 2 Hours		
The 8051 Microcontrollers: Microcontrolle	er <mark>s</mark> and embedded <mark>pro</mark> cessors . 8051 Programming in 'C		
Data types and time delay in 8051 'C', I/O p	rogramming in 8051 'C'.		
Lab Experiment – 2	Contact Hours = 2 Hours		
8051 Programming in 'C': Logic operations	in 8051 'C', Data conversion programs in 8051 'C'.		
Lab Experiment – 3	Contact Hours = 2 Hours		
8051 Programming in 'C': Accessing code R	OM space in 8051 'C', Data serialization using 8051 'C'.		
Lab Experiment – 4	Contact Hours = 2 Hours		
<u> </u>			
8051 Timer Programming in 'C': Programm	ing 8051 timers in mode 1.		
Lab Experiment – 5	Contact Hours = 2 Hours		
8051 Timer Programming in 'C': Programm	ing 8051 timers in mode 2.		
Lab Experiment – 6 Contact Hours = 2 Ho			
8051 Counter Programming in 'C': Program	ming 8051 counters in mode 1.		
Lab Experiment – 7	Contact Hours = 2 Hours		
8051 Counter Programming in 'C': Program	ming 8051 counters in mode 2.		
Lab Experiment – 8	Contact Hours = 2 Hours		
8051 Serial Port Programming in 'C': Basics	of serial communication, serial port programming in 'C'.		
	Contact Hours = 2 Hours		
Lab Experiment – 9	Contact nours = 2 nours		

Lab Experiment – 10

Contact Hours = 2 Hours

Programming Arduino UNO: LED blinking, push button and led interfacing, sensors interfacing.

	Books					
	Text Books:					
1.	Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. McKinlay: The 8051 Microcontroller and					
	Embedded Systems Using Assembly and C, Pearson Prentice Hall, 1st edition and above.					
2.	James Fiore, Embedded Controllers Using C and Arduino, Mohawk Valley Community College;					
	eBook (Creative Commons Licensed)					
3.	Kenneth Ayala, The 8051Microcontroller, Cengage Learning, 2nd edition and above.					
4.	Julien Bayle, C Programming for Arduino, Packt Publishing (May 17, 2013).					
	E-resources (NPTEL/SWAYAM Any Other)- mention links					
1.	https://www.udemy.com/course/embedded-c-for-8051-microcontroller/					
2.	https://www.udemy.com/course/arduino-programming-and-interfacing/					

	Course delivery methods	Assessment methods				
1.	Practice session/Demonstrations in Labs		Conduction of Experiments			
2.	Virtual Labs (if present)	2.	Journal writing			
3.	Chalk and Talk	3.	Lab project/ Open ended experiment			
4.	7 6	4. Lab Test 🤵				
5.		5.	Semester End Examination			

Course Outcome (COs)

Learning Levels:

Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create

At th	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)
1.	Develo p programs for microcontrollers for simple I/O applications.	Ар	2,3,5	1,2
2.	Experiment with microcontroller's timer/ counter and serial port.	Ар	2,3,5	1,2
3.	Make use of interfacing for sensors and peripherals with the Microcontroller.	Ар	2,3,5	1,2
4.	Develop a course project by applying the learnings inculcated throughout the course.	Cr	2, 3, 5, 9, 10, 11, 12	1, 2, 3

Scheme of Continuous Internal Evaluation (CIE):

Conduction of experiments & viva-voce	Journal	Lab project/ Open ended experiment	Lab Test	Total
20 marks	5 marks	10 marks	15	50 marks

Conduct of Lab:

1. Conduction of the experiment: 15 marks + Viva voce: 5 marks = 20 marks

- 2. Calculations, results, graph, conclusion and Outcome recorded in Journal: 5 marks
- 3. Lab project/ Open ended experiment: 10 marks
- 4. Lab Test: 15 marks

- 1. 40% and above (20 marks and above)
- 2. Lab test is COMPULSORY

Sch	Scheme of Semester End Examination (SEE):					
1.	It will be conducted for 50 marks of 2/3 hours duration.					
2.	Minimum marks required in SEE to pass: Score should be ≥35%, however overall score of CIE+SEE should be ≥40%.					
3.	One or Two experiments to be conducted.					
4.	Minimum marks required in SEE to pass: 20 out of	50				
	Initial write up	10 marks				
	Conduct of experiments, results and conclusion	20 marks	50			
	One mark question	10 marks	50 marks			
	Viva- voce 10 marks					
5.	Viva-voce shall be conducted for individual studen	t and not in a group.				

	CO-PO Mapping (planned)											SO Map planned	-		
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1		✓	✓		✓	- Sur	M		A	1			✓	✓	
2		✓	✓		✓		LALL.		1114				✓	✓	
3		✓	✓		✓				1				✓	✓	
4		✓	✓		✓			A	✓	✓	✓	✓	✓	✓	✓
	Tick mark the CO, PO and PSO mapping														

SI No	Skill & competence enhanced	Applicable Industry	Job roles students can take up
	after undergoing the course	Sectors & domains	after undergoing the course
1	Embedded 'C' Programming.	Embedded Systems and	Embedded Engineers
		IoT Application	
2	Programming Microcontroller	Embedded Systems and	Embedded-IoT-Firmware Design
	8051 for simple I/O operations.	IoT Application	Engineer
3	Programming Arduino UNO for	Embedded Systems and	Embedded-IoT-Firmware Design
	simple I/O, sensor interfacing	IoT Application	Engineer
	and actuator interfacing.		

Software Tools and Technologies

Cours	e Code	22AECCS373	Course type	AEC	Credits L-T-P	0 - 0 - 1
Hours/week: L - T- P		0-0-2			Total credits	1
Total Contact Hours		L = 0 Hrs; T = 0 Hrs; P = 20 Hrs			CIE Marks	50
Total Contact Hours		Total = 20 Hrs			CIL IVIAI KS	30
Flippe	ed Classes content				SEE Marks	50
		Course	learning objec	tives		
1.	To make familiar w	vith the modern too	ol usage			
2.	2. To improve the verbal and written communication skills					
3.	3. Explain the importance of problem solving and usage of various program design tools					
4.	To get familiar witl	n creation of profes	sional accounts	and usa	ge of google driv	/es

Required Knowledge of : MS Office, programming knowledge

Lab Experiment – I	Contact Hours = 6 Hours					
MS Word - Quick styles, Template usage,	Graphics use, Auto correction, Auto formatting, Translate					
documents, Compare documents, Document security, Set watermark, Report writing						
MS PowerPoint - Presentation skills 8						
Lab Experiment – 2	Contact Hours = 6 Hours					
MS Excel - Filling, Logical functions, Functio	ns and formulae, Sort and filters, Charts, Shortcuts					
MS Access - Orientation to access, Working with table data, Querying a database						
WIS Access - Orientation to access, Working	with table data, Querying a database					
Lab Experiment – 3	Contact Hours = 8 Hours					
Lab Experiment – 3	Maria ma					
Lab Experiment – 3	Contact Hours = 8 Hours					
Lab Experiment – 3 Building logic to improve programming statements	Contact Hours = 8 Hours					

	Books				
	Text Books:				
1.	The Art of Computer Programming by Donald E. Knuth.				
2.	How to Solve it by Computer by R. G. Dromey				

	Course delivery methods	Assessment methods				
1.	Chalk and Talk	1.	IA tests			
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project			
3.	Flipped Classes	3.	Lab Test			
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination			
5.	Virtual Labs (if present)					

Course Outcome (COs)

Learning Levels:

Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create

At th	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)
1.	Get acquainted with the modern tool usage	Un	1, 5	1
2.	Improve the verbal and written communication skills	Un	1, 12	2
3.	Familiar with the importance of problem solving and usage of	Ev	2, 3	1
J.	various program design tools	LV		
4	Develop a course project by applying the learnings inculcated	Cr	2, 3, 5, 9,	1, 2, 3
4.	throughout the course.		10, 11, 12	

Scheme of Continuous Internal Evaluation (CIE):

Conduction of experiments & viva-voce	Journal	Lab project/ Open ended experiment	Lab Test	Total
20 marks	5 marks	10 marks	15	50 marks

Conduct of Lab:

- 1. Conduction of the experiment: 15 marks + Viva voce: 5 marks = 20 marks
- 2. Calculations, results, graph, conclusion and Outcome recorded in Journal: 5 marks
- 3. Lab project/ Open ended experiment: 10 marks
- 4. Lab Test: 15 marks

- 1. 40% and above (20 marks and above)
- 2. Lab test is COMPULSORY

	/ \									
Sch	Scheme of Semester End Examination (SEE):									
1.	It will be conducted for 50 marks of 2/3 hours duration.									
2.	Minimum marks required in SEE to pass: Score should be ≥35%, however overall score of CIE+SEE									
	should be ≥40%.									
3.	One or Two experiments to be conducted.									
4.	Minimum marks required in SEE to pass: 20 out of 50									
	Initial write up	10 marks								
	Conduct of experiments, results and conclusion	20 marks	50 magnitus							
	One mark question	10 marks	50 marks							
	Viva- voce 10 marks									
5.	Viva-voce shall be conducted for individual student and not in a group.									

	CO-PO Mapping (planned)											SO Map planned			
-	РО	PO							PSO	PSO	PSO				
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓				✓								✓		
2	✓									✓		✓		✓	✓
3		✓	✓										✓		
4		✓	✓		✓				✓	✓	✓	✓	✓	✓	✓
		l.	Ti	ck mar	k the (CO, PO	and P	SO ma	pping		l .				

SI No	Skill & competence enhanced after undergoing the course				
1	Help in proper Arrangement,	Any Domain	Skill Enhancement		
	formatting and analyses Data	TE OF TO			
	into various tools	ALTON CONT.			

STAB

Data Visualization Tools and Techniques

Course Code	22AECCS374	Course type	AEC	Credits L-T-P	0 - 0 - 1
Hours/week: L - T- P	0 - 0 - 2		Total credits	1	
Total Contact Hours	L = 0 Hrs; T = 0 Hrs Total = 20 Hrs	s; P = 20 Hrs	CIE Marks	50	
Flipped Classes content				SEE Marks	50

	Course learning objectives									
1.	1. Understand the fundamental concepts of data visualization									
2.	. Understand different types of data visualization tools									
3.	Apply the knowledge of tableau to solve real time problems									
4.	Understand the concepts of Power Bi									

Required Knowledge of : Basics of Programming language

Lab Experiment – I

Contact Hours = 4 Hours

Introduction to Data Visualization: What makes Data Visualization Effective? History of Data Visualization, Importance of Data Visualization Why Use Data Visualization? Tables, Pro and Cons of Data Visualization, Acquiring and Visualizing Data, Applications of Data Visualization, Keys factors of Data Visualization.

Lab Experiment – 2

Contact Hours = 4 Hours

EXCEL

Introduction, Interface, Tabs and Ribbons, Document Windows, Navigation Tips, Office Button and Save. Entering, Editing and Formatting Data: Entering Data, Fonts, Fills, and Alignment, Cut, Copy, and Paste, Paste Special, Undo and Redo, Moving, Finding, and Replacing a Value. Finding out mean, median and mode in Excel. Bar charts, pie charts, combination charts, Band charts Gantt chart, Waterfall chart

Lab Experiment – 3

Contact Hours = 4 Hours

POWER BI

Introduction, Installation Steps, Architecture, Supported Data Sources, Comparison with Other BI Tools, Data Modelling, Dashboard Options, Visualization Options, Excel Integration

Lab Experiment – 4

Contact Hours = 4 Hours

Tableau: Introduction to tableau, Getting started with tableau, Exploring basic Tableau, deep drive into tableau, visualization.

Lab Experiment – 5

Contact Hours = 4 Hours

WEKA and R:

Introduction to WEKA, Installation, loading data, Exploring file formats, visualization. Introduction to R programming tool, Installation, programming with R, Visualizing charts and graphs using R.

	Books								
	Text Books:								
1.	Tillman Davias, The Book of R first course in programming and statistics, William Pollock, 2016.								
2.	Joshua Milligan, Learning Tableau 2019 , Packt Publishing, 3rd Edition 2019								
3.	Alberto Ferari, Introducing Microsoft Power BI, Microsoft Press, 2016								
4.	Curtis D. Frye , Microsoft Step by Step Excel 2010, Microsoft Press,								

	Course delivery methods	Assessment methods				
1.	Chalk and Talk	1.	IA tests			
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project			
3.	Flipped Classes	3.	Lab Test			
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination			
5.	Virtual Labs (if present)					

Course Outcome (COs)

Learning Levels:

Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create

At th	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)
1.	Illustrate the basics of data visualization tools and techniques	Un	1, 5	1, 2
2.	Experiment with data visualization tools for various data sets in order to perform exploratory data analysis	An	2, 3, 4, 5	1,2
3.	Analyze the results to draw inferences.	An	2, 3, 4, 5	1,2
4.	Develop a course project by applying the learnings inculcated throughout the course.	Cr	2, 3, 4, 5, 9, 10, 11,	1, 2, 3

Scheme of Continuous Internal Evaluation (CIE):

Conduction of experiments & viva-voce	Journal	Lab project/ Open ended experiment	Lab Test	Total
20 marks	5 marks	10 marks	15	50 marks

Conduct of Lab:

- 1. Conduction of the experiment: 15 marks + Viva voce: 5 marks = 20 marks
- 2. Calculations, results, graph, conclusion and Outcome recorded in Journal: 5 marks
- 3. Lab project/ Open ended experiment: 10 marks
- 4. Lab Test: 15 marks

- 1. 40% and above (20 marks and above)
- 2. Lab test is COMPULSORY

Sch	Scheme of Semester End Examination (SEE):									
1.	It will be conducted for 50 marks of 2/3 hours duration.									
2.	. Minimum marks required in SEE to pass: Score should be ≥35%, however overall score of CIE+SEE									
	should be ≥40%.									
3.	One or Two experiments to be conducted.									
4.	Minimum marks required in SEE to pass: 20 out of 50									
	Initial write up	10 marks								
	Conduct of experiments, results and conclusion	20 marks	50 manulus							
	One mark question	10 marks	50 marks							
	Viva- voce 10 marks									
5.	. Viva-voce shall be conducted for individual student and not in a group.									

CO-PO Mapping (planned)									CO-PSO Mapping (planned)						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	✓				1		3/	CIL		9	1		✓		
2		✓	✓	✓	1	1	/pholi		111	100			✓	✓	
3		✓	✓	✓	√	700	-			8	7		✓	✓	
4	✓	✓	✓	✓	- 1	1 9		-	V	45	1	✓	✓	✓	✓
	I	ı	Т	ick ma	rk the	CO, PO	and F	SO ma	pping	e* >	>//	l			
					and the second	San	V NAME OF THE PARTY OF THE PART	The state of	THE THE PERSON NAMED IN COLUMN TO TH	MARKEN					,

SI No	Skill & competence enhanced after undergoing the course	Applicable Industry Sectors & domains	Job roles students can take up after undergoing the	
			course	
1	Source, gather, arrange, process, and	Data Mining, Cloud and	Data Scientist, Data	
	model data. Analyze large volumes of	Computing, Data	Analyst	
	structured or unstructured data.	visualization, Data Analytics		
	Prepare and present data in the best			
	forms for decision-making and problem-			
	solving.			

Mathematics I

Course Code	22AECCS375	Course type	AEC	Credits L-T-P	1-0-0
Hours/week: L-T-P	1-0-0			Total credits	1
Total Contact Hours	L = 20 Hrs; T = 0 Hrs	s; P = 0 Hrs		CIE Marks	50
	Total = 20 Hrs				
Flipped Classes content	5 Hours			SEE Marks	50

	Course learning objectives				
1.	Review basic differentiation and Integration				
1.	Get acquainted with different applications of Calculus.				
2.	2. Understand modular arithmetic.				
5.	Get familiar with various topics in Linear Algebra.				

Required Knowledge of: Basic Trigonometry, Calculus, Algebra

Unit- I: Basic Differentiation, Integration

Contact Hours = 5 Hours

Rate of change, increasing/decreasing functions, tangents and normals, maxima and minima (first derivative test motivated geometrically and second derivative test given as a provable tool). Simple problems (that illustrate basic principles and understanding of the subject as well as real-life situations). Integration of a variety of functions by substitution, by partial fractions and by parts, Basic properties of definite integrals and evaluation of definite integrals.

Unit-II: Calculus

Contact Hours = 5 Hours

Series expansion of functions (Taylor's and Maclaurin's series) Polar Curves, angle between radius vector and tangent, angle between polar curves,.

Unit – III: Modular Arithmetic:

Contact Hours = 5 Hours

Introduction to congruences,Linear Congruences,The Chinese Remainder theorem,Solving Polynomials, Linear Diophantine Equation,System of Linear Congruences,Euler's Theorem,Wilson Theorem and Fermat's little theorem (only statements).

Unit- IV: Linear Algebra 1

Contact Hours = 5 Hours

Rank of a matrix by elementary transformation, consistency of system of linear Equations-Gauss Jordan method and Gauss-Seidal method. Eigen value and Eigen vectors — Rayleigh's Power method.

Flipped Classroom Details

· · · · · · · · · · · · · · · · · · ·							
Unit No.	ı	II	III	IV			
No. for Flipped Classroom Sessions	1	1	1	2			

	Books					
	Text Books:					
1.	B.S. Grewal – Higher Engineering Mathematics, Khanna Publishers, 42 nd Edition, 2012.					
2.	Erwin Kreyszig –Advanced Engineering Mathematics, John Wiley & Sons Inc., 9 th Edition, 2006.					
3.	B. V.Ramana- Higher Engineering Mathematics, Tata McGraw-Hill Education Private Limited,					
	Tenth reprint 2010 and onwards.					
	Reference Books:					
1.	Peter V. O' Neil – Advanced Engineering Mathematics, Thomson Brooks/Cole, 7 th Edition,					
	2011.					
2	Glyn James – Advanced Modern Engineering Mathematics, Pearson Education, 4 th Edition,					
	2010.					

	Course Delivery Methods	5	Assessment Methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Open Book Assignments(OBA)/Lab Project
3.	Flipped Classes	3.	Semester End Examination
4.	Practice session / Demonstrations in Labs		m ★) & > / /
5.	Virtual Labs(if present)	Vine	

	CO-PO Mapping(planned)							CO-PSO Mapping(planned)							
С	PO 1	РО	РО	PO1	РО	РО	PSO	PSO	PSO						
0	1	2	3	4	5	6	/	8	9	0	11	12	1	2	3
1	✓														
2	✓														
3	✓														
4	✓														

Course Outcome (COs)

At the end of the course, the student will be able to (Highlight the **action verb** representing the learning level.)

	ning Levels: Re - Remember; Un - Understand; Ap - Apply; Analysis; Ev - Evaluate; Cr – Create	Learning Level	PO(s)	PSO(s)
1.	Review basics of Differentiation and Integration	L1	1	1
2.	Review basic concepts of Calculus.	L1	1	1
3.	Understand modular arithmetic	L2	1	1
4.	Understand basic Linear Algebra.	L1	1	1

Scheme of Continuous Internal Evaluation (CIE): Theory course (Non-Integrated)					
Components	Addition of CIE components	Total Marks			
Written Test	30 marks	Ε0			
Two Open Book Assignments	20 marks	50			
/<	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Scheme of Semester End Examination	(SEE): Theory course (Non-Integrated)				
Components	Total Marks				
Written exams	50				

Data Structures Laboratory using C

Course Code	22CSL39/22ISL39	Course type	PCCL	Credits L-T-P	0 - 0 - 1
Hours/week: L - T- P	0-0-2		Total credits	1	
Total Contact Hours	L = 0 Hrs; T = 0 Hrs; F Total = 20 Hrs	P = 20 Hrs	CIE Marks	50	
Flipped Classes content			SEE Marks	50	

	Course learning objectives				
1.	Demonstrate the abstract properties of various data structures such as stacks, queues, lists,				
	and trees.				
2.	Compare different implementations of data structures and recognize the advantages and				
	disadvantages of the different implementations				
3.	Able to demonstrate features of different data structures such as Linked List, Hash Table,				
	Queues to solve real world problems.				

Required Knowledge of : C programming Skills

Unit No.	No. of Experiments	Topic(s) related to Experiment
ı	1	Structures
II	2	Stack, Queue
III	2	Linked list, DLL
IV	1	Trees
V	1	Hashing

S

Books	
	Text Books:
1.	Richard.F.Gilberg, Behrouz.A. Forouzan, Data Structures: A Pseudocode Approach with C,
	Cengage Learning, 2nd edition 2007 and onwards
2.	Horowitz, Sahni, Anderson-Freed, Fundamentals of Data Structures in C, Universities Press,
	2nd Edition, 2007 and onwards.
	E-resources (NPTEL/SWAYAM. Any Other)- mention links
1.	NPTELcourse link : https://nptel.ac.in/courses/106102064/
2.	SWAYAM course link: https://swayam.gov.in/course/1407-programming-and-data-structures
3.	edx course link: https://www.edx.org/course/data-structures-fundamentals

	Course delivery methods	Assessment methods		
1.	Practice session/Demonstrations in Labs	1.	Conduction of Experiments	
2.	Virtual Labs (if present)	2.	Journal writing	
3.	Chalk and Talk	3. Lab project/ Open ended experiment		
4.		4.	Lab Test	
5.		5.	Semester End Examination	

Course Outcome (COs)

Learning Levels:

Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create

At th	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)
1.	Demonstrate the understanding of structured programming.	Ар	1, 2	1
2.	Analyze the problem statement and able to choose right data structure for implementation.	An	3, 4	1
3.	Develop an ability to construct robust, maintainable programs which satisfy the requirements of user.	Ар	3, 4, 5	1, 2
4.	Develop a course project or present a course seminar by applying the learnings inculcated throughout the course.	Cr	2, 3, 5, 9, 10, 11, 12	1, 2, 3

Scheme of Continuous Internal Evaluation (CIE):

Conduction of experiments & viva-voce	Journal	Lab project/ Open ended experiment	Lab Test	Total
20 marks	5 marks	10 marks	15	50 marks

Conduct of Lab:

- 1. Conduction of the experiment: 15 marks + Viva voce: 5 marks = 20 marks
- 2. Calculations, results, graph, conclusion and Outcome recorded in Journal: 5 marks
- 3. Lab project/ Open ended experiment: 10 marks
- 4. Lab Test: 15 marks

- 1. 40% and above (20 marks and above)
- 2. Lab test is COMPULSORY

Sch	Scheme of Semester End Examination (SEE):					
1.	It will be conducted for 50 marks of 2/3 hours duration.					
2.	Minimum marks required in SEE to pass: Score sho	uld be ≥35% , however ov	erall score of CIE+SEE			
	should be ≥40%.					
3.	One or Two experiments to be conducted.					
4.	Minimum marks required in SEE to pass: 20 out of 50					
	Initial write up	10 marks				
	Conduct of experiments, results and conclusion	20 marks	50 marks			
	One mark question	10 marks	SUMARKS			
	Viva- voce	10 marks				
5.	Viva-voce shall be conducted for individual student and not in a group.					

				(СО-РО	Mappi	ng (pla	nned)	下 作 同	000				SO Mar planned	
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	✓	✓			12	70			WI -	0	7		✓		
2			✓	✓	1	1 5		-		JAC			✓		
3			✓	✓	1	-	15		13 5	A .	1/		✓	✓	
4					3	(0:1 =	1	\	1	✓			✓
	ı	ı	1	ick ma	rk the	CO, PO	and F	SO ma	pping	1		1			

SI No	Skill & competence enhanced	Applicable Industry Sectors	Job roles students can take up	
	after undergoing the course	& domains	after undergoing the course	
1	To design and analyze simple			
	linear and non-linear data			
	structures.	IT Sector	Software Developer	
2	Ability for the students	TI Sector	Software Developer	
	to identify and apply the			
	suitable data structure			

Detailed 4th Semester Syllabus

Operating Systems

Course Code	22CS41 / 22IS41	Course type	PCC	Credits L-T-P	3-0-0
Hours/week: L - T- P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T = 0 Hrs; P = 0 Hrs Total = 40 Hrs			CIE Marks	100
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives					
1.	To introduce the functions of an operating system, design, structure, and associated system					
	calls					
2.	To study and analyze various scheduling algorithms and process synchronization techniques					
3.	To develop an understanding of deadlocks and deadlock recovery techniques.					
4.	To discuss and realize the importance of memory management techniques.					
5.	To gain knowledge of file systems and secondary storage structures.					

Pre-requisites: Basic knowledge of computer concepts & programming, Computer Organization.

Unit – I Contact Hours = 8 Hours

Introduction to Operating System: System structures: What operating systems do; Operating System operations; Process management; Memory management; Storage management; Protection and security; Distributed system; Operating System Services; System calls; Operating System structure; System boot.

Introduction to UNIX File System: Inside UNIX, Internal and External Commands, Command structure.

Case Study: Android Operating System / Ios

Unit – II Contact Hours = 8 Hours

Process Management: Process concept; Process scheduling; Process Scheduling: Basic concepts; Scheduling criteria; Scheduling algorithms.

The Process: Understanding the process, How a process is created, the login shell, init, internal and external commands, ps.

Case Study: OSSim Simulation Tool

Unit – III Contact Hours = 8 Hours

Process Synchronization: Synchronization: The Critical section problem; Peterson's solution; Semaphores, Classical problems of synchronization: The Dining-Philosophers Problem.

Deadlocks: System model; Deadlock characterization; Methods for handling deadlocks; Deadlock prevention; Deadlock avoidance; Deadlock detection and recovery from deadlock.

Unit – IV Contact Hours = 8 Hours

Memory Management: Memory Management Strategies: Background; Swapping; Contiguous memory allocation; Paging; Virtual Memory Management: Background; Demand paging; Copy-on-write; Page replacement;

Unit – V Contact Hours = 8 Hours

File System: File System: File concept; Access methods; Directory and Disk structure; File system mounting; File sharing; Protection.

The File System: The parent child relationship, The UNIX file system, Absolute Pathnames, Relative Pathnames, pwd, cd, mkdir, rmdir, cp, rm, mv, cat. File Attributes: ls, ls-l, ls-d, file permissions, chmod.

Flipped Classroom Details

Unit No.	I		III	IV	V
No. for Flipped	2	TO OF TE	2	2	2
Classroom Sessions	-/		4		

	Books
	Text Books:
1.	Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, "Operating System Principles", Wiley
	India, 6th edition and onwards.
2.	Sumitabha Das: "YOUR UNIX – The Ultimate Guide", Tata McGraw Hill, 23rd reprint, 2012 and
	onwards.
	Reference Books:
1.	Gary Nutt, "Operating System", Pearson Education, 2nd edition and above.
2.	Harvey M Deital, "Operating system", Addison Wesley, 2nd edition and above.
3.	D.M Dhamdhere, "Operating System", "A concept based Approach", Tata McGraw- Hill, 2nd
	edition and onwards
4.	Behrouz A. Forouzan and Richard F. Gilberg: "UNIX and Shell Programming ", Cengage
	Learning, 2005 and onwards.
	E-resourses (NPTEL/SWAYAM.)/COURSERA
1.	https://onlinecourses.nptel.ac.in/
	Tentative Course List (July - Dec 2023) - Google Drive
2.	https://www.coursera.org/specializations/codio-introduction-operating-systems
3.	Lectures on Operating Systems (iitb.ac.in)

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Open Book Tests (OBT)
3.	Flipped Classes	3.	Course Seminar
4.	Online classes	4.	Semester End Examination

Course Outcome (COs)

At the end of the course, the student will be able to (Highlight the **action verb** representing the learning level.)

Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)
An -	Analysis; Ev - Evaluate; Cr – Create	Level	FO(3)	130(3)
1.	Explain the computer system resources and the role of an	Un	1	1
1.	operating system in managing those resources	0		
	Develop applications keeping concurrency and		1,2,5	1,2
	synchronization, semaphores, Monitors shared memory,			
2.	mutual exclusion, and process scheduling services of general	Ар		
	operating systems and do the case study on OSSim Simulation			
	Tool.			
	Describe and analyze memory management, file		2,5	1,2
3.	management, and secondary Memory Management	Ар		
	techniques.	7/1		
	Discuss UNIX shell commands for file handling, process	1	1,2	1,2
4.	control and do the case study on Android Operating System	Un		
	/ iOS.	Vic.		
5.	Understand the learnings inculcated throughout the course	Re,Un,Ap	1,2,3,	1,2,3
J.	and present a course seminar or develop a course project.	кс,оп,др	5,9,10,11,12	

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification etc)	Course project (CP)/ Case study etc	Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

⁻Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.

- -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.
- -Lack of minimum score in IA test will make the student Not Eligible for SEE
- -Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Scheme of Semester End Examination (SEE):

- 1. It will be conducted for 100 marks of 3 hours duration.
- 2. Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of CIE + SEE should be \geq 40%.
- 3. Question paper contains 3 parts A,B & C, wherein students have to answer any 5 out of 7 questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2 questions in part C.

	CO-PO Mapping (Planned)							CO-PSO Mapping (Planned)							
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	✓												✓		
2	✓	✓			✓		T		A				✓	✓	
3		✓			✓	/8	N	TE OF	7	1			✓	✓	
4	✓	✓			1.12	/_	A TITL	20	E CA	*	\		✓	✓	
5	✓	✓	✓		1	7	5/		1	1	1	✓	✓	✓	✓
	Tick mark the CO, PO and PSO mapping														

SI No	Skill & competence enhanced after	Applicable Industry	Job roles students can take up
	undergoing the course	Sectors & domains	after undergoing the course
1	Continuous Improvement:	Product based	Software engineer
	Continuous improvement is an	companies	Software Analyst
	ongoing process of improvement of		Operations Systems Specialist
	products, services, and processes		
	with the help of innovative ideas.		
2.	Once they understand the basics of	Product based	Software Developer
	OS,	companies	System Engineer
	they can start building, managing,		
	and repairing hardware devices		
3.	Programming skills will be enhanced	Software Industry	Computer System Engineer
	as whatever code they develop, will		
	eventually run on an OS.		
	Good understanding of OS is		
	essential to become a programmer.		

Design and Analysis of Algorithms

Course Code	22CS42 / 22IS42	Course type	IPCC	Credits L-T-P	3-0-1
Hours/week: L - T- P	3-0-2		Total credits	4	
Total Contact Hours	L = 40 Hrs; T = 0 H	rs; P = 20 Hrs	CIE Marks	100	
Total Contact Hours	Total = 60 Hrs		CIL IVIAI KS	100	
Flipped Classes content 10 Hours			SEE Marks	100	

	Course learning objectives				
1.	To bring out the importance of the study of algorithms.				
2.	To study and analyze time complexity of various algorithms.				
3.	To discuss various algorithm design techniques.				
4.	To develop a technique of analyzing and computing the performance of algorithms.				

Pre-requisites: Basic Computer Programming

Unit – I Contact Hours = 8 Hours

Introduction: Fundamentals of Algorithmic Problem Solving, Analysis Framework, Asymptotic Notations and basic efficiency classes, Mathematical Analysis of Non-Recursive and Recursive Algorithms,

Unit – II Contact Hours = 8 Hours

Divide and Conquer: Merge sort, Quicksort, Multiplication of Long Integers, Strassen's Matrix Multiplication.

Decrease and Conquer: Insertion Sort, Depth First Search, Breadth First Search, Topological Sorting,

Unit – IIITheGeneralGreedyTechnique,Illustrationwithexamples.Applications of Greedymethod:Kruskal's Algorithm – Minimum-Cost SpanningTrees:Prim'sAlgorithm, Single Source Shortest Path - Dijkstra's Algorithm, Huffman Trees – Encoding of Data

Unit – IV Contact Hours = 8 Hours

Dynamic Programming Definition and Concept Illustration. The General Method, Applications of Dynamic programming: Warshall's Algorithm – Transitive Closure, Floyd's Algorithm for the All-Pairs Shortest Paths, Knapsack using General Weights and 0/1 Knapsack.

Unit – V Contact Hours = 8 Hours

Backtracking: N-Queen's Problem, Sum of Subset Problem.

Branch-and-Bound: Travelling Salesperson Problem, Assignment Problem

Decision Trees: Decision Trees for Sorting

NP and NP-Complete Problems: Basic Concepts, Non- Deterministic Algorithms, P, NP, NP Complete,

and NP-Hard classes

Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped	2	2	2	2	2
Classroom Sessions					

List of Experiments

Unit No.	No. of Experiments	Topic(s) related to Experiment
1	2	Fundamentals of Algorithmic
2	2	Divide and Conquer Decrease and Conquer
3	1	Applications of Greedy method
4	2	Applications of Dynamic programming All-Pairs Shortest Paths
5	3	Backtracking Branch-and-Bound Decision Trees

Unit No.	Self-Study Topics
1	Brute Force Approaches: Introduction, Selection Sort, linear search.
2	Application of DFS and BFS.

Books

	Text Books:
1.	Introduction to the Design and Analysis of Algorithms, Anany Levitin, University, 3rd Edition,
	2012, Pearson, ISBN 13: 978-0-13-231681-1.
2.	Computer Algorithms, Horowitz E., Sahani S., Rajasekharan S., 2nd Edition, 2006, Galgotia
	Publications,ISBN:9780716783169
	Reference Books:
1.	Kenneth Berman, Jerome Paul, Algorithms, Cengage Learning.
2.	Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein, introduction to
	Algorithms PHI, 2nd edition and above.
3	R.C.T. Lee, S.S. Tseng, R.C. Chang & Y.T.Tsai: Introduction to the Design and analysis of
	Algorithms A Strategic Approach, TataMcGraw Hill.
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	https://onlinecourses.nptel.ac.in

	Course delivery methods	Assessment methods			
1.	Chalk and Talk	1.	IA tests		
2.	PPT and Videos	2.	Lab Test		
3.	Flipped Classes	3.	Semester End Examination		
4.	Online classes				

Course Outcome (COs)

At the end of the course, the student will be able to (Highlight the **action verb** representing the learning level.)

Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)
An -	Analysis; Ev - Evaluate; Cr - Create	Level	PO(S)	P3O(S)
1.	Apply knowledge of computing and mathematics to algorithm	Ар	1,2	1
	analysis and design	76		
2.	Analyze a problem and identify the computing requirements	An	1,2,3,4	1,2
۷.	appropriate for a solution	All		
	Apply algorithmic principles and computer science theory to the	1	1,2,3,4	1,2
3.	modeling for evaluation of computer-			
3.	based solutions in a way that demonstrates comprehension of	Ар		
	the trade-offs involved in design choices.	7		
	Investigate and use optimal design techniques, development		1,,2,3,4	1,2
4.	principles, skills and tools in the	An An		
	construction of software solutions of varying complexity.	1 3		
	Understand the learnings inculcated throughout the course	Mr.	1,2,3,	1,2,3
5.	and present a course seminar or develop a course project or	An	5,9,10,12	
	assignments.			

Scheme of Continuous Internal Evaluation (CIE):

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test **(COMPULSORY)** will be part of the CIE. **No SEE for Lab**.

THEORY (60	LAB (Total			
IA test 1	IA test 2	Conduction Lab test		Total	
30 marks	30 marks	10 marks	30 marks	100 marks	

IA Test:

- 1. No objective part in IA question paper
- 2. All questions descriptive
- -Certification earned by passing the standard Online MOOCs course (of at least 8 hours defined by BOS) can be considered as a Course activity/Assignment and awarded maximum of 10 marks.

Conduct of Lab:

- 1. Conducting the experiment and journal: 5 marks
- 2. Calculations, results, graph, conclusion and Outcome: 5 marks

Lab test: (Batch wise with 15 students/batch)

- 1. Test will be conducted at the end of the semester
- 2. Time table, Batch details and examiners will be declared by Exam section
- 3. Conducting the experiment and writing report: 5 marks
- 4. Calculations, results, graph and conclusion: 15 marks
- 5. Viva voce: 10 marks

- 1. 40% and above (24 marks and above) in theory component (No change)
- 2. Student should score minimum 40% of 30 marks (i.e. 12 marks) in Lab test & should score 40% of 40 marks (i.e. 16 marks) in Total.
- 3. Lab test is COMPULSORY
- 4. Not eligible in any one of the two components will make the student Not Eligible for SEE

Sch	Scheme of Semester End Examination (SEE):					
1.	1. It will be conducted for 100 marks of 3 hours' duration.					
2.	Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of					
	CIE + SEE should be ≥ 40%.					
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7 questions					
	in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2 questions					
	in part C.					

	CO-PO Mapping (Planned)									CO-PSO Mapping (Planned)					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	✓	✓				5	V		A	1			✓		
2	✓	✓	✓	✓		-33	dia.			Life.			✓	✓	
3	✓	✓	✓	✓					1				✓	✓	
4	✓	✓	✓	✓				1	(✓	✓	
5	✓	✓	✓		✓				✓	✓		√	✓	✓	✓
	I	I	1	ick ma	rk the	CO, PC	and F	SO ma	pping	I	1	1			

SI No	Skill & con	npetence en	hance	d after	Applicable Industry	Job roles students can take up	
	und	ergoing the	course	e	Sectors & domains after undergoing the		
1	Designing,	Analyzing	and	writing	Software Industry	Software engineer	
	algorithms			Software Analyst			
						Operations Systems Specialist	

Database Management Systems

Course Code	22CS43 / 22IS43	Course type	IPCC	Credits L-T-P	3-0-1
Hours/week: L - T- P	3-0-2			Total credits	4
Total Contact Hours	L = 40 Hrs; T = 0 Hrs; P = 20 Hrs			CIE Marks	100
Total contact flours	Total = 60 Hrs			CIE WILLIAM	100
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives					
1.	To discuss the concept of databases, ER Modeling and Schema mapping					
2.	To gain the knowledge Relational model concepts and constraints and explore the various relational operations.					
3.	To introduce a formal database design approach through various normal forms and study the importance of concurrent transactions and control algorithms.					
4.	To understand the application of different query languages and query optimizations.					

Pre-requisites: - Basics of Programming Knowledge.

Unit – I Contact Hours = 8 Hours

Introduction: Introduction to database, Characteristics of Database approach, Advantages of using DBMS approach, Three-schema architecture and data independence, **Entity-Relationship Model:** Using High-Level Conceptual Data Models for Database Design; An Example Database Application; Entity Types, Entity Sets, Attributes and Keys; Relationships, Relationship types, Roles and Structural Constraints; Weak Entity Types. ER-Relational Mapping Rules.

Unit – II Contact Hours = 8 Hours

Relational Model: Relational Model Concepts; Relational Model Constraints and Relational Database Schemas; Update Operations, Dealing with constraint violations; Unary Relational Operations: SELECT and PROJECT; Relational Algebra Operations from Set Theory; Binary Relational Operations: JOIN and DIVISION.

Unit – III Contact Hours = 8 Hours

Database Design: Informal Design Guidelines for Relation Schemas; Functional Dependencies; Normal Forms Based on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal Form.

Transaction Processing Concepts: Introduction to Transaction processing, Transaction and System concepts, Desirable properties of Transactions and issues with concurrent transactions. 2PL and TSO algorithms

Unit – IV	Contact Hours = 8 Hours

SQL: SQL Data Definition and Data Types; Specifying basic constraints in SQL; Schema change statements in SQL; Basic queries in SQL; More complex SQL Queries; Nested and Correlated Queries, IN, ALL, EXIST operators. Insert, Delete and Update statements in SQL. Introduction to Query Optimization techniques; SQL Web Programming using PHP

Unit – V Contact Hours = 8 Hours

PL/SQL: PL/SQL Block Structure, PL/SQL Variables, PL/SQL Function, PL/SQL Procedure, PL/SQL IF Statement, PL/SQL Loop Statement: PL/SQL WHILE Loop Statement, PL/SQL FOR Loop Statement. Introduction to Cursors and Triggers.; Overview of NoSQL, Apache Hive as an HDFS, HBase

Flipped Classroom Details

Unit No.	1	II	III	IV	V
No. for Flipped Classroom	2	2	2	2	2
Sessions		N			

List of Experiments

Unit No. No. of Experiments		Topic(s) related to Experiment
I	2	Entity-Relationship Model, ER-Relational Mapping Rules
II	1	Relational Operations
III	1	Normalization
IV	2	DDL,DML, Web Programming
V	2	PL/SQL Programs, Cursors, Triggers

Unit No	Self-Study Topics
I	Various users of DBMS, Classification od DBMS
Ш	Database and Java, Python connectivity

	Books						
	Text Books:						
1.	Elmasri and Navathe: Fundamentals of Database Systems, Addison-Wesley, 6 th edition and						
	above.						
	Reference Books:						
1.	Raghu Ramakrishnan and Johannes Gehrke: Database Management Systems, McGraw-Hill, 2 nd						
	edition and above.						
	E-resources (NPTEL/SWAYAM. Any Other)- mention links						
1.	Database Management Systems – NPTEL - https://onlinecourses.nptel.ac.in/noc22 cs51/preview						
2.	Database Management Courses- https://www.udemy.com/topic/database-management/						

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Lab Test
3.	Flipped Classes	3.	Semester End Examination
4.	Online classes		
5.	Enquiry Based Learning		

Course Outcome (COs)

At the end of the course, the student will be able to

(Highlight the action verb representing the learning level.)

Lear	ning Levels: Re - Remember; Un - Understand; Ap -	Learning	PO(s)	PSO(s)
App	ly; An - Analysis; Ev - Evaluate; Cr – Create	Level	PO(S)	P30(S)
	Analyze the given database applications using E-R		1,2,3,4	1,2
1.	diagrams and apply the normalization to produce	An		
	schema diagrams and relations.			
2.	Explain the relational operators , SQL concepts and	Re	1,2,3	1,
۷.	transaction processing.	1 NE		
3.	Apply SQL , PL/SQL and NoSQL languages to design	An	1,2,3,4,	1,2
3.	different Database applications. 🧪 🂆 📉 💛 📉	Ар		
	Understand the learnings inculcated throughout the	3.8	1,2,3,	1,2,3
4.	course and present a course seminar or develop a	An	5,9,10,11,12	
	course project or assignments.			

Scheme of Continuous Internal Evaluation (CIE):

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test (COMPULSORY) will be part of the CIE. **No SEE for Lab**.

THEORY (60	0 marks)	LAB	(40 marks)	Total
IA test 1	IA test 2	Conduction	Lab test	Total
30 marks	30 marks	10 marks	30 marks	100 marks

IA Test:

- 1. No objective part in IA question paper
- 2. All questions descriptive

-Certification earned by passing the standard Online MOOCs course (of at least 8 hours defined by BOS) can be considered as a Course activity/Assignment and awarded maximum of 10 marks.

Conduct of Lab:

- 1. Conducting the experiment and journal: 5 marks
- 2. Calculations, results, graph, conclusion and Outcome: 5 marks

Lab test: (Batch wise with 15 students/batch)

- 1. Test will be conducted at the end of the semester
- 2. Time table, Batch details and examiners will be declared by Exam section

- 3. Conducting the experiment and writing report: 5 marks
- 4. Calculations, results, graph and conclusion: 15 marks
- 5. Viva voce: 10 marks

Eligibility for SEE:

- 1. 40% and above (24 marks and above) in theory component (No change)
- 2. Student should score minimum 40% of 30 marks (i.e. 12 marks) in Lab test & should score 40% of 40 marks (i.e. 16 marks) in Total.
- 3. Lab test is COMPULSORY
- 4. Not eligible in any one of the two components will make the student Not Eligible for SEE

Scheme of Semester End Examination (SEE): It will be conducted for 100 marks of 3 hour duration. Minimum marks required in SEE to pass: Score should be ≥35 &, however overall score of CIE+SEE should be ≥40%. Question paper contains three parts A,B and C. Students have to answer From Part A answer any 5 questions each Question Carries 6 Marks. From Part B answer any one full question from each unit and each Question Carries 10 Marks. From Part C answer any one full question and each Question Carries 20 Marks.

	CO-PO Mapping (planned)											SO Mar planned			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	✓	✓	✓	✓	1	/ /	1		1	81	7/8	✓	✓	✓	✓
2	✓	✓	✓					VOI S	TITLED	1	13		✓	✓	✓
3		✓	✓	✓		34	V			1	-	✓	✓	✓	✓
4	✓	✓	✓		✓		ريالا		1	1		✓	✓	✓	✓
	ı	ı	Т	ick ma	rk the	CO, PC	and F	SO ma	pping		ı	ı			

SI No	Skill & competence enhanced after undergoing the course	Applicable Industry Sectors & domains	Job roles students can take up after undergoing the course
1	Analyzing and Designing Databases	Software Industry	Database Developers
2	Administration of Databases	Software Industry	Database Administrators

Discrete Mathematical Structures and Graph Theory

Course Code:	22CS441 / 22IS441	Course type	Theory	Credits L-T-P	3 -0- 0
Hours/week: L-T-P	3-0-0			Total credits	3
Total Contact Hours	L = 40 Hrs; T =0 Hi Total = 40 Hrs	rs; P = 0 Hrs	CIE Marks	100	
Flipped Classes content	10 Hours		SEE Marks	100	

	Course learning objectives									
At the	At the end of the course students should be able to									
1.	Get acquainted with fundamentals and all laws of logic and quantifiers.									
2.	Get familiar with relations and their closures, Posets and Lattices.									
3.	Understand the theory of recurrence relations and generating functions.									
4.	Get acquainted with basic concepts of graphs, trees and their applications.									

Pre-requisites: Relations, Functions, Permutations and combinations, Algebra.

Unit – I Contact Hours = 8 Hours

Fundamentals of Logic: Basic connectives and Truth tables, Logical equivalence- Laws of Logic, Logical Implication-Rules of Inference. Quantifiers- Universal and Existential Quantifiers.

Unit – II Contact Hours = 8 Hours

Relations: Types and Properties of Relations (revision), n-ary Relations and Their Applications. Computer recognition-Zero One Matrices and Directed graphs, Transitive, closure, Warshall's algorithm, Equivalence relation and Partitions, Posets and Hasse Diagrams, Lattices.

Unit – III Contact Hours = 8 Hours

Recurrence relations: Definition, Homogeneous recurrence relations, Non Homogeneous recurrence relations. Solution of homogeneous and non-homogeneous recurrence relations. Generating functions. Solution of recurrence relation by generating function.

Unit – IV Contact Hours = 8 Hours

Graph Theory I: Definitions and Examples, Subgraphs, Matrix Representation of graphs. Complements and Graph Isomorphism, Connectivity, Euler Trails and Circuits, Shortest path: Dijkartas algorithm. Planar Graphs, Hamiltonian Paths and Cycles.

Unit –V Contact Hours = 8 Hours

Graph Theory II: Coloring covering and matching: Chromatic number, chromatic polynomial, uniquely colorable graphs, coloring planar graphs: Five color theorem, Four color theorem. Covering minimal covering, Matching Halls theorem.

Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped	2	2	2	2	2
Classroom Sessions					

	Course delivery methods	Assessment methods				
1.	Chalk and Talk	1.	IA tests			
2.	PPT and Videos	2.	Open Book Tests (OBT)/Matlab			
3.	Flipped Classes	3.	Course Seminar			
4.	Online classes	4.	Semester End Examination			
	T					

	Books
	Text Books:
1.	Kolman, Busby, Ross "Discrete Mathematical Structures", 6 th Edition Prentice Hall of India, 2010 onwards
2.	Ralph Grimaldi, "Discrete and Combinatorial Mathematics 4th Edition 2003 onwards
	Reference Books:
1.	Kenneth Rosen "Discrete Mathematics and Its Applications with Combinatorics and
	Graph Theory (SIE) 7th Ed <mark>ition</mark> onwards
2.	Narsingh Deo ,"Graph theory and its Applications"
	E-resource's (NPTEL/SWAYAM. Any Other)- mention links
1.	https://archive.nptel.ac.in/courses/111/106/111106086/(DMS)
2.	https://www.digimat.in/nptel/courses/video/111106102/L19.html(GT)
3	https://www.javatpoint.com/graph-theory-tree-and-forest (GTTrees)

	Course Outcome (COs)										
	At the end of the course, the student will be able to										
Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)							
An -	Analysis; Ev - Evaluate; Cr – Create	Level	PU(S)	P30(S)							
1.	Understand and Apply the Logic of mathematics in the field of	Un, Ap	1	1							
1.	Computer science.	OII, Ap									
2.	Explain and Analyze Different Relations and their closures. Posets	IIn An	1	1							
۷.	and lattices.	Un, Ap									
3.	Apply theory of solution of recurrence relations to solve them.	Un, Ap	1	1							
4.	Apply the concepts related to graphs their relevant applications	Un,Ap	1	1							

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification etc)	Course project (CP)/ Case study etc	Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

- -Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.
- -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.
- -Lack of minimum score in IA test will make the student Not Eligible for SEE
- -Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Sch	heme of Semester End Examination (SEE):								
1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the									
	calculation of SGPA and CGPA.								
2.	Minimum marks required in SEE to pass: 40 out of 100								
3.	Question paper contains three parts A(30 marks), B(50 marks) and C (20 marks). Student has to								
	answer								
	1. From Part A answer any 5 questions each Question Carries 6 Marks.								
	2. From Part B answer any one full question from each unit and each Question Carries 10 Marks.								
	3. From Part C answer any one full question and each Question Carries 20 Marks.								

	CO-PO Mapping (Planned)											CO-PSO oing(Pla			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	✓												✓		
2	✓												✓		
3	✓												✓		
4	✓												✓		
	Tick mark the CO, PO and PSO mapping														

Web Programming- A Practical Approach (Project based)

Course Code	22CS442/ 22IS442	Course type	Integrated Project based	Credits L-T-P	2-0-1
Hours/week: L - T- P	2 - 0 – 2		Total credits	3	
Total Contact Hours	L = 20 Hrs; T = Hrs; P = 20 Hrs Total = 40 Hrs		CIE Marks	100	
Flipped Classes content	5 Hours		SEE Marks	100	

	Course learning objectives		
1.	To learn the basics of web development and develop basic web applications using HTML5,		
	CSS3 and JavaScript		
2.	To develop advanced web applications using Tailwind and JavaScript frameworks		
3.	To understand and implement the concepts of responsive design and retina ready websites		
4.	To deploy applications on AWS and generate static websites		
5.	To understand the working of web APIs and use them in building web applications		

Required Knowledge of: Basic Programming knowledge and basics of computer science

Unit – I	Contact Hours = 8 Hours
LITAGE - A ANAIG	

HTML and AWS

Writing HTML code using Header Tags, Paragraphs, Ordered and Unordered lists, Forms, Links and Tables, Iframes and Images, Text Formatting, Image Maps, Creating an Amazon Web Services, AWS) account and how to deploy a static website to AWS Simple Storage Service, S3

Working Encoding URL, Introduction to XHTML, Using HTML5 introduced features, Handling of multiple file upload using multiple attribute, HTML5 Local Storage, HTML5 form validate /novalidate, HTML5 canvas, embedding audio and video in a webpage, Drag and drop, HTML5 web workers and server sent events

Introduction to Figma, Working with UI- Design, Components, Mobile App design

Unit – II	Contact Hours = 8 Hours
CSS3	

Styling of HTML elements-text; Links, lists and tables; Different ways to write CSS e.g. external, internal, inline; Creating Navigation Bars; Writing Media Rules; Hide visibility of an element; CSS Image Sprites and Gradients; CSS Pseudo Classes and Pseudo Elements

CSS3 Text Effects using different text fonts; Creating 2D and 3D transformations; Applying animations and transitions to HTML elements; CSS3 resize UI and multiple columns feature

Unit – III	Contact Hours = 8 Hours

Tailwind CSS and JavaScript

What is Tailwind CSS? advantages of tailwind CSS, comparison of tailwind CSS and bootstrap, getting started with tailwind, colors, element sizing, flexbox and grid, padding and margins, styling text, typography, borders and shadows.

Java Script datatypes; Variables and arrays; Creating loops and writing if-else decision-making statements; Defining and calling JavaScript functions on events; Manipulating DOM elements.

Contact Hours = 8 Hours

Twitter Bootstrap

Getting started with Twitter Bootstrap 3; Bootstrap features like fixed drop-down menu; Carousel, text and image grids; Custom Thumbnails; Bootstrap modal; Using Font Awesome Icons

Building a real-world website using Twitter; Bootstrap 3 features like bootstrap fixed dropdown menu; Carousel; Bootstrap modal; Font awesome icons; custom Thumbnails; Text and Image grids; Accordions; Signin/Signup form and Jumbotron

Unit – V	Contact Hours = 8 Hours
Web APIs, Ajax	

Bootstrap ScrollSpy AJAX XML; Http Request object; Making an AJAX call and retrieving the response; Working with Google APIs Adding social plugins on your web page provided by LinkedIn, Facebook, Quora and Twitter, Web APIs, Introduction to CI/CD, Using git-commands and concepts, hosting a static website on GitHub Pages.

Flipped Classroom Details

Unit No.	I	TE OF	III	IV	V
No. for Flipped Classroom Sessions	1			1	1

List of Experiments

Unit No.	No. of Experiments	Topic(s) related to Experiment	
1	2	Figma, HTML5, and AWS	
2	2	CSS transformations, UI and multi column features	
3	2	Tailwind and JavaScript	
4	2	Twitter Bootstrap, Jumbotron	
5	2	Git and AJAX	

	Books
	Text Books:
1.	Robert Sebesta, Programming the World wide web, 6th Edition
2.	Jennifer Robbins, Learning Web Design, 5th Edtion, 2018
3.	Noel Rappin, Modern CSS with Tailwind: flexible styling without the fuss, programmatic
	bookshelf, 2021
	Reference Books:
1.	DarioCalonaci, Designing user interfaces, BB publications, 2021
2.	David Cochran, Twitter Bootstrap Web Development-How to, packt publishing, 2012
	E-resourses (NPTEL/SWAYAM. Any Other)- mention links
1.	Responsive Web Design https://www.freecodecamp.org/learn/2022/responsive-web-design/
2.	Front End Development Libraries https://www.freecodecamp.org/learn/front-end-
	development-libraries

Course delivery methods		Assessment methods		
1.	Chalk and Talk	1. IA tests-Theory & Lab based		
2.	PPT and Videos	2.	Project phase 1 & 2	
3.	Flipped Classes	3. SEE- Project evaluation		
4.	Practice session/Demonstrations in Labs	4. SEE- Solving an Open-ended problem		
5.	Virtual Labs (if present)			

	Course Outcome (COs)							
Lea	Learning Levels:							
	Re - Remember; Un - Understand; Ap - Apply; An - Anal	ysis; Ev - Eva	luate; Cr - (Create				
At th	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)				
1. Explain the basic concepts of frontend web development using HTML5, CSS3 and other libraries		Un	1	1				
2.	Analyse the real world problem and Create a wireframe model of the application	Cr	1, 3, 5, 9 , 10, 12	1,2,3				
3.	Demonstrate the use of concepts learnt and integrate them to build real world applications	Ар	1, 3, 5, 9 , 10, 12	1,2,3				
4.	Make use of hosting services to deploy the application.	Ар	5	2				

Scheme of Continuous Internal Evaluation (CIE):

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test (COMPULSORY) will be part of the CIE.

THEORY	(40 marks)	() I			
IA test (Theory)	IA test (Lab)	Project Phase 1	Project Phase 1 Project Phase 2		Total
25 marks	15 marks	25 marks	25 marks	10 marks	100 marks

Theory IA test should be of one-hour duration.

Lab IA test should be of two/three-hour duration.

Project batch will ideally consist of 2 students (maximum of 3).

Project Phase 1 presentation will be conducted after 6 weeks and Project Phase 2 presentation will be conducted after 13 weeks from the start of the semester.

Submitting Project report is compulsory.

- 1. 40% and above (16 marks and above) in theory component
- 2. 40% and above (24 marks and above) in project component
- 3. Not eligible in any one of the two components will make the student Not Eligible for SEE

Semester End Examination (SEE):

1.	It will be conducted for 100 marks having 3 hours duration.									
	Lab Open ended program/problem/experiment									
	Write-up & execution (1 open ended expt)- (20 marks write-up + 50 marks									
	20 marks algorithm/flowchart + 10 marks execution)									
	Project evaluation									
	a. Initial write up stating the objectives, methodology and the	10 marks	100 marks							
2.	outcome									
	b. Hardware project: Exhibiting and demonstration of working of project.									
	Software project: Demonstration of the programming	30 marks								
	capabilities by writing flowchart, algorithm and codes related									
	to a section of the project.									
	c. Viva-voce	10 marks								
3.	. Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of									
	CIE + SEE should be ≥ 40%.									
4.	SEE will be conducted in project batches by Internal & External examiners together.									

	CO-PO Mapping (planned)							CO-PSO Mapping (planned)							
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	✓				1) 0		-		88	7		✓		
2	✓		✓		1	6	~		1	1	1	✓	✓	✓	✓
3	✓		✓		1		3		1	1	11	✓	✓	✓	✓
4					1	1	7	M d	neo	1	1			✓	
			1	ick ma	rk the	CO, PC	and F	SO ma	pping	10					

SI No	Skill & competence enhanced after undergoing the course	Applicable Industry Sectors & domains	Job roles students can take up after undergoing the course	
1	Website Development	IT Sector	Web Developer	
2	Ajax programmer	ii sector	Developer	

Digital Electronics (Project based)

Course Code	22CS443/ 22IS443	Course type	Integrated Project based	Credits L-T-P	2-0-1
Hours/week: L - T- P	2-0-2			Total credits	3
Total Contact Hours	L = 20 Hrs; T = Hrs; P = 20 Hrs Total = 40 Hrs			CIE Marks	100
Flipped Classes content	5 Hours			SEE Marks	100

	Course learning objectives					
1.	Understand the basics of Digital Electronics.					
2.	Comprehend the knowledge of digital circuits to construct combinational and sequential sub-					
	systems useful for digital system designs.					
3.	Implement digital circuits for a particular application using simulation and Virtual Lab platform.					
4.	Analyse digital circuits and systems to model using Verilog HDL.					

Required Knowledge of : Basic Electronics

Unit – I Contact Hours = 8 Hours

Introduction: Revision of Logic gates and Boolean algebra, Simplification of Boolean functions using Basic Logic gates, Universal Gates, SOP, POS form, K-Map Simplification (up to 4 variables), Don't-care Condition.

Unit – II Contact Hours = 8 Hours

Data Processing Circuits: Multiplexers, De-multiplexers, Decoder, Encoders and implementation of Boolean functions using multiplexer and Decoders, Magnitude Comparators (1 bit and 2 bit).

Unit – III Contact Hours = 8 Hours

Clocks and Flip Flops: Clock waveforms, TTL clock, RS Flip Flops, Gated flip-flops, Edge triggered RS Flip-Flops, Edge triggered D Flip-Flops, and Edge triggered JK Flip-Flops, JK master slave Flip Flops, various representations of Flip Flops

Unit – IV Contact Hours = 8 Hours

Analysis of Sequential Circuits: Conversion of flip flops: A synthesis example, Types of Shift Register, SISO, SIPO, PISO and PIPO, Applications of Shift Registers as Ring Counter, Johnson Counter, Serial Adder.

Counters: Asynchronous counters (4 bit), Synchronous Counters (4 bit), changing the counter Modulus.

Unit – V	Contact Hours = 8 Hours					
Content of the Unit						
Introduction to HDL: Types of Model, Syntax for Data Flow model.						

Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped	1	1	1	1	1
Classroom Sessions					

List of Experiments

		List of Experiments
Unit No.	No. of	Topic(s) related to Experiment
Offic 140.	Experiments	Topic(s) related to Experiment
	1	Verification and interpretation of truth table for AND, OR, NOT, NAND,
	1	NOR, Ex-OR, Ex-NOR gates.
,	2	Construction of half and full adder using XOR and NAND gates and
'	2	verification of its operation.
	3	Realization of logic functions with the help of Universal Gates (NAND, NOR).
	4	Verify Binary to Gray and Gray to Binary conversion using NAND gates only.
	5	To Study and Verify Half and Full Subtractor.
	6	Implementation and verification of decoder or de-multiplexer and encoder
II		using logic gates.
	7	Implementation of 4x1 multiplexer and 1x4 demultiplexer using logic gates.
	8	Verify the truth table of one bit and two bit comparator using logic gates.
	9	Construction of a NOR gate latch and verification of its operation.
III	10	Verify the truth table of RS, JK, T and D flip-flops using NAND and NOR
	10	gates.
	11	Design and Verify the 4-Bit Serial In - Parallel Out Shift Registers.
IV	12	Design and verify the 4- Bit Synchronous or Asynchronous Counter using JK
	12	Flip Flop.
	13	Develop HDL (Verilog) code to implement simple SOP equation.
V	14	Develop HDL (Verilog) code to implement Multiplexer.
	15	Develop HDL (Verilog) code to implement Adder.

Books

	Text Books:		a like					
1.	Donald P Leach, Albert Paul Malvino and C	Goutan	nSaha: Digital Principles and Applications, 7th					
	Edition and onwards, Tata McGraw Hill, 20	011.						
	Reference Books:							
1.	Donald Givone: Digital Principles and Design, Palgrave Macmillan, 2003 and onwards.							
2.	R D Sudhaker Samuel: Illustrative Approach to Logic Design, Sanguine-Pearson, 2012 and							
	onwards.							
3.	Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss: Digital Systems Principles and Applications,							
	10th Edition, Pearson Education, 2007 and	d onwa	ards.					
	E-resourses (NPTEL/SWAYAM Any Othe	r)- me	ntion links					
1.	https://nptel.ac.in/courses/117106086/							
	Course delivery methods		Assessment methods					
1.	Chalk and Talk	1.	IA tests- Theory & Lab based					
2.	PPT and Videos	2.	Project phase 1 & 2					
3.	Flipped Classes	3.	SEE- Project evaluation					
4.	Practice session/Demonstrations in Labs	4.	SEE- Solving an Open-ended problem					
5.	Virtual Labs (if present)							

	Course Outcome (COs)								
	Learning Levels:								
R	e - Remember; Un - Understand; Ap - Apply; An - Analys	is; Ev - Evalı	uate; Cr - Cr	eate					
At th	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)					
1.	Apply the knowledge of Digital Electronics to design digital systems.	Ар	1,2,3,5	1,2					
2.	Design Combinational and Sequential Circuits for digital systems.	Ар	1,2,3,5	1,2					
3.	Utilize the simulation tool/ Virtual Lab platform to implement the digital circuits.	Ар	1,2,3,5	1,2					
4.	Analyse the digital circuits developed using HDL Verilog.	An	1,2,3,5	1,2					
5.	Apply the learnings inculcated throughout the course and develop a course project.	Ар	1,2,3,5, 9,10,11,12	1,2,3					

Scheme of Continuous Internal Evaluation (CIE):

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test (COMPULSORY) will be part of the CIE.

THEORY	(40 marks)				
IA test (Theory)	IA test (Lab)	Project Phase 1	Project Phase 2	Project report	Total
25 marks	15 marks	25 marks 🥇	25 marks	20 marks	100 marks

Theory IA test should be of one-hour duration.

Lab IA test should be of two/three-hour duration.

Project batch will ideally consist of 2 students (maximum of 3).

Project Phase 1 presentation will be conducted after 6 weeks and Project Phase 2 presentation will be conducted after 13 weeks from the start of the semester.

Submitting Project report is compulsory.

- 1. 40% and above (16 marks and above) in theory component
- 2. 40% and above (24 marks and above) in project component
- 3. Not eligible in any one of the two components will make the student Not Eligible for SEE

Semester End Examination (SEE):

1.	It w	It will be conducted for 100 marks having 3 hours duration.							
	Lab	Lab Open ended program/problem/experiment							
	Wri	te-up & execution (1 open ended expt)- (20 marks write-up +	50 marks						
	20 r	marks algorithm/flowchart + 10 marks execution)							
	Pro	ject evaluation							
	a.	outcome							
2.				100 marks					
	b.	Hardware project: Exhibiting and demonstration of working of							
		project. Software project: Demonstration of the programming	30 marks						
		capabilities by writing flowchart, algorithm and codes related							
		to a section of the project.							
	c.	Viva-voce	10 marks						
3.	Mir	nimum marks required in SEE to pass: Score should be \geq 35%, ho	wever overa	all score of					
	CIE + SEE should be <u>></u> 40%.								
4.	SEE	will be conducted in project batches by Internal & External exar	niners toget	her.					

	CO-PO Mapping (planned)								CO-PSO Mapping (planned)						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	✓	✓	✓		✓)0		1		38	7		✓	✓	
2	✓	✓	✓		1	4	0		7	01	1,		✓	✓	
3	✓	✓	✓		1	()	3		* //		18		✓	✓	
4	✓	✓	✓		1	1	7	M d	1700	1	Jan San		✓	✓	
5	✓	✓	✓		✓	2	V		V	1	1	✓	✓	✓	✓
	Tick mark the CO, PO and PSO mapping														

SI No	Skill & competence enhanced	Applicable Industry	Job roles students can take up		
	after undergoing the course	Sectors & domains	after undergoing the course		
1	Digital Circuit Design, Logic	Electronics Industry	Digital Circuit Designer		
	Design and Analysis				
2	Digital System Simulation	Semiconductor Industry	FPGA Engineer		
3	Microcontrollers and Embedded	Embedded Systems	Embedded Systems Engineer		
	Systems				

Python Programming- A Practical Approach (Project based)

Course Code	22CS444 / 22IS444	Course type	Integrated Project based	Credits L-T-P	2-0-1
Hours/week: L - T- P	-T-P 2-0-2			Total credits	3
Total Contact Hours	L = 20 Hrs; T = Hrs; P = 20 Hrs Total = 40 Hrs			CIE Marks	100
Flipped Classes content	5 Hours			SEE Marks	100

	Course learning objectives					
1.	Gain knowledge about basic Python language syntax and semantics to write Python programs					
	using the procedure oriented programming paradigm.					
2.	2. Appreciate the usage of high level data constructs provided by Python and work with file and					
	exception handling mechanisms.					
3.	Write Python applications using the object-oriented programming paradigm.					
4.	4. Become acquainted with the development of database and GUI applications and usage of					
	various packages.					

Required Knowledge of: Procedure Oriented and Object Oriented Programming Languages

Unit – I	Contact Hours = 8 Hours

Python Fundamentals:

An Introduction to Python programming: Introduction to Python, IDLE to develop programs

How to write your first programs: Basic coding skills, data types and variables, numeric data, string data, five of the Python functions

Control statements: Boolean expressions, selection structure, iteration structure

Unit – II Contact Hours = 8 Hours

Define and use Functions and Modules: define and use functions, more skills for defining and using functions and modules, create and use modules, standard modules

Higher Data Constructs:

Lists and tuples: Basic skills for working with lists, list of lists, more skills for working with lists, tuples **Dictionaries:** get started with dictionaries, more skills for working with dictionaries

Unit – III Contact Hours = 8 Hours

Files, Exception Handling, Database Programming

File I/O: An introduction to file I/O, text files, CSV files, binary files

Exception Handling: handle a single exception, handle multiple exceptions

Work with a database: An introduction to relational databases, SQL statements for data manipulation, SQLite Manager to work with a database, use Python to work with a database

Unit – IV Contact Hours = 8 Hours

Object Oriented Programming:

Define and use your own classes: An introduction to classes and objects, define a class, object

composition, encapsulation

Inheritance: Inheritance, override object methods

Unit – V	Contact Hours = 8 Hours
----------	-------------------------

Packages:

How to build a GUI Program: Create a GUI that handles an event

Numpy Basics: Arrays and Vectorized Computation: Creating ndarrays, Data Types for ndarrays, Operations between Arrays and Scalars, Basic Indexing and Slicing, Indexing with slices, Boolean Indexing, Transposing Arrays and Swapping Axes

Getting started with Pandas: Introduction to Pandas Data Structures, Summarizing and Computing Descriptive Statistics, Handling missing data

Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped	1	1	1	1	1
Classroom Sessions					

List of Experiments

Unit No.	No. of Experiments	Topic(s) related to Experiment
	1	Functions and lists
II	2	Functions and dictionaries The Property of the
111	3	File I/O and exception handling mechanisms
III	4	Implement a Python program to work with a database
15.7	5	Object composition and encapsulation
IV	6	Inheritance and polymorphism
.,,	7	GUI application
V	8	NumPy and Pandas packages

	Books					
	Text Books:					
1.	Michael Urban and Joel Murach, Python Programming, Shroff/Murach, 2016					
2.	2. Wes McKinney, Python for Data Analysis, OReilly, 1st Edition, 2012					
	Reference Books:					
1.	SciPy and NumPy, O`Reilly, 1st Edition, 2012					
2.	Mark Lutz, Programming Python, O`Reilly, 4th Edition, 2010					
	E-resourses (NPTEL/SWAYAM Any Other)- mention links					
1.	The joy of computing using python - https://onlinecourses.nptel.ac.in/noc21_cs32/preview					
2.	Programming in python- https://onlinecourses.swayam2.ac.in/cec22_cs20/preview					

	Course delivery methods	Assessment methods			
1.	Chalk and Talk	1.	IA tests- Theory & Lab based		
2.	PPT and Videos	2.	Project phase 1 & 2		
3.	Flipped Classes	3.	SEE- Project evaluation		
4.	Practice session/Demonstrations in Labs	4.	SEE- Solving an Open-ended problem		
5.	Virtual Labs (if present)				

	Course Outcome (COs)								
Lea	Learning Levels:								
F	Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create								
At th	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)					
	Illustrate basic principles of Python programming and								
1.	Develop programs using the procedure-oriented	Ар	1,3,5	1,2					
	programming paradigm.								
	Develop Python programs for file operations, exception			1,2					
2.	handling, GUI, database operations and Make use of	Ар	1,3,5						
	different packages for computing and manipulation.								
3.	Explain the concepts of object-oriented programming	۸۵	1,3,5	1,2					
٥.	paradigm and Apply the same to develop programs.	Ар							
1	Apply the learnings inculcated throughout the course by	Λn	1,2,3,5,	1,2,3					
4.	developing a course project.	Ар	9,10,11,12						

Scheme of Continuous Internal Evaluation (CIE):

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test **(COMPULSORY)** will be part of the CIE.

THEORY	(40 marks)				
IA test (Theory)	IA test (Lab)	Project Phase 1	Project Phase 2	Project report	Total
25 marks	15 marks	25 marks 🥇	25 marks	20 marks	100 marks

Theory IA test should be of one-hour duration.

Lab IA test should be of two/three-hour duration.

Project batch will ideally consist of 2 students (maximum of 3).

Project Phase 1 presentation will be conducted after 6 weeks and Project Phase 2 presentation will be conducted after 13 weeks from the start of the semester.

Submitting Project report is compulsory.

- 1. 40% and above (16 marks and above) in theory component
- 2. 40% and above (24 marks and above) in project component
- 3. Not eligible in any one of the two components will make the student **Not Eligible** for SEE

Semester End Examination (SEE):

1.	It will be conducted for 100 marks having 3 hours duration.							
	Lab Open ended program/problem/experiment							
	Write-up & execution (1 open ended expt)- (20 marks write-up + 50 marks							
	20 r	marks algorithm/flowchart + 10 marks execution)						
	Pro	ject evaluation						
	a.	Initial write up stating the objectives, methodology and the	10 marks					
2.		outcome		100 marks				
	b.	Hardware project: Exhibiting and demonstration of working of						
		project. Software project: Demonstration of the programming	30 marks					
		capabilities by writing flowchart, algorithm and codes related						
		to a section of the project.						
	c. Viva-voce 10 marks							
3.	Minimum marks required in SEE to pass: Score should be ≥ 35%, however overall score of							
	CIE + SEE should be > 40%.							
4.	SEE	will be conducted in project batches by Internal & External exar	niners toget	her.				

	CO-PO Mapping (planned)								CO-PSO Mapping (planned)						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	✓		✓		✓		No.		9	JK T			✓	✓	
2	✓		✓		✓) 0		~		100	/		✓	✓	
3	✓		✓		1	1	0,0		8	30	-//		✓	✓	
4	✓	✓	✓		1	(4		1	1	1	✓	✓	✓	✓
	Tick mark the CO, PO and PSO mapping														

SI No	Skill & competence enhanced after undergoing the course	Applicable Industry Sectors & domains	Job roles students can take up after undergoing the course
1	Procedure Oriented Programming using Python		Python Developer
2	Object Oriented Programming using Python	Healthcare, Finance, Retail, Agriculture,	Software Developer Data and Research Analyst
3	Use of various packages	Manufacturing, Networks, Security, Big Data, etc,	Senior Backend / Software Developer Python Big Data Developer Python Framework Developer - Al Developer, etc.

Design Thinking

Course Code	22AECCS451	Course type	AEC	Credits L-T-P	0 - 0 - 1
Hours/week: L - T- P	0 - 0 - 2			Total credits	1
Total Contact Hours	L = 0 Hrs; T = 0 Hrs; P = 20 Hrs Total = 20 Hrs			CIE Marks	50
Flipped Classes content				SEE Marks	50

	Course learning objectives				
1.	Describe and explain what Design Thinking is and how to incorporate it in problem solving.				
2.	Manage the requirements gathering process to determine customer needs.				
3.	Ideate and adopt MVP's and prototypes to quickly get feedback and iterate on designs.				

Required Knowledge of : Digital Electronics, Computer Organization

Lab Experiment – I	Contact Hours = 4 Hours
Break the Ice and Introduction to Design Thinking.	0 /8-7
Lab Experiment – 2	Contact Hours = 4 Hours
Empathize (search for rich stories)	NE /
Lab Experiment – 3	Contact Hours = 4 Hours
Define (user need and insights – their POV)	
Lab Experiment – 4	Contact Hours = 4 Hours
Ideate (ideas, ideas, ideas)	Mike
Lab Experiment – 5	Contact Hours = 4 Hours
Prototype (build to learn); Test the prototype.	1

	Books				
	Text Books:				
1.	Michael Lewrick, Patrick Link, Larry Leifer 2018, The Design Thinking Playbook: Mindful Digital				
	Transformation of Teams, Products, Services, Businesses and Ecosystems, First Ed., John Wiley				
	& Sons [ISBN: 9781119467472]				
2.	Michael Lewrick, Patrick Link, Larry Leifer 2020, The Design Thinking Toolbox: A Guide to				
	Mastering the Most Popular and Valuable Innovation Methods, First Ed., John Wiley & Sons				
	New York, United States [ISBN: 9781119629191]				
	E-resources (NPTEL/SWAYAM Any Other)- mention links				
1.	http://www.dschool.stanford.edu/resource s/				

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	PPT & demos
2.	PPT and Videos	2.	Semester End Examination
3.	Hands on DIY group activities		

Course Outcome (COs)

Learning Levels:

Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create

At th	At the end of the course, the student will be able to		PO(s)	PSO(s)
1.	Explain the various stages involved in the process of design thinking.	Un	1	1
2.	Identify the problem statement and formulate objectives	Ар	2	1
3.	Experiment and brainstorm to generate ideas/ alternatives to address the problem identified.	Ар	2,3	1
4.	Assess the alternatives to the problem at hand in order to arrive at the optimal alternative for various test cases.	Ev	3,4,5	1,2
5.	Develop a course project by applying the learnings inculcated throughout the course.	Cr	2, 3, 5, 9, 10, 11, 12	1, 2, 3

Scheme of Continuous Internal Evaluation (CIE):

Conduction of experiments & viva-voce	Journal	Lab project/ Open ended experiment	Lab Test	Total
20 marks	5 marks	10 marks	15	50 marks

Conduct of Lab:

- 1. Conduction of the experiment: 15 marks + Viva voce: 5 marks = 20 marks
- 2. Calculations, results, graph, conclusion and Outcome recorded in Journal: 5 marks
- 3. Lab project/ Open ended experiment: 10 marks
- 4. Lab Test: 15 marks

- 1. 40% and above (20 marks and above)
- 2. Lab test is COMPULSORY

Scheme of Semester End Examination (SEE):

1.	It will be conducted for 50 marks of 2/3 hours duration.					
2.	Minimum marks required in SEE to pass: Score should be ≥35%, however overall score of CIE+SEE					
	should be ≥40%.					
3.	One or Two experiments to be conducted.					
4.	Minimum marks required in SEE to pass: 20 out of 50					
	Initial write up	10 marks				
	Conduct of experiments, results and conclusion	20 marks	EO marks			
	One mark question 10 marks					
	Viva- voce	10 marks				
5.	Viva-voce shall be conducted for individual student and not in a group.					

	CO-PO Mapping (planned)										CO-PSO Mapping (planned)				
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	✓					78	/ -			0			✓		
2		✓					1130	7		12[✓		
3		✓	✓		1	70	/	~		BE	7		✓		
4			✓	✓	1	1	00	广	10 A	80	-//		✓	✓	
5		✓	✓		1	()	4		1	1	/ -	✓	✓	✓	✓
	I	I	T	ick ma	rk the	CO, PO	and F	SO ma	pping	3/	N. S.	I			

SI No	Skill & competence enhanced	Applicable Industry	Job roles students can take up		
	after undergoing the course	Sectors & domains	after undergoing the course		
1	Problem solving, critical	Health Care and	Strategist, Brand Experience		
	thinking, creativity, leadership,	Medicine, Public sector,	Design.		
	collaboration and	Space exploration,	Lead, Innovation.		
	communication	Education, The world of	Design Researcher.		
		retail Food and beverage	User Experience (UX) Designer.		
		industry, Entertainment,	Head of Product Design.		
		The banking industry	Service Designer.		

Introduction to Embedded Systems and IoT- A Hands-on Approach

Course Code	22AECCS452	Course type	AEC	Credits L-T-P	0 - 0 - 1
Hours/week: L - T- P	0 - 0 - 2		Total credits	1	
Total Contact Hours	L = 0 Hrs; T = 0 Hrs Total = 20 Hrs	s; P = 20 Hrs	CIE Marks	50	
Flipped Classes content				SEE Marks	50

	Course learning objectives								
1.	Understand the architecture of Microcontroller.								
2.	Programming Microcontroller for simple applications.								
3.	Programming 8051 Microcontroller timer/counter and serial port.								
4.	Interfacing sensors and peripherals with the Microcontroller.								

Required Knowledge of : Digital Electronics, Computer Organization

Lab Experiment – I	Contact Hours = 2 Hours
The 8051 Microcontrollers: Microcontrollers and emb	edded processors. 8051 Programming in 'C':
Data types and time delay in 8051 'C', I/O programming	in 8051 'C'.
Lab Experiment – 2	Contact Hours = 2 Hours
8051 Programming in 'C': Logic operations in 8051 'C',	Data conversion programs in 8051 'C'.
Lab Experiment – 3	Contact Hours = 2 Hours
8051 Programming in 'C': Accessing code ROM space in	n 8051 'C', Data serialization using 8051 'C'.
Lab Experiment – 4	Contact Hours = 2 Hours
8051 Timer Programming in 'C': Programming 8051 tim	ers in mode 1.
Lab Experiment – 5	Contact Hours = 2 Hours
8051 Timer Programming in 'C': Programming 8051 tim	ers in mode 2.
Lab Experiment – 6	Contact Hours = 2 Hours
8051 Counter Programming in 'C': Programming 8051 c	ounters in mode 1.
Lab Experiment – 7	Contact Hours = 2 Hours
8051 Counter Programming in 'C': Programming 8051 c	ounters in mode 2.
Lab Experiment – 8	Contact Hours = 2 Hours
8051 Serial Port Programming in 'C': Basics of serial cor	nmunication, serial port programming in 'C'.
Lab Experiment – 9	Contact Hours = 2 Hours

8051 Peripheral Interfacing: Interfacing ADC, DAC, sensors, LCD with 8051 Microcontroller.

Lab Experiment – 10

Contact Hours = 2 Hours

Programming Arduino UNO: LED blinking, push button and led interfacing, sensors interfacing.

	Books								
	Text Books:								
1.	Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. McKinlay: The 8051 Microcontroller and								
	Embedded Systems Using Assembly and C, Pearson Prentice Hall, 1st edition and above.								
2.	James Fiore, Embedded Controllers Using C and Arduino, Mohawk Valley Community College;								
	eBook (Creative Commons Licensed)								
3.	Kenneth Ayala, The 8051Microcontroller, Cengage Learning, 2nd edition and above.								
4.	Julien Bayle, C Programming for Arduino, Packt Publishing (May 17, 2013).								
	E-resources (NPTEL/SWAYAM. Any Other)- mention links								
1.	https://www.udemy.com/course/embedded-c-for-8051-microcontroller/								
2.	https://www.udemy.com/course/arduino-programming-and-interfacing/								

	Course delivery methods	Assessment methods				
1.	Practice session/Demonstrations in Labs	1.	Conduction of Experiments			
2.	Virtual Labs (if present)	2.	Journal writing			
3.	Chalk and Talk	3.	Lab project/ Open ended experiment			
4.		4.	Lab Test			
5.	3 ()	6.	Semester End Examination			

Course Outcome (COs) **Learning Levels:** Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create Learning PSO(s) At the end of the course, the student will be able to PO(s) Level **Develo**p programs for microcontrollers for simple I/O applications. 2,3,5 1,2 Aр **Experiment with** microcontroller's timer/ counter and serial port. 2,3,5 1,2 Aр Make use of interfacing for sensors and peripherals with the 2,3,5 1,2 Aр 3. Microcontroller. 2, 3, 5, 1, 2, 3 **Develop** a course project by applying the learnings inculcated 4. 9, 10, Cr

11, 12

throughout the course.

Scheme of Continuous Internal Evaluation (CIE):

Conduction of experiments & viva-voce	Journal	Lab project/ Open ended experiment	Lab Test	Total
20 marks	5 marks	10 marks	15	50 marks

Conduct of Lab:

- 1. Conduction of the experiment: 15 marks + Viva voce: 5 marks = 20 marks
- 2. Calculations, results, graph, conclusion and Outcome recorded in Journal: 5 marks
- 3. Lab project/ Open ended experiment: 10 marks
- 4. Lab Test: 15 marks

- 1. 40% and above (20 marks and above)
- 2. Lab test is COMPULSORY

Sch	Scheme of Semester End Examination (SEE):							
1.	It will be conducted for 50 marks of 2/3 hours duration.							
2.	Minimum marks required in SEE to pass: Score should be ≥35%, however overall score of CIE+SEE should be ≥40%.							
3.	One or Two experiments to be conducted.							
4.	Minimum marks required in SEE to pass: 20 out of 50							
	Initial write up	10 marks						
	Conduct of experiments, results and conclusion	20 marks	50					
	One mark question	10 marks	50 marks					
	Viva- voce	10 marks						
5.	Viva-voce shall be conducted for individual student an	d not in a group.						

	CO-PO Mapping (planned)									CO-PSO Mapping (planned)					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1		✓	✓		✓								✓	✓	
2		✓	✓		✓								✓	✓	
3		✓	✓		✓								✓	✓	
4		✓	✓		✓				✓	✓	✓	✓	✓	✓	✓
	Tick mark the CO, PO and PSO mapping														

SI No	Skill & competence enhanced	Applicable Industry	Job roles students can take up
	after undergoing the course	Sectors & domains	after undergoing the course
1	Embedded 'C' Programming.	Embedded Systems and	Embedded Engineers
		IoT Application	
2	Programming Microcontroller	Embedded Systems and	Embedded-IoT-Firmware Design
	8051 for simple I/O operations.	IoT Application	Engineer
3	Programming Arduino UNO for	Embedded Systems and	Embedded-IoT-Firmware Design
	simple I/O, sensor interfacing	IoT Application	Engineer
	and actuator interfacing.		

Software Tools and Technologies

Course Code	22AECCS453	Course type	AEC	Credits L-T-P	0-0-1
Hours/week: L - T- P	0-0-2			Total credits	1
Total Contact Hours	L = 0 Hrs; T = 0 Hrs Total = 20 Hrs	s; P = 20 Hrs	CIE Marks	50	
Flipped Classes content				SEE Marks	50

	Course learning objectives					
1.	To make familiar with the modern tool usage					
2.	To improve the verbal and written communication skills					
3.	Explain the importance of problem solving and usage of various program design tools					
4.	To get familiar with creation of professional accounts and usage of google drives					

Required Knowledge of : MS Office, programming knowledge

Lab Ex	ab Experiment – I Contact Hours = 6 Hours					
MS W	MS Word - Quick styles, Template usage, Graphics use, Auto correction, Auto formatting, Translate					
docur	ments, Compare documents, Document security, S	et waterm <mark>ar</mark> k, Report writing				
MS Po	owerPoint - Presentation skills					
Lab Ex	xperiment – 2	Contact Hours = 6 Hours				
MS Ex	ccel - Filling, Logical functions, Functions and form	ulae, Sort and filters, Charts, Shortcuts				
MS A	ccess - Orientation to access, W <mark>orki</mark> ng with table c	lata, Querying <mark>a da</mark> tabase				
Lab Ex	xperiment – 3	Contact Hours = 8 Hours				
Buildi	ing logic to improve programming skills - Decisi	on making and branching constructs, Looping				
stater	ments					
Introd	duction to LinkedIn, GitHub, Kaggle, Google forr	m, Google classroom, Google sheet, usage of				
googl	e drive					
	Books					
	Text Books:					
1.	The Art of Computer Programming by Donald E. Knuth.					
2.	How to Solve it by Computer by R. G. Dromey					

	Course delivery methods	Assessment methods			
1.	Chalk and Talk	1.	IA tests		
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project		
3.	Flipped Classes	3.	Lab Test		
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination		
5.	Virtual Labs (if present)				

Learning Levels:

Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create

At tl	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)
1.	Get acquainted with the modern tool usage	Un	1, 5	1
2.	Improve the verbal and written communication skills	Un	1, 12	2
3.	Familiar with the importance of problem solving and usage of various program design tools	Ev	2, 3	1
4.	Develop a course project by applying the learnings inculcated throughout the course.	Cr	2, 3, 5, 9, 10, 11, 12	1, 2, 3

Scheme of Continuous Internal Evaluation (CIE):

Conduction of experiments & viva-voce	Journal	Lab project/ Open ended experiment	Lab Test	Total
20 marks	5 marks	10 marks	15	50 marks

Conduct of Lab:

- 1. Conduction of the experiment: 15 marks + Viva voce: 5 marks = 20 marks
- 2. Calculations, results, graph, conclusion and Outcome recorded in Journal: 5 marks
- 3. Lab project/ Open ended experiment: 10 marks
- 4. Lab Test: 15 marks

Eligibility for SEE:

- 1. 40% and above (20 marks and above)
- 2. Lab test is COMPULSORY

Sch	Scheme of Semester End Examination (SEE):				
1.	It will be conducted for 50 marks of 2/3 hours duration.				
2.	Minimum marks required in SEE to pass: Score sho	uld be ≥35% , however o	verall score of CIE+SEE		
	should be ≥40%.				
3.	One or Two experiments to be conducted.				
4.	Minimum marks required in SEE to pass: 20 out of 5	0			
	Initial write up	10 marks			
	Conduct of experiments, results and conclusion 20 marks				
	One mark question 10 marks				
	Viva- voce 10 marks				
5.	Viva-voce shall be conducted for individual student and not in a group.				

	CO-PO Mapping (planned)						CO-PSO Mapping (planned)								
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	✓				✓								✓		
2	✓									✓		✓		✓	✓
3		✓	✓										✓		
4		✓	✓		✓				✓	✓	✓	✓	✓	✓	✓
	Tick mark the CO, PO and PSO mapping														

SI No	Skill & competence enhanced after undergoing the course	Applicable Industry Sectors & domains	Job roles students can take up after undergoing the course
1	Help in proper Arrangement,	Any Domain	Skill Enhancement
	formatting and analyses Data	TITUTE OF TECH	
	into various tools	8 P 6 C	

Data Visualization Tools and Techniques

Course Code	22AECCS454	Course type	AEC	Credits L-T-P	0 - 0 - 1
Hours/week: L - T- P	0-0-2			Total credits	1
Total Contact Hours	L = 0 Hrs; T = 0 Hrs Total = 20 Hrs	s; P = 20 Hrs	CIE Marks	50	
Flipped Classes content				SEE Marks	50

	Course learning objectives				
1.	Understand the fundamental concepts of data visualization				
2.	Understand different types of data visualization tools				
3.	Apply the knowledge of tableau to solve real time problems				
4.	Understand the concepts of Power Bi				

Required Knowledge of: Basics of Programming language

Lab Experiment – I

Contact Hours = 4 Hours

Introduction to Data Visualization: What makes Data Visualization Effective? History of Data Visualization, Importance of Data Visualization Why Use Data Visualization? Tables, Pro and Cons of Data Visualization, Acquiring and Visualizing Data, Applications of Data Visualization, Keys factors of Data Visualization.

Lab Experiment – 2

Contact Hours = 4 Hours

EXCEL

Introduction, Interface, Tabs and Ribbons, Document Windows, Navigation Tips, Office Button and Save. Entering, Editing and Formatting Data: Entering Data, Fonts, Fills, and Alignment, Cut, Copy, and Paste, Paste Special, Undo and Redo, Moving, Finding, and Replacing a Value. Finding out mean, median and mode in Excel. Bar charts, pie charts, combination charts, Band charts Gantt chart, Waterfall chart

Lab Experiment – 3

Contact Hours = 4 Hours

POWER BI

Introduction, Installation Steps, Architecture, Supported Data Sources, Comparison with Other BI Tools, Data Modelling, Dashboard Options, Visualization Options, Excel Integration

Lab Experiment – 4

Contact Hours = 4 Hours

Tableau: Introduction to tableau, Getting started with tableau, Exploring basic Tableau, deep drive into tableau ,visualization.

Lab Experiment – 5

Contact Hours = 4 Hours

WEKA and R:

Introduction to WEKA, Installation, loading data, Exploring file formats, visualization. Introduction to R programming tool, Installation, programming with R, Visualizing charts and graphs using R.

	Books						
	Text Books:						
1.	Tillman Davias, The Book of R first course in programming and statistics, William Pollock, 2016.						
2.	Joshua Milligan, Learning Tableau 2019, Packt Publishing, 3rd Edition 2019						
3.	Alberto Ferari, Introducing Microsoft Power BI, Microsoft Press, 2016						
4.	Curtis D. Frye , Microsoft Step by Step Excel 2010, Microsoft Press,						

	Course delivery methods	Assessment methods				
1.	Chalk and Talk	1.	IA tests			
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project			
3.	Flipped Classes	3.	Lab Test			
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination			
5.	Virtual Labs (if present)					

Learning Levels:

Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create

At th	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)
1.	Illustrate the basics of data visualization tools and techniques	Un	1, 5	1, 2
2.	Experiment with data visualization tools for various data sets in order to perform exploratory data analysis	An	2, 3, 4, 5	1,2
3.	Analyze the results to draw inferences.	An	2, 3, 4, 5	1,2
4.	Develop a course project by applying the learnings inculcated throughout the course.	Cr	2, 3, 4, 5, 9, 10, 11,	1, 2, 3

Scheme of Continuous Internal Evaluation (CIE):

Conduction of experiments & viva-voce	Journal	Lab project/ Open ended experiment	Lab Test	Total
20 marks	5 marks	10 marks	15	50 marks

Conduct of Lab:

- 1. Conduction of the experiment: 15 marks + Viva voce: 5 marks = 20 marks
- 2. Calculations, results, graph, conclusion and Outcome recorded in Journal: 5 marks
- 3. Lab project/ Open ended experiment: 10 marks
- 4. Lab Test: 15 marks

Eligibility for SEE:

- 1. 40% and above (20 marks and above)
- 2. Lab test is COMPULSORY

Sch	Scheme of Semester End Examination (SEE):						
1.	It will be conducted for 50 marks of 2/3 hours duration.						
2.	Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of CIE+SEE should be \geq 40%.						
3.	One or Two experiments to be conducted.						
4.	Minimum marks required in SEE to pass: 20 out of 50						
	Initial write up	10 marks					
	Conduct of experiments, results and conclusion 20 marks						
	One mark question 10 marks						
	Viva- voce 10 marks						
5.	Viva-voce shall be conducted for individual student and not in a group.						

	CO-PO Mapping (planned)									SO Mar planned	-				
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	✓				1	JA	/			10			✓		
2		✓	✓	✓	✓	90	No.		9	1/2 [✓	✓	
3		✓	✓	✓	✓) 0		~		/ /	/		✓	✓	
4	✓	✓	✓	✓		1	0.0	一		1	1	✓	✓	✓	✓
	Tick mark the CO, PO and PSO mapping							I							

	3	ALL	
SI No	Skill & competence enhanced after undergoing the course	Applicable Industry Sectors & domains	Job roles students can take up after undergoing the course
1	Source, gather, arrange, process, and model data. Analyze large volumes of structured or unstructured data. Prepare and present data in the best forms for decision-making and problem-solving.	Data Mining, Cloud and Computing, Data visualization, Data Analytics	Data Scientist, Data Analyst

Mathematics II

Course Code	22AECCS455	Course type	AEC	Credits L-T-P	1-0-0
Hours/week: L-T-P	1-0-0		Total credits	1	
Total Contact Hours	L = 20 Hrs; T = 0 Hrs	s; P = 0 Hrs		CIE Marks	50
	Total = 20 Hrs				
Flipped Classes content	5 Hours			SEE Marks	50

	Course learning objectives						
1.	Learn advanced concepts of Linear Algebra.						
2.	Understand the abstract concepts of vector spaces.						
3.	Learn various numerical techniques						
4.	Learn basic concepts in statistics and probability.						

Required Knowledge of: Basic Trigonometry, Calculus, Algebra

Unit– I: Linear algebra II

Contact Hours = 5 Hours

Diagonalization of a square matrix, Orthogonal matrix Quadratic form and reduction to Canonical forms by Orthogonal Transformation. Linear Transformation. Regular transformation. Special transformations

Unit-II: Vector Spaces

Contact Hours = 5 Hours

Vector spaces: Definition and examples, subspace, linear span, Linearly independent and dependent sets, Basis and dimension. Problems.

Unit – III: Numerical Methods

Contact Hours 5 Hours

Solution of algebraic and transcendental equations - Regula-Falsi and Newton-Raphson methods (only formulae). Problems. Finite differences, Interpolation using Newton's forward and backward difference formulae, Newton's divided difference formula and Lagrange's interpolation formula

Unit- IV: Basic Statistics and Probability

Contact Hours = 5 Hours

Statistics: Introduction to data collection and classification, measures of central tendency (mean, median and mode), Standard deviation. Examples.

Probability: Basic definitions, types of events, laws of probability, conditional probability, Baye's theorem, Examples.

Flipped Classroom details

Unit No.	I	II	III	IV
No. for flipped Class room Sessions	2	1	1	1

	Books					
	Text Books:					
1.	B.S. Grewal – Higher Engineering Mathematics, Khanna Publishers, 42 nd Edition, 2012.					
2.	Erwin Kreyszig – Advanced Engineering Mathematics, John Wiley & Sons Inc., 9 th Edition, 2006.					
3.	B. V. Ramana- Higher Engineering Mathematics, Tata McGraw-Hill Education Private Limited,					
	Tenth reprint 2010 and onwards.					
	Reference Books:					
1.	Peter V. O' Neil – Advanced Engineering Mathematics, Thomson Brooks/Cole, 7 th Edition,					
	2011.					
2	Glyn James – Advanced Modern Engineering Mathematics, Pearson Education, 4 th Edition,					
	2010.					

	Course delivery methods	7	Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Open Book Assignments (OBA)/Lab Project
3.	Flipped Classes	3.	Semester End Examination
4.	Practice session/Demonstrations in Labs	/ ATT	
5.	Virtual Labs (if present)	Vital :	(MC)

Course Outcome (COs)

At the end of the course, the student will be able to (Highlight the action verb representing the learning level.)

Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)
An -	Analysis; Ev - Evaluate; Cr – Create	Level	PO(3)	F3O(3)
1.	Understand advanced concepts of Linear Algebra.	L1	1	
2.	Understand the abstract concept of vector space.	L1	1	
3.	Understand numerical techniques for various problem solving	L2	1	
4.	Understand basic terms in statistics and probability.	L2	1	

	CO-PO Mapping(planned)										CO-PSO ing(pla				
со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	✓														
2	✓														
3	✓														
4	✓														

Scheme of Continuous Internal Evaluation (CIE): Theory course (Non-Integrated)									
Components Addition of CIE components Total Marks									
Written Test 30 marks									
Two Open Book Assignments	20 marks	50							
Scheme of Semester End Examination	n (SEE): Theory course (Non-Integra	ated)							
Components	Total Marks								
Written exams	50								

BELGA

BIOLOGY FOR ENGINEERS

Course Code	22CS46 / 22IS46	Course type	BSC	Credits L-T-P	3-0-0
Hours/week: L - T- P	3-0-0		Total credits	3	
Total Contact Hours	L = 30 Hrs; T = 0 Hrs; P = 0 Hrs Total = 30 Hrs			CIE Marks	100
Flipped Classes content	-			SEE Marks	100

	Course learning objectives
1.	To familiarize the students with the basic biological concepts and their engineering applications.
2.	To enable the students with an understanding of biodesign principles to create novel devices
	and structures
3.	To provide the students an appreciation of how biological systems can be re-designed as
	substitute products for natural systems
4.	To motivate the students develop the interdisciplinary vision of biological engineering

BIOMOLECULES AND THEIR APPLICATIONS (QUALITATIVE):

Module-1

Carbohydrates (cellulose-based water filters, PHA and PLA as bioplastics), Nucleic acids (DNA Vaccine for Rabies and RNA vaccines for Covid19, Forensics – DNA fingerprinting), Proteins (Proteins as food – whey protein and meat analogs, Plant based proteins), lipids (biodiesel, cleaning agents/detergents), Enzymes (glucose-oxidase in biosensors, lignolytic enzyme in bio-bleaching).

Contact Hours = 6 Hours

Module-2 Contact Hours = 6 Hours

HUMAN ORGAN SYSTEMS AND BIO DESIGNS - 1 (QUALITATIVE):

Brain as a CPU system (architecture, CNS and Peripheral Nervous System, signal transmission, EEG, Robotic arms for prosthetics. Engineering solutions for Parkinson's disease). Eye as a Camera system (architecture of rod and cone cells, optical corrections, cataract, lens materials, bionic eye). Heart as a pump system (architecture, electrical signalling - ECG monitoring and heart related issues, reasons for blockages of blood vessels, design of stents, pace makers, defibrillators).

Module-3 Contact Hours = 6 Hours

HUMAN ORGAN SYSTEMS AND BIO-DESIGNS - 2 (QUALITATIVE):

Lungs as purification system (architecture, gas exchange mechanisms, spirometry, abnormal lung physiology - COPD, Ventilators, Heart-lung machine). Kidney as a filtration system (architecture, mechanism of filtration, CKD, dialysis systems). Muscular and Skeletal Systems as scaffolds (architecture, mechanisms, bioengineering solutions for muscular dystrophy and osteoporosis)

Module-4 Contact Hours = 6 Hours

NATURE-BIOINSPIRED MATERIALS AND MECHANISMS (QUALITATIVE):

Echolocation (ultrasonography, sonars), Photosynthesis (photovoltaic cells, bionic leaf). Bird flying (GPS and aircrafts), Lotus leaf effect (Super hydrophobic and self-cleaning surfaces), Plant burrs (Velcro), Shark skin (Friction reducing swim suits), Kingfisher beak (Bullet train). Human Blood substitutes - hemoglobin-based oxygen carriers (HBOCs) and perflourocarbons (PFCs)

Module-5 Contact Hours = 6 Hours

TRENDS IN BIOENGINEERING (QUALITATIVE):

Bioprinting techniques and materials, 3D printing of ear, bone and skin. 3D printed foods. Electrical tongue and electrical nose in food science, DNA origami and Biocomputing, Bioimaging and Artificial Intelligence for disease diagnosis. Self healing Bioconcrete (based on bacillus spores, calcium lactate nutrients and biomineralization processes) and Bioremediation and Biomining via microbial surface adsorption (removal of heavy metals like Lead, Cadmium, Mercury, Arsenic)

	Books
Text B	Books:
1.	Human Physiology, Stuart Fox, Krista Rompolski, McGraw-Hill eBook. 16th Edition, 2022 S., and Jaganthan
	M.K., Tata McGraw-Hill, New Delhi, 2012.
2.	Biology for Engineers, Thyagarajan S., Selvamurugan N., Rajesh M.P., Nazeer R.A., Thilagaraj W., Barathi
3.	Biology for Engineers, Arthur T. Johnson, CRC Press, Taylor and Francis, 2011
4.	Biomedical Instrumentation, Leslie Cromwell, Prentice Hall 2011.
5.	Biology for Engineers, Sohini Singh and Tanu Allen, Vayu Education of India, New Delhi, 2014.
6.	Biomimetics: Nature-Based Innovation, Yoseph Bar-Cohen, 1st edition, 2012, CRC Press.
7.	Bio-Inspired Artificial Intelligence: Theories, Methods and Technologies, D. Floreano and C. Mattiussi, MIT
	Press, 2008.
8.	Bioremediation of heavy metals: bacterial participation, by C R Sun <mark>il</mark> kumar, N Geetha A C Udayashankar
	Lambert Academic Publishing, 2019.
9.	3D Bioprinting: Fundamentals, Principles and Applications by Ibrahim Ozbolat, Academic Press, 2016.
10.	Electronic Noses and Tongues in Food Science, Maria Rodriguez Mende, Academic Press, 2016
11.	Blood Substitutes, Robert Winslow, Elsevier, 2005
E-reso	urces (NPTEL/SWAYAM Any Other)- mention links
1	VTU EDUSAT / SWAYAM / NPTEL / MOOCS / Coursera / MIT-open learning resource
2	https://nptel.ac.in/courses/121106008
3	https://freevideolectures.com/course/4877/nptel-biology-engineers-other-non-biologists
4	https://ocw.mit.edu/courses/20-020-introduction-to-biological-engineering-design-spring 2009
5	https://ocw.mit.edu/courses/20-010j-introduction-to-bioengineering-be-010j-spring-2006
6	https://www.coursera.org/courses?query=biology
7	https://onlinecourses.nptel.ac.in/noc19_ge31/preview
8	https://www.classcentral.com/subject/biology
9	https://www.futurelearn.com/courses/biology-basic-concepts

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Open Book Assignment
3.		3.	Course Seminar
4.		4.	Semester End Examination

At the end of the course, the student will be able to (Highlight the **action verb** representing the learning level.)

Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)
An -	Analysis; Ev - Evaluate; Cr – Create	Level	PO(3)	P3O(3)
1.	Elucidate the basic biological concepts via relevant industrial applications and case studies.	Un	1	
2.	Evaluate the principles of design and development, for exploring novel bioengineering projects.	Un	1	
3.	Corroborate the concepts of biomimetics for specific requirements.	Un	1	
4.	Think critically towards exploring innovative biobased solutions for socially relevant problems	Ар	1, 7	

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA tests	Two Assignments – (Open /Industry/Certification etc)		Total Marks
Marks	30+30 = 60	10 + 10 = 20	20 marks (with report & presentation)	100

- -Certification earned by passing the standard Online MOOCs course (1 course of atleast 8 hours defined by BOS) can be considered as a Course activity and awarded maximum of 10 marks.
- -Student should score minimum 40% of 60 marks (i.e. 24 marks) in IA tests.
- -Lack of minimum score in IA test will make the student Not Eligible for SEE
- -Minimum score in CIE to be eligible for SEE: 40 OUT OF 100.

Scheme of Semester End Examination (SEE): It will be conducted for 100 marks of 3 hours duration. Minimum marks required in SEE to pass: Score should be ≥ 35%, however overall score of CIE + SEE should be ≥ 40%. Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7 questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2 questions in part C.

	CO-PO Mapping (Planned)											SO Map Planned			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	✓														
2	✓														
3	✓														
4	✓						✓								
	Tick mark the CO, PO and PSO mapping														

UNIVERSAL HUMAN VALUES

Course Code	22CS47 / 22IS47	Course type	UHV	Credits L-T-P	1-0-0
Hours/week: L - T- P	1-0-0	Total credits	1		
Total Contact Hours	L = 16 Hrs; T = 0 Hrs; P Total = 16 Hrs	L = 16 Hrs; T = 0 Hrs; P = 0 Hrs Total = 16 Hrs			
				SEE Marks	50

	Course objectives							
	1.	To provide understanding of basic human values						
Ī	2. To communicate the need of education for quality life							

Knowledge required: English Language, Social Studies

Unit – I Human Values 8 Hours

Objectives, Morals, Values, Ethics, Integrity, Work ethics, Service learning, Virtues, Respect for others, Living peacefully, Caring, Sharing, Honesty, Courage, Valuing time, Cooperation, Commitment, Empathy, Self-confidence, Challenges in the work place, Spirituality, Yoga for Professional Excellence and Stress Management.

Unit – II Value Education 8 Hours

Introduction, Understanding Value Education, Basic Guidelines for Value Education, The content of Value Education, Education for Fulfilling Life, Skill Education, Priority of Values over Skills. The Process of Value Education.

Activities include - Illustrative case studies and Surveys related to Human values.

	Books
1.	Nagarazan R.S., Professional Ethics and Human Values, New Age International
	Publishers Pvt.Ltd. 2006
2	P.R.Gaur, R.Sangal, G.P.Bagaria: A Foundation Course in Human Values and
	Professional ethics.

	Course delivery methods	Assessment methods		
1.	Lecture	1.	IA. Test	
2.	Presentation	2.	Activity	
3.	Expert talks	3.	Quiz	
		4.	SEE	

At the end of the course, the student will be able to (Highlight the **action verb** representing the learning level.)

	ning Levels: Re - Remember; Un - Understand; Ap - Apply; Analysis; Ev - Evaluate; Cr – Create	Learning Level	PO(s)	PSO(s)
1.	Identify and practice the human values	Un	6	
2.	Understand the human values, work ethics, respect others and stress management.	Un, Ap	8	

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA tests	Quiz	Activities (Case study & Survey)	Total Marks
Marks	15+15 = 30	10	10	50

Minimum score to be eligible for SEE: 20 OUT OF 50

Sch	eme of Semester End Examination (SEE):
1.	It will be conducted for 50 marks of 1 hour duration.
2.	Minimum marks required in SEE to pass: Score should be > 35%, however overall score of
	CIE + SEE should be \geq 40%.
3.	The pattern of the question paper is MCQ (multiple choice questions).

CO-PO Mapping (Planned)										SO Map Planned	_		
СО	CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO 12								PSO1	PSO2	PSO3		
1						✓							
2								✓					
	Tick mark the CO, PO and PSO mapping												

Operating System Lab

Course Code	22CSL49 / 22ISL49	Course type	PCCL	Credits L-T-P	0-0-1
Hours/week: L - T- P	0 - 0 - 2			Total credits	1
Total Contact Hours	L = 0 Hrs; T = 0 Hr	s; P = 20 Hrs	CIE Marks	50	
	Total = 20 Hrs		GIZ III GII		
Flipped Classes content	OSSim Simulation Tool			SEE Marks	50

	Course learning objectives					
1.	Understand data structures and algorithms used to implement OS concepts					
2.	2. Discuss the process, memory, synchronization and other concepts to solve problems in					
	operating system.					
3.	Explore various UNIX shell commands and shell scripts					

Required Knowledge of : Operating System, C programming

Lab Experiment – I	Contact Hours = 2 Hours
UNIX Internal and External Commands	
Lab Experiment – 2	Contact Hours = 2 Hours
Scheduling algorithms	
Lab Experiment – 3	Contact Hours = 2 Hours
Unix Process control system calls	
Lab Experiment – 4	Contact Hours = 2 Hours
Process Synchronization - The Dining-Philosophers Pr	oblem
Lab Experiment – 5	Contact Hours = 2 Hours
Process Synchronization-Reader- writer and Produce	r –consumer Problem
Lab Experiment – 6	Contact Hours = 2 Hours
Deadlock – Bankers algorithm	·
Lab Experiment – 7	Contact Hours = 2 Hours
Memory Management - Page replacement	
Lab Experiment – 8	Contact Hours = 2 Hours
File allocation strategies	
Lab Experiment – 9	Contact Hours = 2 Hours
pwd, cd, mkdir, rmdir, cp, rm, mv, cat	·
Unix shell scripts	
Lab Experiment – 10	Contact Hours = 2 Hours
File Attributes: Is, Is-I, Is-d, file permissions, chmod U	nix shell scripts

	Books					
	Text Books:					
1.	Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, "Operating System Principles", Wiley					
	India, 6th edition and onwards.					
2.	Sumitabha Das: "YOUR UNIX – The Ultimate Guide" , Tata McGraw Hill, 23rd reprint , 2012 and					
	onwards.					
	E-resources (NPTEL/SWAYAM. Any Other)- mention links					
1.	https://www.coursera.org/specializations/codio-introduction-operating-systems					
2.	Lectures on Operating Systems (iitb.ac.in)					

	Course delivery methods	Assessment methods				
1.	Practice session/Demonstrations in Labs	1.	Conduction of Experiments			
2.	Virtual Labs (if present)	2.	Journal writing			
3.	Chalk and Talk	3.	Lab project/ Open ended experiment			
4.		4.	Lab Test			
5.		7.	Semester End Examination			

Learning Levels:

Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create

At th	e end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)
1.	Analyze data structures and algorithms used to implement OS concepts	An	1,2	1,2,3
2.	Apply process, memory, synchronization and other concepts to solve problems in operating system.	Ap	2,3	1,2,3
3.	Demonstrate various UNIX shell commands and shell scripts	Un, Ap	1,2	1,2,3
4.	Understand the learnings inculcated throughout the course and present it in a journal, viva-voce and project	Re,Un,Ap	1,2,3,8,9,10,12	1,2,3

Scheme of Continuous Internal Evaluation (CIE):

Conduction of experiments & viva-voce	Journal	Lab project/ Open ended experiment	Lab Test	Total
20 marks	5 marks	10 marks	15	50 marks

Conduct of Lab:

- 1. Conduction of the experiment: 15 marks + Viva voce: 5 marks = 20 marks
- 2. Calculations, results, graph, conclusion and Outcome recorded in Journal: 5 marks
- 3. Lab project/ Open ended experiment: 10 marks
- 4. Lab Test: 15 marks

Eligibility for SEE:

- 2. 40% and above (20 marks and above)
- 2. Lab test is COMPULSORY

Scheme of Semester End Examination (SEE):							
1.	It will be conducted for 50 marks of 2/3 hours duration.						
2.	Minimum marks required in SEE to pass: Score should be \geq 35%, however overall score of CIE+SEE should be \geq 40%.						
3.	One or Two experiments to be conducted.						
4.	Minimum marks required in SEE to pass: 20 out of 50						
	Initial write up 10 marks						
	Conduct of experiments, results and conclusion 20 marks						
	One mark question 10 marks						
	Viva- voce 10 marks						
5.	Viva-voce shall be conducted for individual student and not in a group.						

CO-PO Mapping (planned)						CO-PSO Mapping (planned)									
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
1	✓	✓				/	~	-	Y	1			✓	✓	✓
2		✓	✓			/_	111	1	EO				✓	✓	✓
3	✓	✓					3/		F	10	7		✓	✓	✓
4					- 1	1	1		188	1	1	✓	✓	✓	✓
	Tick mark the CO, PO and PSO mapping														

SI No	Skill & competence enhanced after undergoing the course	Applicable Industry Sectors & domains	Job roles students can take up after undergoing the course		
1	Continuous Improvement: Continuous improvement is an ongoing process of	Product based companies	Software engineer Software Analyst		
	improvement of products, services, and processes with the help of innovative ideas.	XIIII	Operations Systems Specialist		
2.	Once they understand the basics of OS, they can start building, managing, and repairing hardware devices	Product based companies	Software Developer System Engineer		
3.	Programming skills will be enhanced as whatever code they develop, will eventually run on an OS. Good understanding of OS is essential to become a programmer.	Software Industry	Computer System Engineer		