

"JNANA GANGA" UDYAMBAG, BELAGAVI-590008, KARNATAKA, INDIA. Approved by AICTE and UGC Permanently Affiliated and Autonomous Institution Under Visvesvaraya Technological University, Belagavi

www.git.edu

Master of Technology Scheme and Syllabus (2022-23 Scheme) Detailed Scheme & Syllabus (2ndSemester) (Computer Science & Engineering)

INSTITUTION VISION

• Gogte Institute of Technology shall stand out as an institution of excellence in technical education and in training individuals for outstanding caliber, character coupled with creativity and entrepreneurial skills.

MISSION

• To train the students to become Quality Engineers with High Standards of Professionalism and Ethics who have Positive Attitude, a Perfect blend of Techno-Managerial Skills and Problem solving ability with an analytical and innovative mindset.

QUALITY POLICY

- Imparting value added technical education with state-of-the-art technology in a congenial, disciplined and a research oriented environment.
- Fostering cultural, ethical, moral and social values in the human resources of the institution.
- Reinforcing our bonds with the Parents, Industry, Alumni, and to seek their suggestions for innovating and excelling in every sphere of quality education.

DEPARTMENT VISION

To be a center of Excellence for Education, Research and Entrepreneurship in Computer Science and Engineering in creating professionals who are competent to meet emerging challenges to benefit society.

DEPARTMENTMISSION

To impart and strengthen fundamental knowledge of students, enabling them to cultivate professional skills, entrepreneurial and research mindset with right attitude and aptitude.

	Scheme of Teaching and Examinations-2022										
	M.Tech., Computer Science and Engineering										
			Choice Based Credit System(CBCS)and	Outcom	e-Based	Education(OI	BE)				
		[II SEMES	EK							
				Tea	ching H	ours/Week		Exar	ninatior	1	
SLNo	Course	Course Code	Course Title	Theory	Tutorial/SDA	Practical	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credit
				L	Т	Р					
1	IPCC	22SCS21	Artificial Intelligence and Machine Learning	04	00	02	03	100	100	200	5
2	IPCC	22SCS22	Internet of Things and Applications	03	00	02	03	100	100	200	4
3	PEC	22SCS23x	Professional elective 1	02	02	00	03	100	100	200	3
4	PEC	22SCS24x	Professionalelective2	02	02	00	03	100	100	200	3
5	MPS	22SCS25	Mini Project with Seminar	00	02	04		100		100	3
TOTAL 11 06 08 12 500 400 900					18						
Note: PCC: Professional core courses, PEC: Professional Elective Courses, IPCC-Integrated Professional Core Courses. MPS-Mini											
Project With Seminar; AUD/AEC; Audit Courses/ Ability Enhancement Courses(Mandatory), PCCL-Professional Core Course lab, L-											
Lecture,	P-Practi	cal,T/SDA-Tu	torial/SkillDevelopmentActivities(Hour	sareforl	nteractic	onbetweenfacu	iltyand	lstudent	is)		

	Professional Elective 1	Professional Elective 2			
Course Code under 22SCS23X	Course title	Course Code under 22SCS24X	Course title		
22SCS231	Advances in Database Management System	22SCS241	Advances in Storage area Networks		
22SCS232	Robotic Process Automation	22SCS242	Natural Language Processing & Text Mining		
22SCS233	5G Technology	22SCS243	Advances in Operating system		
22SCS234	Advances in Computer Networks	22SCS244	Mobile & Pervasive Computing		
22SCS235	Data Mining & Data Warehousing	22SCS245	Cloud Security		

Note:

1 Mini Project with Seminar: This may be hands-on practice, survey report, data collection and analysis, coding, mobile app development, field visit and report preparation, modeling of system, simulation, analyzing and authenticating, case studies, etc.

CIE marks shall be awarded by a committee comprising of HoD as Chairman, Guide/co-guide, if any, and a senior faculty of the department. Students can present the seminar based on the completed mini-project. Participation in the seminar by all postgraduate students of the program shall be mandatory.

The CIE marks awarded for Mini-Project work and Seminar, shall be based on the evaluation of Mini Project work and Report, Presentation skill and performance in Question and Answer session in the ratio 50:25:25. Mini-Project with Seminar shall be considered as a head of passing and shall be considered for vertical progression as well as for the award of degree. Those, who do not take-up/complete the Mini Project and Seminar shall be declared as fail in that course and have to complete the same during the subsequent semester. There is no SEE for this course.

2. Internship: All the students shall have to undergo a mandatory internship of 06 weeks during the vacation of II and III semesters. A University examination shall be conducted during III semester and the prescribed internship credit shall be counted in the same semester. The internship shall be considered as a head of passing and shall be considered for vertical progression as well as for the award of degree. Those, who do not take-up/complete the internship shall be declared as fail in the internship course and have to

Complete the same during the subsequent University examination after satisfying the internship requirements.

Artificial Intelligence and Machine Learning					
Course Code	228CS21 Co	Course	IPCC	Credits L-	4 0 1
Course Code	type		nee	Т-Р	4-0-1
Hours/wook. I .T.P	4 - 0 - 2			Total	5
110ur 5/ week. L-1-1				credits	5
Total Contact Hours	L = 40Hrs; T = 00Hrs; P = 10Hrs			CIF Marks	100
Total Contact Hours	Total = 50Hrs				100
Flipped Classes content	Classes content 06 Hrs		SEE Marks	100	

	Course learning objectives
1.	To understand different logical systems for inference over formal domain
	representations and trace how a particular inference algorithm works on a given
	problem specification
2.	To understand various artificial intelligence techniques and agent technology
3.	To Understand and apply appropriate game playing and planning strategies for a given
	problem specification

Pre-requisites: Discrete Mathematical Structures, Probability.

Unit – I	10 Hours				
Introduction to Artificial Intelligence: Introduction, What is AI, Stron	ng Methods and weak				
Methods. Uses and Limitations:					
Knowledge Representation: Need for good representation, semantic nets, Frames, Search					
Spaces, Semantics Tress, Search Trees, Combinatorial Explosion, Pro	blem reduction, Goal				
Trees, Combinatorial Explosion					

Unit – II10 HoursSearch Methodologies:Introduction, Problem solving as search, Data driven or goal driven
search, Generate and test, Depth First Search, Breadth First Search, Properties of search
methods, Implementing Depth-First and Breadth-First Search, Using Heuristics for Search, Hill
Climbing, Best-First Search, Identifying Optimal Paths, Constraint Satisfaction search, Forward
Checking, Local Search and Meta heuristics, Simulated Annealing. Genetic Algorithms for
search, Real time A*, Bidirectional search

Unit – III	10 Hours					
Game Playing: Game Trees, Minimax, Alpha beta pruning, Checkers, Che	Game Playing: Game Trees, Minimax, Alpha beta pruning, Checkers, Chess					
Prepositional and Predicate Logic: Introduction, What is Logic, W	/hy Logic is used in					
Artificial Intelligence, Logical Operators, Translating between English and Logic Notation,						
Truth Tables: Not, And, Or, Implies, if, Complex Truth Tables, Ta	utology, Equivalence,					
Propositional logic, Deduction, The deduction Theorem, Sound	iness, Completeness,					
Decideability, Monotonicity, Abduction and Inductive reasoning,	Decideability, Monotonicity, Abduction and Inductive reasoning,					

Unit – IV						Iours
Introduction,	Training	Rote	Learning,	Learı	ning	Concepts,
General-to-Specific	Ordering,Ve	rsion Space	es, Candidate	Eliminati	on, Indu	ctive Bias,
Decision-Tree Induction, The Problem of Overfitting, The Nearest Neighbor Alg					Algorithm,	
Backpropagation	alg	orithms,	Reinforcement			Learning.
Neural Networks:	Introduction	Neurons,	Perceptrons,	Multilayer	Neural	Networks,
RecurrentNetworks,	Unsupervis	ed Learnin	g Networks,	Evolving	Neural	Networks.
Self-learning topics: Supervised Learning, Unsupervised Learning						

Unit – V	10 Hours				
Probabilistic Reasoning and Bayesian Belief Networks: Introduction, Probabilistic Reasoning,					
Joint Probability Distributions, Bayes' Theorem, Simple Bayesian Concept Learning, Bayesian					
Belief Networks, The Noisy-V Function, Bayes' Optimal Classifier,	The Naïve Bayes				
Classifier.					

Self-learning topics: Collaborative Filtering

Flipped Classroom Details

	11				
Unit No.	Ι	II	III	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

Unit	No. of	Topic(s) related to Experiment
No.	Experiments	Topic(s) related to Experiment
		Implement DFID algorithm and compare its performance with DFS
1	2	and BFS algorithm
		Implement Best-First Search algorithm
2	1	Implementation of AND/OR Gate using single layer perceptron.
3	1	Implementation of XOR Gate using
	1	a) Multi-layer perceptron
1	2	Implementation of Hebbian learning rule
4	2	Implementation of Find-S algorithms
5	2	Build a linear regression model housing prices.
5	2	Implement spam detection using Naïve Bayes Algorithm

Self Study Topics				
Unit	Topic description			
No.				
Ι	Inheritance, Object Oriented Programming			
II	Nondeterministic search, non-chronological backtracking			
III	Modal logics and possible worlds, Dealing with change			
IV	Backward Chaining, CYC			
V	Braitenberg Vehicles			

	Books
	Text Books:
1.	Ben Coppin, Artificial Intelligence Illuminated, Jones and Bartlett Publishers, 1st Edition,
	2004 onwards
	Reference Books:
1.	Elaine Rich Kevin Knight, Shivashankar B Nair: Artificial Intelligence, Tata McGraw Hill
	3 rd edition 2013 onwards
2.	Stuart Russel, Peter Norvig: Artiificial Intelligence A Modern Approach, Pearson 3 rd
	edition 2013 onwards
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	https://nptel.ac.in/courses/106/105/106105077/

Course delivery methods			Assessment methods IA tests			
1.	Chalk and Talk	1.	IA tests			
2	PPT and Videos	2	IA tests Open Book Assignments (OBA)/ Lab Project Lab Test Semester End Examination			
۷.		2. Open Book Assignments (OBA)/ Lab Project 3. Lab Test				
3.	Flipped Classes	3.	Lab Test			
Δ	Practice session/Demonstrations in	4	Samester End Examination			
4.	Labs	4.	Semester End Examination			
5.	Virtual Labs (if present)					

	Course Outcome (COs)						
Le	arning Levels:						
Re	- Remember; Un - Understand; Ap - Apply; An - Anal	ysis; Ev - E	valuate;	Cr - Create			
Δt	At the end of the course, the student will be able to $\mathbf{Learning} = \mathbf{PO}(\mathbf{s})$						
At the end of the course, the student will be able to		Level	10(3)	150(5)			
1.	Design intelligent agents for problem solving, reasoning, planning, decision making and learning for specific design and performance constraints and when needed, design variants of existing algorithms.	L4	1,3	1,2,3			
2.	Apply AI techniques on current applications.	L3	1,2	1			
3.	Demonstrate ability for problem solving, knowledge representation, reasoning and learning.	L3	1,3	1,2,3			

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test (COMPULSORY) will be part of the CIE. No SEE for Lab.

	THE	ORY (60 marks)	LAB (40		
IA test 1	IA test 2	Assignment (OBA/Lab Project/ Industry assignment)	Conduction	Lab test	Total
25 marks	25 marks	10 marks	10 marks	30 marks	100 marks
IA Test:					

- 1. No objective part in IA question paper
- 2. All questions descriptive

Conduct of Lab:

- 1. Conducting the experiment and journal: 5 marks
- 2. Calculations, results, graph, conclusion and Outcome: 5 marks

Lab test: (Batch wise with 15 students/batch)

- 1. Test will be conducted at the end of the semester
- 2. Timetable, Batch details and examiners will be declared by Exam section
- 3. Conducting the experiment and writing report: 5 marks
- 4. Calculations, results, graph and conclusion: 15 marks
- 5. Viva voce: 10 marks

Eligibility for SEE:

- 1. 50% and above (30 marks and above) in theory component
- 2. 50% and above (20 marks and above) in lab component
- 3. Lab test is COMPULSORY
- 4. Not eligible in any one of the two components will make the student Not Eligible for SEE

Sch	Scheme of Semester End Examination (SEE):			
1.	It will be conducted for 100 marks of 3 hours duration.			
2.	Minimum marks required in SEE to pass: Score should be \geq 40% &, however overall score of			
	CIE+SEE should be \geq 50%.			
3.	Question paper contains three parts A,B and C. Students have to answer			
	1. From Part A answer any 5 questions each Question Carries 6 Marks.			
	2. From Part B answer any one full question from each unit and each Question Carries 10 Marks.			
	3. From Part C answer any one full question and each Question Carries 20 Marks.			

	CO-PO Mapping (Planned)				CO-PSO Mapping(Planned)		
СО	PO1	PO2	PO3	PSO1	PSO2	PSO3	
1	~		~	~	~	~	
2	~	~		~			
3	~		~	~	~	~	
Tick	mark the CO, P	O and PSO ma	pping				

Internet of Things					
Course Code	22SCS22	Course	IPCC	Credits L-	3 - 0 - 1
		type		Т-Р	5 0 1
Hours/wook. I .T.P	3 - 0 - 2			Total	4
110ur 5/ week. L-1-1	3 - 0 - 2			credits	-
Total Contact Hours	L = 40Hrs; T = 00Hrs; P = 10Hrs			CIE Monka	100
Total = 50Hrs				CIE Marks	100
Flipped Classes content	06 Hrs			SEE Marks	100

	Course learning objectives				
1.	To understand the physical, logical design and the protocols in IOT.				
2.	To understand the IOT architecture and protocol stack.				
3.	To learn the various components and modes of communications with IOTs.				
4.	To understand the address capabilities and mobile technologies of IOT.				
5	To discuss about the cloud and IOT environment.				

Pre-requisites:1. Fundamentals of Basic Electronics.

2. Fundamentals of Communication and ComputerNetwork.

Unit – I	8 Hours
INTRODUCTION TO INTERNET OF THINGS: What is the Internet of T	nings? Internet
of Things Definitions and Frameworks : IoT Definitions, IoT Architect	ture, General
Observations, ITU-T Views, Working Definition, IoT Frameworks, Basic Noda	al Capabilities,
Physical Design of IoT: IoT Protocols, Logical Design of IoT: Fund	ctional block,
communication Model, Communication API's, IoT Enabling Technologies:	WSN, cloud
computing, Big data Analytics, communication Protocols, Embedded systems,	IoT levels and
Deployment templates: Level 1 to Level 5.	

Unit – II	8 Hours
IoT NETWORK ARCHITECTURE AND DESIGN: The one M2M IoT	Standardized
Architecture, The IoT World Forum (IoTWF) Standardized Architecture, A S	Simplified IoT
Architecture, IoT protocol stack, The Core IoT Functional Stack, IoT Data Ma	inagement and
Compute Stack: Fog Computing, Edge Computing, The Hierarchy of Edge, F	og, and Cloud
IoT and M2M: Introduction to M2M, Difference between IoT and M2M, SDN	and NFV for
IoT.	

Unit – III	8 Hours		
SMART OBJECTS: THE "THINGS" IN IoT : Sensors, Actuators, and Smart Objects,			
Sensor Networks, Connecting Smart Objects: Communications Criteria, IoT Access			
Technologies: IEEE 802.15.4, IEEE 802.15.4g and 802.15.4e, IEEE 1901.2a, Lo	RaWAN.		

Unit – IV	8 Hours
ADDRESSING TECHNIQUES FOR THE IoT: Address Capabilities,	IPv6 Protocol
Overview, IPv6 Tunneling, IPsec in IPv6, Header Compression Schemes, Qua	ality of Service
in IPv6, Migration Strategies to IPv6, Mobile IPV6 technologies for the	IoT: Protocol

Details, IPv6 over low-power WPAN (6LoWPAN). Unit – V

8 Hours

IoT PLATFORMS AND CLOUD OFFERINGS: What is an IoT Device, Exemplary Devices: Raspberry Pi, Raspberry Pi Interfaces, Other IoT Devices: pcDuino, Beagle Bone Black, CubieBoard, ARDUINO, Introduction to cloud storage models and communication API's, WAMP-AutoBahn for IoT, Python web application framework.

Flipped Classroom Details

Unit No.	Ι	II	III	IV	V
No. for Flipped Classroom Sessions	2	2	2	2	2

Unit	No. of	Tania(a) valated to Ermoniment
No.	Experiments	Topic(s) related to Experiment
1	2	Transmit a string using UART
1	2	Point-to-Point communication of two Motes over the radio frequency
	1	Multi-point to single point communication of Motes over the radio
2	1	frequency. AN (Subnetting).
3	1	I2C protocol study
	2	Reading Temperature and Relative Humidity value from the sensor
1		Study of Connectivity and Configuration of Raspberry-Pi/ Beagle Board
4		circuit with basic peripherals, LEDs,
		Understanding GPIO and its use in program.
		Study of different operating systems for Raspberry Pi / Beagle board.
	2	Understanding the process of Os
5		installation on Raspberry – Pi/ Beagle board.
		Familiarization with the concept of IOT, Arduino / Raspberry Pi and
		perform necessary software installation.

	Books				
	Text Books:				
1.	Internet of Things: A Hands-On Approach ArshdeepBahga, Vijay Madisetti VPT –				
	Paperback 2015 978- 0996025515 628/-2.				
2.	IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things David Hanes, Gonzalo Salgueiro, Patrick Grossetete Cisco Press – Paperback – 16 Aug 2017 978-1- 58714-456- 1599.				
3.	BuildingtheInternetofThingswithIPv6andMIPv6:TheEvolvingWorldofM2M				

	Communications Daniel MinoliWilly Publication s - 2013 978-1-118- 47347-4, 466.
4.	
	Reference Books:
1.	Smart Internet of things projects AgusKurniawanPackt - Sep 2016 978-1- 78646- 651- 8 2 The Internet of Things Key Olivier Willy Publication 2 nd Edition978
2.	ApplicationsandprotocolsHersents119-99435-0,3TheInternetofThingsConnecting Objects to the Web HakimaChaouchi, Willy Publications 978-1- 84821- 140-7.

Course delivery methods			Assessment methods		
1.	Chalk and Talk	1.	IA tests		
2.	. PPT and Videos		Open Book Assignments (OBA)/ Lab Project		
3.	Flipped Classes	3.	Lab Test		
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination		
5.	Virtual Labs (if present)				

	Course Outcome (COs)							
Le	Learning Levels:							
Re	Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create							
At	the end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)				
1.	Identify the various components and explain the policies, challenges and issues in the field of IOT	L2	1	1				
2.	Apply the basic principles and demonstrate the skill of proposing suitable solutions to design problems relating to IOT	L3	1	1				
3.	Propose the design of IOT systems and develop the software for sensors and controllers	L5	1,2,3	1,2,3				
4.	Develop schemes for the applications of IOT in real time scenarios	L5	1,2,3	2,3				

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test (COMPULSORY) will be part of the CIE. No SEE for Lab.

	THE	ORY (60 marks)	LAB (40 marks)			
IA tost 1	IA test 2	Assignment (OBA/Lab Project/	Conduction	Lab test	Total	
IA lest I	IA test 2	Industry assignment)	Conduction	Lablest		
25 marks	25 marks	10 marks	10 marks	30 marks	100 marks	
IA Test:	IA Test:					
1. No objective part in IA question paper						
2. All questions descriptive						

Conduct of Lab:

- 1. Conducting the experiment and journal: 5 marks
- 2. Calculations, results, graph, conclusion and Outcome: 5 marks

Lab test: (Batch wise with 15 students/batch)

- 1. Test will be conducted at the end of the semester
- 2. Timetable, Batch details and examiners will be declared by Exam section
- 3. Conducting the experiment and writing report: 5 marks
- 4. Calculations, results, graph and conclusion: 15 marks
- 5. Viva voce: 10 marks

Eligibility for SEE:

- 1. 50% and above (30 marks and above) in theory component
- 2. 50% and above (20 marks and above) in lab component
- 3. Lab test is COMPULSORY
- 4. Not eligible in any one of the two components will make the student Not Eligible for SEE

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be \geq 40% &, however overall score of
	CIE+SEE should be \geq 50%.
3.	Question paper contains three parts A,B and C. Students have to answer
	1. From Part A answer any 5 questions each Question Carries 6 Marks.
	2. From Part B answer any one full question from each unit and each Question Carries 10 Marks.
	3. From Part C answer any one full question and each Question Carries 20 Marks.

	СО-РО Марр	CO-PSO Mapping(Planned)				
СО	PO1	PO2	PO3	PSO1	PSO2	PSO3
1	~			~		
2	~			~		
3	 ✓ 	~	~	~	~	~
4	~	~	~		~	~
Tick	mark the CO, P	O and PSO map	oping			

Advances in Database Management System						
Course Code	22SCS231	Course type	PEC	Credits L- T-P	2 - 1 - 0	
Hours/week: L-T-P	2-2-0			Total credits	3	
Total Contact Hours	L = 30Hrs; T = 10Hrs; P = 00Hrs $Total = 40Hrs$			CIE Marks	100	
Flipped Classes content			SEE Marks	100		

Course learning objectives				
1.	To discuss the concept of databases, ER Modeling and Schema mapping			
2.	To understand the application of different query languages and query optimizations.			
3.	To introduce a formal database design approach through various normal forms and study the			
	importance of concurrent transactions and control algorithms.			
4.	To discuss applications of Object Oriented database.			
5	To understand parallel and distributed databases and its applications.			

Pre-requisites : Database Management System.

Unit – I	8 Hours
Introduction: Introduction to database, Characteristics of Database approach,	Advantages of
using DBMS approach, Three-schema architecture and data independent	lence, Entity-
Relationship Model: Using High-Level Conceptual Data Models for Database	se Design; An
Example Database Application; Entity Types, Entity Sets, Attributed	s and Keys;
Relationships, Relationship types, Roles and Structural Constraints; Weak Ent	ity Types. ER-
Relational Mapping Rules.	

Unit – II	8 Hours
Database Design: Informal Design Guidelines for Relation Schema	s; Functional
Dependencies; Normal Forms Based on Primary Keys; General Definitions	of Second and
Third Normal Forms; Boyce-Codd Normal Form.	
Transaction Processing Concepts: Introduction to Transaction processing, Transacting, Transaction Proc	ransaction and

System concepts, Desirable properties of Transactions and issues with concurrent transactions. 2PL and TSO algorithms

Unit – III	8 Hours
SQL: SQL Data Definition and Data Types; Specifying basic constraints in	SQL; Schema
change statements in SQL; Basic queries in SQL; More complex SQL Queries	es; Nested and
Correlated Queries, IN, ALL, EXIST operators. Insert, Delete and Update state	ments in SQL.
Introduction to Query Optimization techniques;	

Unit – IV	8 Hours
Object and Object-Relational Databases: Overview of OOP; Complex ob	jects; Identity,
structure etc. Object model of ODMG, Object definition Language ODL;	Object Query
Language OQL; Conceptual design of Object database. Overview of object rela	tional features
of SQL; Object-relational features of Oracle; Implementation and related issue	es for extended
type systems; syntax and demo examples.	

Unit – V8 HoursParallel and Distributed Databases: Architectures for parallel databases; Parallel query
evaluation; Parallelizing individual operations; Parallel query optimizations; Introduction to
distributed databases; Distributed DBMS architectures; Storing data in a Distributed DBMS;
Distributed catalog management; Distributed Query processing; Distributed transactions;
Distributed Concurrency control and Recovery.

Unit No.	Self-Study Topics
Ι	Actors on the scene & workers behind the scene
II	Functional dependency
III	Complex queries
IV	Abstract data types
V	Updating distributed data

	Books
	Text Books:
1.	Elmasri and Navathe: Fundamentals of Database Systems, Pearson Education, 2013.
2.	Raghu Ramakrishnan and Johannes Gehrke: Database Management Systems, 3rd Edition,McGraw-Hill, 2013.
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	https://nptel.ac.in/courses/106/106/106106095/

	Course delivery methods Assessment methods		Assessment methods
1.	Chalk and Talk	1.	IA tests
2	PPT and Videos	2	Online Quizzes (Surprise and
۷.		2.	Scheduled)
3.	Flipped Classes	3.	Open Book Assignment (OBA)
4.	Online classes	4.	Course Seminar
		5.	Semester End Examination

Course Outcome (COs)

Learning Levels:

Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create

At the en	nd of the course, the student will be able to	Learning Level	PO(s)	PSO (s)
1.	Analyze the given database applications using E-R diagrams and apply the normalization to produce schema diagrams and relations.	L3	1	1
2.	Explain the concepts of object oriented databases, SQL concepts and transaction processing.	L3	1	1
3.	Apply SQL language to design different Database applications.	L4	1,2,3	1,2,3
4.	Analyzeappropriate high performance database like parallel and distributed database	L4	1,2,3	2,3

Components	two IA tests	Online Quiz 4* 5 marks =	OAs or Course Project	Seminar	Marks
IVIdIKS	25+25- 50	20	10+10 -20	10	100

OBA- Open Book Assignment Minimum score to be eligible for SEE: 50 OUT OF 100

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be \geq 40%, however overall score of
	CIE + SEE should be \geq 50%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2
	questions in part C.

CO-PO Mapping (Planned)				CO-PSO Mapping(Planned)		
СО	PO1	PO2	PO3	PSO1	PSO2	PSO3
1	~			~		
2	~			~		
3	~	~	~	~	~	~
4	~	~	~		~	~
Tick 1	mark the CO, P	O and PSO ma	pping			

Robotic Process Automation					
Course Code	22SCS232	Course	PEC	Credits L-	2 - 1 - 0
Course Code		type		T-P	
Houndwook I T D	2-2-0			Total	2
Hours/week: L-1-r				credits	5
Total Contact Hours	L = 30Hrs; T = 10Hrs; P = 00Hrs			CIE Monka	100
Total Contact Hours	Total = 40Hrs				100
Flipped Classes content				SEE Marks	100

Course learning objectives				
1.	To understand Basic Programming concepts and the underlying logic/structure			
2.	To Describe RPA, where it can be applied and how its implemented			
3.	To Describe the different types of variables, Control Flow and data manipulation			
	techniques			
4.	To Understand Image, Text and Data Tables Automation			
5.	To Describe automation to Email and various types of Exceptions and strategies to			
	handle			

Pre-requisites : Basics of Programming

Unit – I	8 Hours
PROGRAMMING BASICS & RECAP	
Programming Concepts Basics - Understanding the application - Bas	ic Web Concepts -
Protocols - Email Clients Data Structures - Data Tables - Algorithms - S	Software Processes -
Software Design - ScriptingNet FrameworkNet Fundamentals	- XML - Control
structures and functions - XML Variables & Arguments	

Unit – II	8 Hours
RPA CONCEPTS	
RPA Basics - History of Automation - What is RPA - RPA vs Autom	nation - Processes &
Flowcharts - Programming Constructs in RPA - What Processes can be A	utomated - Types of
Bots - Workloads which can be automated - RPA Advanced Concepts	- Standardization of
processes - RPA Developemt methodologies - Difference from SDLC -	Robotic control flow
architecture - RPA business case - RPA Team - Proccess Design Docum	nent/Solution Design
Document	

Unit – III	8 Hours
RPA TOOL INTRODUCTION & BASICS	
Introduction to RPA Tool - The User Interface - Variables - Managing	Variables - Naming
Best Practices - The Variables Panel - Generic Value Variables - Text	Variables - True or
False Variables - Number Variables - Array Variables - Date and Tin	ne Variables - Data
Table Variables - Managing Arguments - Naming Best Practices - The	e Arguments Panel -
Using Arguments - About Imported Namespaces - Importing New Na	amespaces- Control
Flow - Control Flow Introduction - If Else Statements - Loops - Adva	nced Control Flow -
Sequences - Flowcharts - About Control Flow - Control Flow Acti	vities - The Assign
Activity - The Delay Activity - The Do While Activity - The If Act	ctivity - The Switch
Activity - The While Activity - The For Each Activity - The Bre	eak Activity - Data
Manipulation - Data Manipulation Introduction - Scalar variables, colle	ections and Tables -
Text Manipulation - Data Manipulation - Gathering and Assembling Data	a

Unit – I	V
----------	---

8 Hours

ADVANCED AUTOMATION CONCEPTS AND TECHNIQUES Recording and Advanced UI Interaction - Recording Introduction - Basic and Desktop Recording - Web Recording - Input/Output Methods - Screen Scraping - Data Scraping -Scraping advanced techniques - Selectors - Selectors - Defining and Assessing Selectors -Customization - Debugging - Dynamic Selectors - Partial Selectors - RPA Challenge - Image, Text & Advanced Citrix Automation - Introduction to Image & Text Automation - Image based automation - Keyboard based automation - Information Retrieval - Advanced Citrix Automation challenges - Best Practices - Using tab for Images - Starting Apps - Excel Data Tables & PDF - Data Tables in RPA - - Extracting Data from PDF - Extracting a single piece of data - Anchors - Using anchors in PDF. Unit – V 8 Hours

EMAIL AUTOMATION & EXCEPTIONAL HANDLING Email Automation - Email Automation - Incoming Email automation

Email Automation - Email Automation - Incoming Email automation - Sending Email automation - Debugging and Exception Handling - Debugging Tools

Self Study Topics						
Unit	Topic description					
No.						
Ι	HTML, CSS					
II	Industries best suited for RPA - Risks & Challenges with RPA and emerging					
	ecosystem.					
III	Data Manipulation - Gathering and Assembling Data					
IV	Excel and Data Table basics - Data Manipulation in excel					
V	Strategies for solving issues - Catching errors					

	Books						
	Text Books:						
1.	Alok Mani Tripathi, Learning Robotic Process Automation, Publisher: Packt						
	Publishing						
	Release Date: March 2018ISBN: 9781788470940						
	Reference Books:						
1.	Frank Casale (Author), Rebecca Dilla (Author), Heidi Jaynes (Author), Lauren						

	Livingston (Author), Introduction to Robotic Process Automation: a Primer, Institute of Robotic Process Automation.
2.	Richard Murdoch, Robotic Process Automation: Guide To Building Software Robots, Automate Repetitive Tasks & Become An RPA Consultant
3.	SrikanthMerianda,Robotic Process Automation Tools, Process Automation and their benefits: Understanding RPA and Intelligent Automation
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	https://www.uipath.com/rpa/robotic-process-automation

Course delivery methods			Assessment methods		
1.	Chalk and Talk	1.	IA tests		
2	DDT and Videos		Online Quizzes (Surprise and		
Ζ.		۷.	Scheduled)		
3.	Flipped Classes	3.	Open Book Assignment (OBA)		
4.	Online classes	4.	Course Seminar		
		5.	Semester End Examination		

Course Outcome (COs)								
Learning Levels:								
Re - 2	Remember; Un - Understand; Ap - Apply; An - Analysis; E	v - Evaluate	e; Cr - (Create				
At the er	nd of the course, the student will be able to	Learning	PO(s)	PSO (s)				
At the el	in of the course, the student will be able to	Level	10(3)	150(5)				
1.	Apply and Implement RPA	L3	1.2	1,3				
2	Explain Image, Text and Data Tables Automation, E-mail	1.2	1	1				
۷.	automation and various types of exceptions and strategies to	L2	1	1				
3.	Design RPA solution for real world problems	L5	1.2.3	2.3				
5.	Design for a solution for real world problems	10	1,2,5	-,5				

Components	Addition of two IA tests	Online Quiz	Addition of two OAs or Course Project	Course Seminar	Total Marks
Marks	25+25= 50	4* 5 marks = 20	10+10 =20	10	100

OBA- Open Book Assignment Minimum score to be eligible for SEE: 50 OUT OF 100

Sch	Scheme of Semester End Examination (SEE):				
1.	It will be conducted for 100 marks of 3 hours duration.				
2.	Minimum marks required in SEE to pass: Score should be \geq 40%, however overall score of				
	CIE + SEE should be \geq 50%.				

3. Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7 questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2 questions in part C.

CO-PO Mapping (Planned)				CO-PSO Mapping(Planned)		
СО	PO1	PO2	PO3	PSO1	PSO2	PSO3
1	~	~		~		~
2	~			~		
3	~	~	~		~	~
Tick mark the CO, PO and PSO mapping						

5G Technology						
Course Code	22SCS233	Course type	PEC	Credits L- T-P	2 - 1 - 0	
Hours/week: L-T-P	2-2-0			Total credits	3	
Total Contact Hours	otal Contact Hours $L = 30 Hrs; T = 10 Hrs; P = 00 Hrs$ $Total = 40 Hrs$			CIE Marks	100	
Flipped Classes content				SEE Marks	100	

	Course learning objectives				
1.	To understand the evolution of wireless technologies from 1G to 5G.				
2.	To learn the requirements of 5G communication technology in the present industry				
	applications.				
3.	To understand the need of Multi-type and Device-to-Device (D2D) Communications				
	in the 5G wireless Systems				
4.	4. To illustrate the mode of multiple access in 5G technologies.				
Pre-r	requisites: Concept of Computer Networks and wireless communication.				

Unit – I	8 Hours
Introduction: Historical background: Industrial and technological revolution	n: from steam
engines to the Internet, Mobile communications generations: from 1G to 4G	, From mobile
broadband (MBB) to extreme MBB, IoT: relation to 5G. From ICT to the wh	nole economy.
Rationale of 5G: high data volume, twenty-five billion connected devia	ces and wide
requirements, Security. Global initiatives: METIS and the 5G-PPP, China:	5G promotion
group, Korea: 5G Forum, Japan: ARIB 2020 and Beyond Ad Hoc,	

Unit – II	8 Hours					
5G use cases and system concept: 5G Use cases and requirements: Use cases, Requirements						
and key performance indicators. 5G system concept: Concept overview, E	xtreme mobile					
broadband, Massive machine-type communication, Ultra-reliable	machine-type					
communication, Dynamic radio access network.						

Unit – III	8 Hours
The 5G architecture: Introduction: NFVand SDN, Basics about RAN architecture	tecture. High-
level requirements for the 5G architecture, Functional architecture and 5	5G flexibility:
Functional split criteria, Functional split alternatives, Functional optimization	on for specific
applications, Integration of LTE and new air interface to fulfill 5G requirement	ents, Enhanced
Multi-RAT coordination features. Physical architecture and 5G deployment	: Deployment

enablers.

Unit – IV

8 Hours

Machine-type communications:Introduction: Use cases and categorization of MTC, MTC requirements. Fundamental techniques for MTC: Data and control for short packets, Non-orthogonal access protocols. Massive MTC: Design principles,

Unit – V8 HoursThe 5G radio-access technologies: Access design principles for multi-user communications:Orthogonal multiple-access systems, Spread spectrum multiple-access systems, Capacity limitsof multiple-access methods. Multi-carrier with filtering: a new waveform: Filter-bank basedmulti-carrier, Universal filtered OFDM. Non-orthogonal schemes for efficient multiple access:Non-orthogonal multiple access (NOMA).

Self-Study Topics					
Unit	Topic description				
No.					
1	Other 5G activities, IoT activities, Standardization activities: ITU-R, 3GPP, IEEE				
2	Lean system control plane, Localized contents and traffic flows.				
3	Flexible function placement in 5G deployments.				
4	MTC Technology components and 5G D2D RRM concept: an example.				
5	Sparse code multiple access (SCMA), Interleave division multiple access (IDMA).				

	Books				
	Text Books:				
1.	AfifOsseiran, Jose F. Monserrat, Patrick Marsch, "5G Mobile and Wireless				
	Communications Technology", Cambridge University Press, Edition 1/year 2016 and				
	onwards				
	Reference Books:				
1.	Martyn Mallick, "Mobile and Wireless Design Essentials", Wiley Publishing, Inc.,				
	Indianapolis, Indiana, 2003 and onwards				
2.	Raj kamal: Mobile Computing, Oxford University Press, 2007 and onwards.				
3.	ItiSahaMisra: Wireless Communications and Networks, 3G and Beyond, Tata McGraw				
	Hill, 2009 and onwards.				
	E-resources (NPTEL/SWAYAM Any Other)- mention links				
1.	https://onlinecourses.nptel.ac.in/noc19_ee48/preview				

Course delivery methods			Assessment methods		
1.	Chalk and Talk	1.	IA tests		
2.	PPT and Videos	2.	Online Quizzes (Surprise and Scheduled)		
3.	Flipped Classes	3.	Open Book Assignment (OBA)		
4.	Online classes	4.	Course Seminar		

		5.	Semester I	End Examina	ation			
	Course Outcome (COs)							
Learnin	g Levels:							
Re - 1	Remember; Un - Understand; Ap - Apply; A	n -	Analysis; E	v - Evaluato	e; Cr - (Create		
At the or	ad of the course, the student will be able to			Learning				
At the er	At the end of the course, the student will be able to					150(5)		
1.	Demonstrate the Growth of wireless communication till 5G				1	1		
2	Elucidate the need of 5G in latest communication requirements			L2	1	1		
2.						1		
	Explore the futuristic communication technol	logie	s like					
3.	Multi-type and Device-to-Device (D2D) Com	nmur	ications in	L3	1,2,3	1,2,3		
	the 5G wireless Systems							
4.	Illustrate the mode of multiple accesses in 50	Ĵ		L2	2,3	2,3		
	communication technologies							

Components	Addition of two IA tests Online Quiz OAs or Pro		Addition of two OAs or Course Project	Course Seminar	Total Marks		
Marks	25+25= 50	4* 5 marks = 20	10+10 =20	10	100		
OBA- Open Book Assignment							

Minimum score to be eligible for SEE: 50 OUT OF 100

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be \geq 40%, however overall score of
	CIE + SEE should be <u>></u> 50%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2
	questions in part C.

	CO-PSO Mapping(Planned)					
СО	PO1	PO2	PO3	PSO1	PSO2	PSO3
1	~			~		
2	~			~		
3	~	~	~	~	~	~
4		~	~		~	~
Tick n	nark the CO, P					

Advances in Computer Networks							
Course Code	22SCS234	Course type	PEC	Credits L- T-P	2 - 1 - 0		
Hours/week: L-T-P	2 - 2 - 0			Total credits	3		
Total Contact Hours	L = 30Hrs; T = 10Hrs; P = 00Hrs Total = 40Hrs			CIE Marks	100		
Flipped Classes content				SEE Marks	100		

	Course learning objectives		
1.	To become familiar with Computer Networks and the concepts of protocols.		
2.	To learn the concepts Wired and Wireless LANs		
3.	To learn the concept of Logical Addresses, Address Mapping, Error Reporting and		
	Multicasting		
4.	To understand the aspects of Network Security and Management.		

Pre-requisites: Knowledge of Computer Networks.

	Unit – I	8 Hours
1		

Foundation

BuildingaNetwork, Requirements, Perspectives, ScalableConnectivity, Cost-

EffectiveResourcesharing,SupportforCommonServices,Manageability and Performance.

Advanced Internetworking

The Global Internet: Routing Areas, Interdomain Routing (BGP)

Unit – I	8 Hours
End-to-EndProtocols	

SimpleDe-multiplexer(UDP);ReliableByteStream(TCP): End-to-EndIssues, SegmentFormat, ConnectingEstablishmentandTermination, TriggeringTransmission, AdaptiveRetransmission,TCPExtensions; Remote Procedure Call: RPC Fundamentals, RPC Implementations (SunRPC, DCE)

Congestion Control and Resource Allocation

Issues in Resource Allocation: Network Model, Taxonomy and Evaluation Criteria; Queuing Disciplines:FIFO,FairQueuing;TCPCongestionControl:AdditiveIncrease/MultiplicativeDecreas e,SlowStart,FastRetransmitandFastRecovery.

Unit – III	8 Hours
Wired LANs: Ethernet:	
IEEE Standards: Data Link Layer, Physical Layer; Standard Ethernet: MAC Sub	layer, Physical
Layer; Changes in the Standard: Bridged Ethernet, Switched Ethernet, Full Du	plex Ethernet;

Fast Ethernet: Mac Sublayer, Physical Layer;

Wireless LANs:

IEEE 802.11: Architecture, Mac Sublayer, Addressing Mechanism, Physical Layer; Bluetooth: Architecture, Bloetooth Layers, Radio Layers, Baseband Layers, L2CAP.

Unit – IV	8 Hours		
Logical Addresses: IPv4 Addressing: Address Space, Notations, Classfu	I Addressing,		
Classless Addressing, Network Address Translation; IPv6Addresses: Structure, A	Address Space.		
Address Mapping, Error Reporting and Multicasting:			
Address Mapping: Mapping Logical to Physical Address: ARP, Mapping Physical to Logical			
Addressing: RARP, BOOTP and DHCP; ICMP: Types of Messages, Message Format, Error			
Reporting, Query, Debugging; IGMP: Group Management, IGMP Messages, Me	essage Format,		
IGMP Operation, Encapsulation, Netsat Utility.			

Network Security Security Services: Message Confidentiality, Integrity, Authentication, Nonrepudiation, Entity Authentication; Message Confidentiality: with Symmetric and Asymmetric Key Cryptography; Message Authentication; Digital Signature: Comparison, Need for Key, Process, Services, Signature Schemes;

8 Hours

Unit – V

NetworkManagement

What Is Network Management? The Infrastructure for NetworkManagement, The Internet-Standard Management Framework, Structure of ManagementInformation: SMI, Management Information Base: MIB.

	Self Study Topics
Unit	Topic description
No.	
1	Introduction to IP Version 6
2	TCP Performance, Remote Procedure Call.
3	Gigabit Ethernet
4	ICMPv6
5	Message Integrity.

	Books
	Text Books:
1.	Larry Peterson and Bruce S Davis "Computer Networks : A System Approach" 5th
	Edition, Elsevier -2014
2.	Behrouz A. Forouzan, "Data Communications and Networking", McGraw-Hill, 4th
	Edition and onwards
3.	James F. Kurose, Keith W. Ross, Computer Networking A Top down Approach, 7th
	Edition, Pearson, 2001.
	Reference Books:
1.	Andrew S. Tenenbaum, "Computer Networks", Pearson, 4th Edition and onwards.

Course delivery methods		Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab	

			Project
3.	Flipped Classes	3.	Lab Test
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination
5.	Virtual Labs (if present)		

	Course Outcome (COs)			
Lea	rning Levels:			
Re	- Remember; Un - Understand; Ap - Apply; An - Analy	vsis; Ev - Ev	aluate;	Cr - Create
At t	he end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)
1.	Explain the layered nature of network services, protocols, and architectures by listing and classifying them	L1	1	1
2.	Develop efficient communication systems by utilizing connection creation, queuing theory, and recovery strategies.	L4	1,2	1,2
3.	Explain the use of TCP for routing in Ad-hoc networks.	L2	1,3	1,3
4.	Applysecurity and management standards to manage practical networks .	L3	2,3	2,3

Components	Addition of two IA tests	Online Quiz	Addition of two OAs or Course Project	Course Seminar	Total Marks
Marks	25+25= 50	4* 5 marks = 20	10+10 =20	10	100
	• •				

OBA- Open Book Assignment Minimum score to be eligible for SEE: 50 OUT OF 100

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be \geq 40%, however overall score of
	CIE + SEE should be \geq 50%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2
	questions in part C.

	СО-РО Марр	ing (Planned)		CO-PSO	Mapping(Planned)
СО	PO1	PO2	PO3	PSO1	PSO2	PSO3
1	~			~		
2	~	~		~	~	
3	~		~	~		~

4		>	~	~	~
Tick mark the CO, PO and PSO mapping					

Data Mining and Data Warehousing						
Course Code	22SCS235	Course type	PEC	Credits L- T-P	2 - 1 - 0	
Hours/week: L-T-P	2-2-0			Total credits	3	
Total Contact Hours	L = 30Hrs; T = 10Hrs; P = 00Hrs $Total = 40Hrs$			CIE Marks	100	
Flipped Classes content				SEE Marks	100	

	Course learning objectives					
1.	To introduce the basic concepts and techniques of data mining and data warehousing.					
2.	To develop the skills using recent data mining software for solving practical problems.					
3.	To assess the strengths and weaknesses of various data mining methods and algorithms.					

Pre-requisites: Database Management System, Information Management.

Unit – I8 HoursIntroduction and Data Preprocessing :Why data mining, What is data mining, What
kinds of data can be mined, What kinds of patterns can be mined, Which Technologies
Are used, Which kinds of Applications are targeted, Major issues in data mining .Data
Preprocessing: An overview, Data cleaning, Data integration, Data reduction, Data
transformation and data discretization.

Unit – II	8 Hours
What is a Data Warehouse?, A Multidimensional Data Model, Data	Warehouse
Architecture, Data Warehouse Implementation, Data cube Technology, 1	From Data
warehousing to Data Mining.	

Unit – III	8 Hours				
Classification and Prediction: Issues regarding Classification and	Prediction,				
classification by Decision tree induction, Bayesian classification, H	Rule-Based				
classification, Classification Based on the concepts from association rule min	ning. Other				
classification methods, prediction.					

Unit – IV	8 Hours

Cluster Analysis: What is Cluster Analysis? Types of data in cluster Analysis: a Categorization of Major Clustering Methods, Partitioning Methods, Hierarchical methods, Density-Based Methods, Model-Based Clustering Methods: Statistical Approach, Neural Network Approach Outliner Analysis.

8 Hours

Self-Study Topics					
Unit	Topic description				
No.					
1	Real life examples of data mining.				
2	Case study of Data warehousing.				
3	Genetic Algorithm, KNN classifier				
4	Outlier Detection Methods				
5	Multidimensional Data Analysis in Cube Space				
	Application and Trends in Data Mining: Data mining application, Data mining system Products research Prototypes, Additional Themes on Data Mining, Data Mining and Intelligent Query Answering, Trends in Data Mining.				

Books				
	Text Books:			
1.	Jiawei Han, Michelin Kamber, "Data Mining Concepts and Techniques",			
	Morgan KaufMann Publishers, 3 rd edition, July 2011.			
	Reference Books:			
1.	Alex Berson and Stephen J Smith, "Data Warehousing, Data Mining and			
	OLAP" (Data Warehousing/Data Management). New Delhi : Tata Mcgraw-			
	Hill, 2004.			
2.	Arun K Pujari, "Data Mining Techniques", Universities Press, Oct 2013.			
	E-resourses (NPTEL/SWAYAM Any Other)- mention links			
1.				
2.				

Course delivery methods		Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project	
3.	Flipped Classes	3.	Lab Test	
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination	
5.	Virtual Labs (if present)			

	Course Outcome (COs)						
Lea	Learning Levels:						
Re	- Remember; Un - Understand; Ap - Apply; An - Analy	sis; Ev - Ev	aluate;	Cr - Create			
At th	At the end of the course, the student will be able to Learning PO(s) PSO(s)						
1.	Demonstrate storing voluminous data for online processing and preprocess the data for mining applications.	L3	1	1			
2.	Design and deploy appropriate classification techniques.	L4	1,2	1,2			
3.	Apply clustering the high dimensional data for better organization of the data.	L3	1,3	1,3			
4.	Demonstrate the classification, Regression & clustering technique.	L3	2,3	2,3			
5.	Describe the basic principles and algorithms used in practical data mining and understand their strengths and weaknesses.	L2	1,2,3	2,3			

-

4.	Apply security and management standards to manage practical networks.	L3		
----	---	----	--	--

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA tests	Online Quiz	Addition of two OAs or Course Project	Course Seminar	Total Marks
Marks	25+25= 50	4* 5 marks = 20	10+10 =20	10	100

OBA- Open Book Assignment

Minimum score to be eligible for SEE: 50 OUT OF 100

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be \geq 40%, however overall score of
	CIE + SEE should be \geq 50%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2
	questions in part C.

	CO-PO Mapping (Planned)					Planned)
со	PO1	PO2	PO3	PSO1	PSO2	PSO3
1	~			~		
2	~	~		~	~	
3	~		~	~		~
4		~	~		~	~
5	~	~	~		~	~
Tick r	nark the CO, P	O and PSO maj	pping			

	Advances in Storage Area Networks				
Course Code	22SCS241 Course Pl type Pl	DEC	Credits	2 1 0	
Course Code		type	PEC	L-T-P	2 - 1 - 0
Houndwoold I T D	2 2 0	Total			2
Hours/week: L-1-P	2 - 2 - 0			credits	3
Total Canto at House	L = 30 Hrs; T =	10 Hrs; $P = 0$	= 00Hrs		
Total Contact Hours	Total = 40Hrs			CIE Marks	100
Flipped Classes content	S		SEE Marks	100	

	Course learning objectives				
1.	To study Storage Area Networks characteristics and its components.				
2.	Introduce storage virtualization and bring out its importance.				
3.	Analyze different networked storage options for different application environments				

Pre-requisites :Networks, Operating Systems

Unit – I	8 Hours		
Introduction: Server Centric IT Architecture and its Limitations; Storage - Centric	IT Architecture		
and its advantages. Case study: Replacing a server with Storage networks The Data S	torage and Data		
Access problem; The Battle for size and access. Intelligent Disk Subsystems: Architecture of			
Intelligent Disk Subsystems; Hard disks and Internal I/O Channels; JBOD, Storage virtualization			
using RAID and	different		
RAID levels; Caching: Acceleration of Hard Disk Access; Intelligent disk subsystems	, Availability of		
disk subsystems.			
Self-learning topics:			

Unit	-II
------	-----

I/O Techniques: The Physical I/O path from the CPU to the Storage System; SCSI; Fibre Channel Protocol Stack; Fibre Channel SAN; IP Storage. Network Attached Storage: The NAS Architecture, The NAS hardware Architecture, The NAS Software Architecture, Network connectivity, NAS as a storage system. File System and NAS: Local File Systems; Network file Systems and file servers; Shared Disk file systems; Comparison of fibre Channel and NAS

Self-learning topics:

Unit – III

8 Hours

8 Hours

Storage Virtualization: Definition of Storage virtualization; Implementation Considerations; Storage virtualization on Block or file level; Storage virtualization on various levels of the storage Network; Symmetric and Asymmetric storage virtualization in the Network.

Self learning topics:

Unit – IV

SAN Architecture and Hardware devices: Overview, Creating a Network for storage; SAN Hardware devices; The fibre channel switch; Host Bus Adaptors; Putting the storage in SAN; Fabric operation from a Hardware perspective. Software Components of SAN: The switch's Operating system; Device Drivers; Supporting the switch's components; Configuration options for SANs. Self learning topics:

Unit – V Management of Storage Network: System Management, Requirement of management System, Support by Management System, Management Interface, Standardized Mechanisms, Property Mechanisms, In-band Management, Use of SNMP, CIM and WBEM, Storage Management Initiative Specification(SMI-S), CMIP and DMI, Optional Aspects of the Management of Storage Networks, Summary

Self learning topics:

	Books					
	Text Books:					
1.	Storage Networks Explained Ulf Troppens, Rainer Erkens and Wolfgang Muller Wiley India					
	2013					
	Reference Books:					
1.	Storage Networks the Complete Reference Robert Spalding Tata McGraw-Hill 2011.					
2.	Storage Networking Fundamentals – An Introduction to Storage Devices,					
	Subsystems, Applications, Management, and File Systems					
	Marc Farley Cisco Press, 2005					
	E-resourses (NPTEL/SWAYAM Any Other)- mention links					
1.						
2.						

Course delivery methods			Assessment methods		
1.	Chalk and Talk	1.	IA tests		
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab		
			Project		
3.	Flipped Classes	3.	Lab Test		
1	Practice session/Demonstrations in	4	Somester End Examination		
4.	Labs	4.	Semester End Examination		
5.	Virtual Labs (if present)				

8 Hours

8 Hours

Course Outcome (COs) Learning Levels: Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create Learning At the end of the course, the student will be able to PO(s) **PSO(s)** Level Identify the need for performance evaluation and the 1. L4 1,2,3 1,3 metrics used for it Apply the techniques used for data maintenance. L3 1,2 2. 1,2 Realize strong virtualization concepts 3. L4 1,3 1,3

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA tests	Online Quiz	Addition of two OAs or Course Project	Course Seminar	Total Marks	
Marks	25+25= 50	4* 5 marks = 20	10+10 =20	10	100	
OBA- Open Book Assignment						

Minimum score to be eligible for SEE: 50 OUT OF 100

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be \geq 40%, however overall score of
	CIE + SEE should be \geq 50%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2
	questions in part C.

CO-PO Mapping (Planned)			CO-PSO Mapping(Planned)			
СО	PO1	PO2	PO3	PSO1	PSO2	PSO3
1	~	~	~	~		~
2	~	~		~	~	
3	~		~	~		~
Tick mark the CO, PO and PSO mapping						

NATURAL LANGUAGE PROCESSING AND TEXT MINING						
	22505242	Course	22.0	Credits L-	0 1 0	
Course Code	type	PEC	T-P	2 - 1 - 0		
Houng/moder I T D	2 2 0			Total	2	
Hours/week: L-1-P	2-2-0			credits	5	
	L = 30Hrs; T =	= 10Hrs;P $= 0$	0Hrs	CIE Marks 100		
I otal Contact Hours	Total = 40Hrs					
Flipped Classes content				SEE Marks	100	

Course Objectives:

- 1. Learn the techniques in natural language processing.
- 2. Familiar with the natural language generation.
- 3. Be exposed to Text Mining.
- 4. Analyze the information retrieval techniques

Prerequisite: Database Management Systems

Unit – I	8 Hours
OVERVIEW AND LANGUAGE MODELING: Overview: 0	Origins and challenges of NLP
Language and Grammar-Processing Indian Languages- NLP Ap	plications-Information Retrieval.
Language Modeling: Various Grammar- based Language Model	ls-Statistical Language Model.

Unit – II	8 Hours				
WORD LEVEL AND SYNTACTIC ANALYSIS: Word Level Analysis: Regular Expressions-					
Finite-State Automata-Morphological Parsing-Spelling Error	Detection and correction-Words				
and Word classes-Part-of Speech Tagging. Syntactic Ana	alysis: Context free Grammar-				
Constituency- Parsing-Probabilistic Parsing.					

Unit – III

8 Hours

Extracting Relations from Text: From Word Sequences to Dependency Paths: Introduction, Subsequence Kernels for Relation Extraction, A Dependency-Path Kernel for Relation Extraction and Experimental Evaluation. Mining Diagnostic Text Reports by Learning to Annotate Knowledge Roles: Introduction, Domain Knowledge and Knowledge Roles, Frame Semantics and Semantic Role Labeling, Learning to Annotate Cases with Knowledge Roles and Evaluations. A Case Study in Natural Language Based Web Search: InFact SystemOverview, The GlobalSecurity.org Experience.

Unit – IV-

8 Hours

Evaluating Self-Explanations in iSTART: Word Matching, Latent Semantic Analysis, and Topic Models: Introduction, iSTART: Feedback Systems, iSTART: Evaluation of Feedback Systems, Textual Signatures: Identifying Text-Types Using Latent Semantic Analysis to Measure the Cohesion of Text Structures: Introduction, Cohesion, Coh-Metrix, Approaches to Analyzing Texts, Latent Semantic Analysis, Predictions, Results of Experiments. Automatic Document Separation: A Combination of Probabilistic Classification and Finite- State Sequence Modeling: Introduction, Related Work, Data Preparation, Document Separation as a Sequence Mapping Problem, Results. Evolving Explanatory Novel Patterns for Semantically-Based Text Mining: Related Work, A Semantically Guided Model for Effective TextMining.

Unit –V 8 Hours INFORMATION RETRIEVAL AND LEXICAL RESOURCES: Information Retrieval: Design features of Information Retrieval Systems-Classical, Non classical, Alternative Models of Information Retrieval - valuation Lexical Resources: World Net-Frame Net- Stemmers-POS Tagger- Research Corpora.security

Text Books

1. Tanveer Siddiqui, U.S. Tiwary, "Natural Language Processing and Information Retrieval", Oxford University Press, 2008.

(Eds), 2. Anne Kao Stephen R. Poteet "Natural and LanguageProcessingandTextMining",SpringerVerlag London Limited 2007.

References

1. Daniel Jurafsky and James H Martin, "Speech and Language Processing: Anintroduction to Natural Language Processing, Computational Linguistics and SpeechRecognition", 2nd Edition, Prentice Hall, 2008.

2. James Allen, "Natural Language Understanding", 2nd edition,

Benjamin/Cummingspublishingcompany, 1995.

3. Gerald J. Kowalski and Mark.T. Maybury, "Information Storage and Retrieval systems", Kluwer academic Publishers, 2000.

4. Steven Bird, Ewan Klein, Edward Loper, "Natural Language Processing with Python," Publisher: O'Reilly Media, June 2009

5. Christopher D.Manning and HinrichSchutze, "Foundations of Statistical Natural Language Processing", MIT Press, 1999.

Course delivery methods Assessment methods
--

1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project
3.	Flipped Classes	3.	Lab Test
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination
5.	Virtual Labs (if present)		

Course Outcome (COs)

	Course Outcome (COs)							
Lea	rning Levels:							
Re	Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create							
	be end of the course, the student will be able to	Learning	PO(s)	PSO (s)				
Att	At the end of the course, the student will be able to		10(5)	130(8)				
1.	Analyze the natural language text	L4	1,2,3	1,2,3				
2.	Generate the natural language.	L2	1	1				
3.	Demonstrate Text mining	L2	1,3	1,3				
4.	Apply information retrieval techniques	L4	1,2,3	1,2,3				

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA tests	Online Quiz	Addition of two OAs or Course Project	Course Seminar	Total Marks	
Marks	25+25= 50	4* 5 marks = 20	10+10 =20	10	100	
OBA- Open Book Assignment						

Minimum score to be eligible for SEE: 50 OUT OF 100

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be \geq 40%, however overall score of
	CIE + SEE should be \geq 50%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2
	questions in part C.

CO-PO Mapping (Planned)			CO-PSO Mapping(Planned)			
СО	PO1	PO2	PO3	PSO1	PSO2	PSO3
1	~	~	~	~	~	~
2	~			~		
3	~		~	~		~

4	~	~	~	~	>	~
Tick mark the CO, PO and PSO mapping						

Advances in Operating System						
Course Code	22SCS243 Course	PEC	Credits L-	2 - 1 - 0		
		type		T-P		
Hours/wook. I .T.P	2 - 2 - 0			Total 3		
110ur 5/ week. L-1-1				credits	5	
Total Contact Hours	L = 30Hrs; T = 10Hrs; P = 00Hrs			CIF Marks	100	
Total Contact Hours	Total = 40Hrs				100	
Flipped Classes content				SEE Marks	100	

	Course learning objectives
1.	Introduce the fundamentals of Operating System.
2.	Present the concepts of distributed operating system that includes Architecture, Mutual
	Exclusion Algorithms, Deadlock Detection Algorithms and Agreement Protocols.
3.	Discuss distributed resource management components including algorithms for
	implementation of distributed shared memory, recovery and commit protocols.
4.	Identify the components and management aspects of Real time, Mobile operating
	Systems.

Pre-requisites: Computer Concepts & Programming, Computer Organization.

Unit – I	8 Hours
Operating System Overview, Process description & Control: Operating System	tem Objectives
and Functions, Major Achievements, Developments Leading to Modern Oper	ating Systems,
Microsoft Windows Overview, Traditional UNIX Systems, Modern UNIX System	ems, What is a
Process?, Process States, Process Description, Process Control, Execution of	the Operating
System, Security Issues.	

Unit – II	8 Hours
Threads, SMP, and Microkernel, Virtual Memory: Processes and Thread	ds, Symmetric
Multiprocessing (SMP), Micro Kernels, Windows Vista Thread and SMP Hours	Management,
Linux Process and Thread Management. Hardware and Control Structures, Ope	erating System
Software, UNIX Memory Management.	

Unit – III	8 Hours
Multiprocessor and Real-Time Scheduling: Multiprocessor Schedulin	g, Real-Time
Scheduling, Linux Scheduling, UNIX PreclsSl Scheduling, Windows Vista Hou	rs Scheduling,
Process Migration, Distributed Global States, Distributed Mutual Exclusion.	

Unit – IV	8 Hours
Embedded Operating Systems: Embedded Systems, Characteristics of Embed	ded Operating
Systems, eCOS, TinyOS, Computer Security Concepts, Threats, Attacks, and As	sets, Intruders.

Unit – V8 HoursKernel Organization: Using Kernel Services, Daemons, Starting the Kernel, Control in the
Machine , Modules and Device Management, MODULE Organization, MODULE Installation
and Removal, Process and Resource Management, Running Process Manager, Creating a
new Task , IPC and Synchronization, The Scheduler , Memory Manager , The Virtual Address
Space, The Page Fault Handler , File Management. The windows NT/2000/XP
kernel:
Introduction, The NT kernel, Objects , Threads, Multiplication Synchronization, Traps,
Interrupts and Exceptions, The NT executive , Object Manager, Process and Thread
Manager , Virtual Memory Manager, I/o Manager.

Self Study Topics			
Unit	Topic description		
No.			
1	The Evolution of Operating Systems.		
2	Windows Vista Memory Management, Summary.		
3	Distributed Deadlock.		
4	Malicious Software Overview, Viruses, Worms, and Bots, Rootkits.		
5	The cache Manager Kernel local procedure calls and IPC, The native API,		
	subsystems.		

	Books
	Text Books:
1.	William Stallings: Operating Systems: Internals and Design Principles, 6th Edition,
	Prentice Hall, 2013.
2.	Gary Nutt: Operating Systems, 3rd Edition, Pearson, 2014.
	Reference Books:
1.	Silberschatz, Galvin, Gagne: Operating System Concepts, 8th Edition, Wiley, 2008
2.	Andrew S. Tanenbaum, Albert S. Woodhull: Operating Systems, Design and
	Implementation, 3rd Edition, Prentice Hall, 2006.
3.	Pradeep K Sinha: Distribute Operating Systems, Concept and Design, PHI, 2007.
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	https://nptel.ac.in/courses/106/106/106106144/
2.	https://www.cse.iitb.ac.in/~mythili/os/

Course delivery methods Assessment methods
--

1.	Chalk and Talk	1.	IA tests
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project
3.	Flipped Classes	3.	Lab Test
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination
5.	Virtual Labs (if present)		

	Course Outcome (COs)				
Lea	rning Levels:				
Re	Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create			Cr - Create	
At the end of the course, the student will be able to Learning Level PO(s)			PO(s)	PSO(s)	
1.	Demonstrate the Mutual Exclusion, Deadlock Detection and Agreement Protocols of Distributed Operating System.	L3	1,3	1,3	
2.	Explain the various resource management techniques for distributed systems.	L2	1	1	
3.	Identify the different features of real time and mobile operating system.	L4	1,3	1,3	
4.	Modify existing open source kernels in terms of functionality or features used.	L4	1,2,3	1,2,3	

Components	Addition of two IA tests	Online Quiz	Addition of two OAs or Course Project	Course Seminar	Total Marks
Marks	25+25= 50	4* 5 marks = 20	10+10 =20	10	100

OBA- Open Book Assignment Minimum score to be eligible for SEE: 50 OUT OF 100

Sch	eme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be \geq 40%, however overall score of
	CIE + SEE should be \geq 50%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2
	questions in part C.

CO-PO Mapping (Planned)	CO-PSO Mapping(Planned)

СО	PO1	PO2	PO3	PSO1	PSO2	PSO3
1	~		~	~		>
2	~			~		
3	~	~		~		~
4	~	~	~	~	~	~
Tick n	nark the CO, P	O and PSO ma	pping			

MOBILE AND PERVASIVE COMPUTING						
Course Code	22SCS244 Course	PEC	Credits L-	2 - 1 - 0		
	type		1LC	Т-Р	2 1 0	
Hours/week. IT.P	2 - 2 - 0			Total	3	
110ur 5/ week. 12-1-1				credits	5	
Total Contact Hours	L = 30Hrs; T = 10Hrs; P = 00Hrs			CIE Marks	100	
Tour contact Hours	Total = 40Hrs				100	
Flipped Classes content				SEE Marks	100	

Course Objectives:

1. To introduce the fundamental concepts of wireless networks such as Blue tooth, WIFI, WiMax, WATM and to appreciate the architectural design considerations of mobile

computing environment.

2. To familiarize with the concepts of location management, mobility management and tracking management, I Cellular networks.

3. To appreciate principles of Pervasive computing and their applications.

4. To appreciate the use of mobile computing applications based on the paradigm of context aware computing.

Pre-requisite: Introductory course on mobile computing

Unit – I	8 Hours
Wireless networks-emerging technologies-Blue tooth, Wi-Fi, Wi-MAX, 3G, W	ATM, Mobile
IP protocols -WAP push architecture-WML scripts and applications	

Unit	– II
------	------

8 Hours

Mobile computing environment—functions-architecture-design considerations content architecture -CC/PP exchange protocol, context manager. Data management in WAE-Coda file system-caching schemes-Mobility QoS. Security in mobile computing

Unit – III

8 Hours Handoff in wireless mobile networks-reference model-handoff schemes. Location management in cellular networks -Mobility models-location and tracking management schemes-time, movement, profile and distance based update strategies. Alternative Technologies

Unit – IV

8 Hours

Pervasive Computing-Principles, Characteristics-interaction transparency, context aware, automated experience capture. Architecture for pervasive computing-Pervasive devicesembedded controls.-smart sensors and actuators -Context communication and access services

Unit –V	Contact Hours = 8 Hours
Open protocols-Service discovery technologies-SDP, Jini,	SLP, UpnP protocols-data
synchronization- Sync ML framework -Context aware mobile	services -Context aware sensor
networks, addressing and communications. Context aware securi	ity

Text Books

1. Ivan Stojmenovic, Handbook of Wireless Networks and Mobile Computing, John Wiley & sons Inc, Canada, 2002.

2. Asoke K Taukder, Roopa R Yavagal, Mobile Computing, Tata McGraw Hill Pub Co., New Delhi, 2005.

References

1. Seng Loke, Context-Aware Computing Pervasive Systems, Auerbach Pub., New York, 2007.

2. Uwe Hansmann et al, Pervasive Computing, Springer, New York, 2001

Course delivery methods			Assessment methods		
1.	Chalk and Talk	1.	IA tests		
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project		
3.	Flipped Classes	3.	Lab Test		
4.	Practice session/Demonstrations in	4.	Semester End Examination		

	Labs	
5.	Virtual Labs (if present)	

	Course Outcome (COs)							
Lea	Learning Levels:							
Re	- Remember; Un - Understand; Ap - Apply; An - Analy	sis; Ev - Ev	aluate;	Cr - Create				
At tl	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)				
1.	Explain the working of different wireless networks.	L2	1,3	1,3				
2.	Develop WML scripts for various WAP architectures.	L3	1	1				
3.	Explain the performance of different mobile computing architectures	L2	1	1,2				
4.	Distinguish between working of mobile and Cellular device networks w.r.t location, mobility and tracking performance parameters	L4	1,2.3	1,2,3				
5.	Explain the principles and characteristics of Pervasive computing devices in the context of communication and access service parameters	L2	2,3	1,2,3				

Components	Addition of two IA tests	Online Quiz	Addition of two OAs or Course Project	Course Seminar	Total Marks
Marks	25+25= 50	4* 5 marks = 20	10+10 =20	10	100
OBA- Open Book Assignment					

Minimum score to be eligible for SEE: 50 OUT OF 100

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration.
2.	Minimum marks required in SEE to pass: Score should be \geq 40%, however overall score of
	CIE + SEE should be \geq 50%.
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7 questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2 questions in part C.

CO-PO Mapping (Planned)			CO-PSO Mapping(Planned)			
СО	PO1	PO2	PO3	PSO1	PSO2	PSO3
1	~		~	~		~
2	~			~		
3	~			~		~

4	~	~	~	~	~	~
5		~	~	~	~	~
Tick n						

Cloud Security						
Course Code	2808245	Course	PEC	Credits L-	2 - 1 - 0	
	20002-13	type	FEC	Т-Р		
Hours/wook I T-P	2-2-0			Total	3	
Hours/ week. L-1-1				credits	5	
Total Contact Hours	L = 30Hrs; T = 10Hrs; P = 00Hrs			CIF Morke	100	
Total Contact Hours	Total = 40Hrs				100	
Flipped Classes content	Flipped Classes content			SEE Marks	100	

Course Learning Objectives:

- 1. To understand the importance and fundamentals of Cloud Security.
- 2. To acquire knowledge on risk issues and legal aspects of cloud computing.
- 3. To understand various data security techniques.
- 4. To design a cloud security framework for efficient and secure operations.

Prerequisite: Cloud Computing.

UNIT I

Introduction to cloud computing and security : Understanding cloud computing, The IT foundation for cloud, The bottom line, Historical view: roots of cloud computing, A brief primer on security: from 50000 ft, a brief primer on architecture, Cloud is driving broad changes, Summary. Cloud computing architecture: Cloudreference architecture, Control over security in cloud model, Making sense of cloud deployment, Making sense of service models, How clouds are formed and key examples, Real world cloud usage scenarios, Summary.

UNIT II

8 Hours

8 Hours

Securing the cloud: Data security: Overview of data security in cloud computing, Data encryption: Applications and limits, Cloud data security: Sensitive data categorization, Cloud data storage, Cloud lock-in(The Roach Motel Syndrome), Summary. Securing the cloud: Key strategies and best practices: Overall strategy: Effectively managing risk, Overview of security controls, the limits of security controls, Best practices, Security monitoring, Summary.

UNIT IV 8 Hours Security criteria: Building an internal cloud: Private clouds: Motivation and overview, Security criteria for ensuring a private cloud, Summary. Security criteria: Selecting an external cloud provider: Selecting a CSP: Overview of assurance, Selecting a CSP: overview of risks, Selecting a CSP : Security criteria, Summary

UNIT V Evaluating cloud security: An information: Security framework, Evaluating cloud security, Check lists for evaluating cloud security, Metrics for the check lists, Summary. **Operating a cloud:** From architecture to efficient and secure operations.

TEXT BOOK: 1. Securing the Cloud, Cloud Computer Security Techniques and Tactics, Vic (J. R) Winkler, ELSEVIER

REFERENCE BOOKS:

1. Cloud Security: A Comprehensive Guide to Secure Cloud Computing, Ronald L. Krutz, Russell Dean Vines, Wiley Publishing, Inc.

Course delivery methods			Assessment methods			
1.	Chalk and Talk	1.	IA tests			
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project			
3.	Flipped Classes	3.	Lab Test			
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination			
5.	Virtual Labs (if present)					

Course Outcome (COs)						
Learning Levels:						
Re - Remember; Un - Understand; Ap - Apply; An - Analysis; Ev - Evaluate; Cr - Create						
At the end of the course, the student will be able to	Learning	PO(s)	PSO (s)			
At the end of the course, the student will be able to	Level	10(5)	130(8)			

UNIT III

8 Hours

8 Hours

1.	Examine various cloud security issues and design a security solution	L4	1,3	1,2,3
2.	Identify various risk issues and resolve it.[L2	1	1
3.	Explain various data security techniques and best strategies followed to implement it.[L2	1,2,3	1,3
4.	Examine the cloud security framework for efficient operations.[L4	1,2,3	1,2,3

Components	Addition of two IA tests	Online Quiz	Addition of two OAs or Course Project	Course Seminar	Total Marks
Marks	25+25= 50	4* 5 marks = 20	10+10 =20	10	100

OBA- Open Book Assignment Minimum score to be eligible for SEE: 50 OUT OF 100

Sch	Scheme of Semester End Examination (SEE):					
1.	It will be conducted for 100 marks of 3 hours duration.					
2.	Minimum marks required in SEE to pass: Score should be \geq 40%, however overall score of					
	CIE + SEE should be \geq 50%.					
3.	Question paper contains 3 parts - A,B & C, wherein students have to answer any 5 out of 7					
	questions in part A, 5 out of 10 questions choosing 1 question from each unit in part B & 1 out of 2					
	questions in part C.					

CO-PO Mapping (Planned)				CO-PSO Mapping(Planned)		
СО	PO1	PO2	PO3	PSO1	PSO2	PSO3
1	~		~	~	~	~
2	~			~		
3	~	~	~	~		~
4	~	~	~	~	~	~
Tick	mark the CO, P	O and PSO ma	pping			