

Guidelines for the Certification courses

1. The emerging technologies courses would be offered as Certification courses to improve the student knowledge and skills during the vacations.

2. It would be offered to the 5^{th} sem students (2021 scheme onwards) as a 30 hours course.

3. A CGPA of 6 and above is required to register for the Certification course.

4. No credits would be associated with the certification courses.

5. The Certification course would be conducted in the vacation for a period of 1 week (4 to 5 hours daily in 2 sessions).

6. The sessions would be consisting of theory classes and hands on experience (in labs).

7. Students would be encouraged to bring laptops to class inorder to reduce the load on CC resources & promote the BYOD model for better interaction & learning.

8. The sessions would be engaged by 2 faculty members ideally (max 3) working in the CoE, lab or the emerging technology.

9. Wherever possible, 1 external expert could also be involved from local startups or industries working in the emerging technology.

10. The batch size should consist of a minimum of 30 students inorder to run the certification course.

11. Attendance of 100% is required to be eligible for the examinations and the Certification.

12. Examination pattern can be MCQ type, written, viva voce, project based or hands on/ practical oriented based on the type of certification course. It will be mentioned in the syllabus.

13. Grading in the certificate will be based on the Absolute system being followed for 2021 & 2022 scheme. Letter grade will be printed on the certificate based on the marks scored. The Certificate will be issued by the offering department.

14. The Introduction/Orientation session to Certification courses would be given after the 2^{nd} IA test followed by registration by the students after paying the full fees.

15. It is decided to collect the following fees for the Certification programs.

- A. Rs 1000 for GIT students
- B. Rs 2000 for external students/participants
- C. Rs 3000 for Industry participants
- 16. No Refund will be given to ongoing certification courses.

Certification course Introduction to Artificial Intelligence and Machine Learning

Total Contact Hours	Lecture = 02 Hours Practical = 02 Hours Total = 30 Hours	CIE Marks	100
Semester in which the course is offered	V		

	Objectives of the Certification course					
1.	To understand various concepts of artificial intelligence and machine learning					
2.	To demonstrate fundamental programming capabilities in Python					
3.	To comprehend the working of basic machine learning algorithms					
4.	To apply artificial intelligence and machine learning techniques to real world problems					

Pre-requisites: Basics of Python programming, Mathematics involving statistics, probability

Topic – I	Contact Hours = 03 Hours
Introduction to Artificial Intelligence and Machine Learning: N	Neaning and scope of AI, Stages of
Artificial Intelligence, Relationship between AI and ML, Application	ns of Artificial Intelligence.

Topic – 2	Contact Hours = 06 Hours
Python Basics: Datatypes, Control Statements – Decision-Making	and Iteration Constructs, High level
Data Constructs – Working with Lists, Tuples and Dictionaries	

Topic – 3	Contact Hours = 08 Hours
Python Packages: NumPy – Creating and working with ndarrays,	Pandas – Creating and working with
dataframes, Matplotlib – Plotting and Visualization, Scikit-Learn –	A tool for Predictive Analysis

Topic – 4 Contact Hours = 06 Hours						rs						
Basic	Machine	Learning	I :	Definition	and	Features	of	Mac	hine	Learning,	Machine	Learning
Approaches, Linear Regression, Logistic Regression, Naïve Bayes algorithm												

Topic – 5	Contact Hours = 07 Hours
Basic Machine Learning II: Decision Trees and Random Forests,	Support Vector Machines, K-means
Clustering, , Model building and evaluation, Performance Metrics	

	Reference materials
1.	Ben Coppin, Artificial Intelligence Illuminated, Jones and Bartlett, 2004
2.	Tom M. Mitchell, "Machine Learning," Mcgraw-Hill Education (Indian Edition),2013
3.	Elaine Rich Kevin Knight, Shivashankar B Nair: Artificial Intelligence, Tata McGraw Hill 3 rd
	edition 2013.

4.	Stuart Russel, Peter Norvig: Artificial Intelligence A Modern Approach, Pearson 3 rd edition
	2013.
5.	Ethem Alpaydin, "Introduction to Machine Learning", 2 nd Edition, PHI Learning Pvt. Ltd., 2013.
	Links of E-resources
<u> </u>	
6.	https://nptel.ac.in/courses/106105077

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	Quiz	
2.	PPT and Videos	2.	Test- Project /lab based	
3.	Practical/programming sessions	3.	Presentation	
4.	Demonstrations			

	Course Outcome (COs)						
	At the end of the course, the student will be able to:						
Lea	Learning Levels: Re - Remember; Un - Understand; Ap – Learning Levels: Re - Remember; Un - Understand; Ap –						
Арр	ly: An - Analysis; Ev - Evaluate; Cr - Create	Level	PO(S)	P30(3)			
1.	Explain the underlying concepts of AI and ML	Un	1	1			
2.	Implement basic machine learning algorithms	Ар	1,2,3,5,12	1,2,3			
2	Apply the learnings inculcated throughout the course and	۸n	1,2,3,5,9,10,1	1,2,3			
<u> </u>	develop a course project		2				

Quiz (4 numbers)	Test (1 Number)	Total	
4 X 10 marks = 40 marks	60 marks	100 marks	

-			
"		17	•
ч	u	14	
-			

1. Questions can be MCQ type, fill in the blanks, True/False etc

2. Quiz can be conducted during/after the classes.

Eligibility for Test:

1. Minimum of 90% attendance in the classes conducted.

2. Passing the **Test is COMPULSORY** in order **to secure the certificate.**

Sch	neme of Test:
1.	It will be conducted for 60 marks for a maximum of 2 hours duration.
2.	Minimum marks required to pass in the Test: Score should be \ge 24 marks, however overall score of Quiz + Test should be \ge 40% of Total marks to pass the certification course.
3.	A. Computer based/ programming courses should have Project based evaluation in Test. Project can be done throughout the duration of the course & a presentation/demonstration can be kept at the end for evaluation.

B. Theoretical courses can have Descriptive Questions in the Test.

C. Other courses which are lab based can have numerical, experiment-based questions.

	CO-PO Mapping (planned)							CO-P (SO Map planned	oping I)					
0	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	V												٧		
2	V	V	V		V							V	٧	٧	٧
3	V	V	V		V				V	٧		V	٧	٧	V

Name & Signature of Faculty members offering the course

AI Working Group (AIWG)

Dr. Swetha I. Goudar	Dr. Padma Dandannavar	Dr. Manjula Ramannavar	Dr. Uttam Deshpande
Professor, MCA	Asso. Prof., ISE	Asso. Prof., CSE	Asso. Prof., ECE
Head – AIWG			

Certification course Syllabus Cyber Security: A Practical Approach

Total Contact Hours	Lecture =8 HoursPractical =22 HoursTotal =30 Hours	CIE Marks	100
Semester in which the	5 th sem students (2021 scheme		
course is offered	onwards)		

Objectives of the Certification course

- To understand the basics of cybersecurity and get familiar with cybersecurity analysis tools.
- To learn about security threats and countermeasures
- To gain knowledge on tools and methods used in pentesting.

Pre-requisites: Basic understanding of internet and computers.

Topic – I Introduction to Cyber Security	Contact Hours = 5 Hours	
Theory/Practical/demonstration		1/2/2

Introduction to Information Security and its policies: CIA Triad-3 pillars of information security architecture, CIA components and its importance, Cyber security threats and best practices, Access controls and its types, Types of Cyber Attack, Vulnerability Assessment and its features, Concept and types of Scanning Methodology, Penetration Tests. Installation of Linux Based Operating System, Basic Linux Commands, Commands for security professionals (mainly AppSec and Pentesters), Common ports and protocols like 22, 25, ssh, https, How DNS works, How SSL works, What are the common network threat around these, MiTM, Network sniffing, Various TCP attacks, DoS and DDoS attacks and its preventions, Common ideas on firewall or Software defined networks, Basic network troubleshooting like why internet is slow or down, why wi-fi is not working, open networks issues et al.

Self Study: Active Reconnaissance, Types of Reconnaissance, Passive Reconnaissance

Topic – 2 Cryptography and Firewalls	Contact Hours = 5 Hours				
Theory/Practical/demonstration	1/2/2				
Introduction to cryptography, Cryptography and Cryptanalysis, Types of cryptograpy, Hash Cryptography,					
understanding digital certificates and signatures, Types of cryptograph	ic attacks, Working with Cryptool and				
Applications of Cryptography.					
Types of Firewalls and its benefits, Stateful vs. Stateless Filtering Firewal	l and firewall detection tools				
Self-Study: Traditional cryptographic attacks					
Topic – 3 Web Application Security and Pentesting	Contact Hours = 20 Hours				
Theory/Practical/demonstration	6/4/10				
Understanding of various HTTP methods, Understanding response status codes. Understanding HTTP Headers.					
Practical & demonstration of the following Tools					
Kali Linux, Nmap, Metasploit, Shodan, Wireshark & Burp Suite					
Self Study: PUT vs POST, UPDATE vs PATCH					

	Reference materials					
1.	Text Books					
	Sunit Belapure and Nina Godbole, "Cyber Security: Understanding Cyber Crimes, Computer					
	Forensics and Legal Perspectives", Wiley India Pvt Ltd, ISBN: 978-81-265-21791, 2011, First					
	Edition (Reprinted 2018).					
	William Stallings, Cryptography and Network Security, Pearson 6th edition					
	Michael Gregg, Omar Santos, Certified Ethical Hacker (CEH) Version 10 Cert Guide, Pearson					
	IT Certification, 3rd Edition, 2019					
2.	2. E-resources (NPTEL/SWAYAM Any Other)- mention links					
	EC Council Cyber Security Courses					
	https://www.eccouncil.org/					
	SWAYAM Course on Cyber Security					
	https://onlinecourses.swayam2.ac.in/cec20_cs15/preview_					
	CISCO					
	https://skillsforall.com/course/introduction-to-cybersecurity?courseLang=en-US					
	NPTEL Course on Cyber Security and Privacy By Prof. Saji K Mathew, IIT Madras					
	https://onlinecourses.nptel.ac.in/noc23_cs127/preview_					
	https://www.udemy.com/course/cybersecurity-law-policy					
	https://academy.apnic.net/en/course/introduction-to-cybersecurity					
	https://www.coursera.org/specializations/intro-cyber-security					
	https://www.coursera.org/learn/cybersecurity-for-everyone					
	https://www.classcentral.com/tag/cybercrime					

Course delivery methods			Assessment methods		
1.	Chalk and Talk	1.	Quiz		
2.	PPT and Videos	2.	Test- Project /lab based		
3.	Practical/programming sessions	3.	Presentation		
4.	Demonstrations				

Course Outcome (COs)

At the end of the course, the student will be able to (Highlight the **action verb** representing the learning level.)

Lea	rning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning		PSO (s)
An -	Analysis; Ev - Evaluate; Cr - Create	Level	10(5)	130(8)
	Interpret the fundamental principles of information security,		1	1
1.	including the CIA Triad, access controls, and types of cyber	L2		
	attacks, establishing a solid foundation in cybersecurity concepts.			
	Infer the cryptographic principles and firewall technologies,		1, 5,	1
2	enabling them to make informed decisions in selecting and	12	9, 12	
2.	implementing cryptographic solutions and evaluating the	LZ		
	effectiveness of firewall measures.			
	Apply penetration testing methodologies and tools, such as		5, 8, 9	1,3
2	Metasploit and Shodan, to identify and exploit vulnerabilities in	12	12	
5.	real-world scenarios, demonstrating practical proficiency in ethical			
	hacking.			

	Analyze network protocols, vulnerabilities, and web application		5, 8, 9	1,3	
4	security using tools like Wireshark and Burp Suite, showcasing the	T 4	12		
4.	ability to assess complex security scenarios and formulate strategic	L4			
	mitigation plans.				

Quiz (4 numbers)	Test (1 Number)	Total		
4 X 10 marks = 40 marks	60 marks	100 marks		

Quiz:

- 1. Questions can be MCQ type, fill in the blanks, True/False etc
- 2. Quiz can be conducted during/after the classes.

Eligibility for Test:

1. Minimum of 90% attendance in the classes conducted.

2. Passing the Test is COMPULSORY inorder to secure the certificate.

Scheme of Test:

- 1. It will be conducted for 60 marks for a maximum of 2 hours duration.
- 2. Minimum marks required to pass in the Test: Score should be ≥ 24 marks, however overall score of Quiz + Test should be $\ge 40\%$ of Total marks to pass the certification course.
- 3. A. Computer based/ programming courses should have Project based evaluation in Test. Project can done throughout the duration of the course & a presentation/demonstration can be kept at the end for evaluation.
 - B. Theoretical courses can have Descriptive Questions in the Test.
 - C. Other courses which are lab based can have numerical, experiment-based questions.

	CO-PO Mapping (Planned)								CO-P	-PSO Mapping (Planned)					
С	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	\checkmark														
2	\checkmark														
3															\checkmark
4								\checkmark							
	Tick mark the CO, PO and PSO mapping														

Name & Signature of Faculty members offering the course

HOD

Prof. Sagar Pujar Dr. Pijush Barthakur Dr. Bhagyashree Pandurangi Dr. Manjunath Managaluli Dr. Sanjeev Sannakki

Cognitive Computing and Visual Perception

Total Contact HoursLecture = 15 Hours Practical = 15 Hours
Total = 30 HoursCIE Marks100Semester in which the
course is offered 5^{th} , 6^{th} , 7^{th} sem BE students100

Objectives of the Certification course

- 1. Understand the fundamental principles of cognitive computing and visual perception.
- 2. Apply linear algebra techniques for practical problem-solving in image processing.
- 3. Evaluate and critique cognitive models and algorithms in the context of image processing.

Pre-requisites : Basics of Mathematics & fundamental python programming

Topic – 1 Cognitive Computing and Visual Perception Contact Hours = 6 Hours Introduction: Definition of Cognition, Cognitive Computing , Defining and Coanitive Understanding Cognitive Computing, Computing Evolution and Importance, Difference Between Cognitive, Computing and Artificial, Intelligence, The Elements of a Cognitive System. Machine Learning Techniques, Developing a Cognitive Computing Application, Advantages of Cognitive Computing, Features of Cognitive Computing, Limitations of Cognitive Computing. Visual Perception - Visual Perception - Introduction, Digital Images, Low Level Vision, Medium Level Vision High Level Vision.

Topic – I Foundations of Programming and Linear AlgebraContact Hours = 8 HoursFoundations of Programming with Python and PyTorch - Introduction to Python, NumPy,
SciPy, and Matplotlib for Scientific Computing, Data Manipulation with Pandas, Introduction
to PyTorch for Deep Learning, Exploratory Data Analysis (EDA) with Python, Class room
project demonstration.

Linear Algebra

Fundamentals of Linear Algebra, Statistical Concepts for Data Analysis, Linear Algebra Applications in Machine Learning, Statistical Analysis with Python, Practical Linear Algebra and Statistics, **Class room project demonstration**

Topic – 2 Computer Vision Basics and DNN FundamentalsContact Hours = 8 HoursIntroduction to Computer Vision (CV) - Basics of Digital Image Processing, Image
Processing and Computer Vision Fundamentals, Applications of Computer Vision, Challenges
and Advances in Computer Vision, Class room project demonstration.

Deep Neural Networks (DNN) - Introduction to Artificial Neural Networks (ANN), From ANN to Deep Neural Networks (DNN), Convolutional Neural Networks (CNN) for Image Processing, Recurrent Neural Networks (RNN) for Sequential Data, Applications of DNN in Computer Vision and Natural Language Processing (NLP), Class room project demonstration.

Topic – 3 Advanced Topics in Computer Vision and Natural	
Language Processing	

Generative Adversarial Networks (GANs) in Vision, Attention Mechanisms in NLP: Transformer Architecture (Vision Transformer –ViT), **Class room project demonstration.**

	Books
	Text Books:
1.	Christopher M. Bishop - "Pattern Recognition and Machine Learning" - Springer, 1st
	Edition, 2006.
2.	Kevin P. Murphy - "Machine Learning: A Probabilistic Perspective" - MIT Press, 2012.
3.	Vishal Jain, Akash Tayal, Jaspreet Singh, Arun Solanki -"Cognitive Computing
	Systems: Applications and Technological Advancements", Apple Academic Press,
	2021
4.	Kolla Bhanu Prakash, G. R. Kanagachidambaresan, et al. – "Cognitive Engineering for
	Next Generation Computing: A Practical Analytical Approach", Wiley 2021.
	Reference Books:
1.	Richard O. Duda, Peter E. Hart, and David G. Stork - "Pattern Classification" - Wiley,
	2nd Edition, 2000.
2.	Trevor Hastie, Robert Tibshirani, and Jerome Friedman - "Elements of Statistical
	Learning: Data Mining, Inference, and Prediction" - Springer, 2nd Edition, 2009.

Course delivery methods			Assessment methods			
1.	Chalk and Talk	1.	Quiz			
2.	PPT and Videos	2.	Test- Project /lab based			
3.	Practical/programming sessions	3.	Presentation			
4.	Demonstrations					

At	Course Outcome (COs) At the end of the course, the student will be able to (Highlight the action verb representing the					
	learning level.)			C		
Lea	rning Levels: Re - Remember; Un - Understand; Ap	Learning				
- Aj	oply; An - Analysis; Ev - Evaluate; Cr - Create	Level	10(8)	150(8)		
1.	Understand machine learning concepts and their applications.	Un	1,2,12	1,2		
2.	Apply supervised learning algorithms for classification and regression tasks.	Ар	1,2,12	1,2		
3.	Analyze and implement deep learning techniques for complex pattern recognition and image analysis tasks.	An	1,2,12	1,2,3		
4.	Evaluate and compare machine learning models,	Ev	1,2,6,7,9,1	1,2,3		

addressing overfitting challenges.	2	

Quiz (4 numbers)	Test (1 Number)	Total
4 X 10 marks = 40 marks	60 marks	100 marks

Quiz:

1. Questions can be MCQ type, fill in the blanks, True/False etc

2. Quiz can be conducted during/after the classes.

Eligibility for Test:

- 1. Minimum of 90% attendance in the classes conducted.
- 2. Passing the Test is COMPULSORY inorder to secure the certificate.

Scheme of Test:

- 1. It will be conducted for 60 marks for a maximum of 2 hours duration.
- 2. Minimum marks required to pass in the Test: Score should be \ge 24 marks, however overall score of Quiz + Test should be \ge 40% of Total marks to pass the certification course.
- A. Computer based/ programming courses should have Project based evaluation in Test. Project can done throughout the duration of the course & a presentation/demonstration can be kept at the end for evaluation.
 - B. Theoretical courses can have Descriptive Questions in the Test.
 - C. Other courses which are lab based can have numerical, experiment based questions.

													(CO-PS	C
	CO-PO Mapping (Planned)								Mapping						
								(l	Planne	d)					
С	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓	✓			✓							✓	✓	✓	
2	✓	✓			✓							✓	✓	✓	
3	✓	✓			✓		✓	✓	✓	✓		✓	✓		
4	✓	✓			✓							✓	✓	✓	✓

Name & Signature of Faculty members Faculty members involved in designing the syllabus

Name & Signature of verifying/approving the syllabus

Total Contact Hours	Lecture =24 Hours Practical = 06 Hours Total = 30 Hours	CIE Marks	100
Semester in which the course is offered			

Objectives of the Certification course

- 1. To understand the overview of electric vehicles (EV) with respect to Indian and global context & comparison between conventional IC engine (ICE) and EV.
- 2. To understand the architecture and configuration of EV and ICE
- 3. To design the battery system for EV and analyzing performance parameters.
- 4. To analyze the functions of BMS in EV.
- 5. To understand assembling of EV components and demonstrating it practically.

Pre-requisites : Physics

Topic – I: Introduction to Electric Vehicles	Contact Hours = 6 Hours
Conventional IC Engine (ICE) vehicles: Structure and working	of ICE vehicles, comparison of ICE
vehicles and Electric vehicles (EV).	

Overview of EV: History of EV, evolution and current trends, Types of EV- Battery operated Electric Vehicles (BEVs), Plug-in Hybrid Electric Vehicles (PHEVs) and Hybrid Electric Vehicles (HEVs), advantages of electric vehicles.

Topic – 2: EV ArchitectureContact Hours = 6 HoursEV subsystems and key components-electric motor, battery, power electronic converters-functions and
architecture. Types of EV batteries and their features, overview of emerging EV battery technologies,
EV Power train architecture, comparison of ICE power train architecture with Electric vehicles power
train.

Topic – 3: Sizing of Battery & Motor for EVs Contact Hours = 6 Hours

Battery parameters: Voltage rating- cut off voltage, maximum charge voltage, open circuit voltage, terminal voltage, Ah rating, C-Rating, Specific Energy density, Specific Power density, selection of battery for EV (energy density, size & weight, terminal voltage, mechanical withstanding, temperature, maintenance, safe).

Topic – 4: Battery management system (BMS)	Contact Hours = 6 Hours
Functions of BMS, BMS architecture, Battery monitoring-SOC, DO	DD, SOH, Cell Balancing, Cell
Safety.	

Topic – 5: Practical assignments on EV	Contact Hours = 6 Hours	
--	-------------------------	--

Hands on learning of assembling the different components of EV such as battery, motor, controller, throttle, lighting system, etc, and testing the same.

Reference materials					
1.	Electric Vehicle Engineering, Per Enge, Nick Enge, Stephen Zoepf, McGraw Hill, 1st Edition				
	2021				
2	Electric Vehicle Technology, Prof. Suresh Pawar, Notion Press, September 2021.				
2.	https://onlinecourses.nptel.ac.in/noc18_ge09/preview				

Course delivery methods			Assessment methods			
1.	Chalk and Talk	1.	Quiz			
2.	PPT and Videos	2.	Test- Project /lab based			
3.	Practical/programming sessions	3.	Presentation			
4.	Demonstrations					

	Course Outcome (COs)						
At t	At the end of the course, the student will be able to (Highlight the action verb representing the learning						
	level.)						
Leai	Learning Levels: Re - Remember; Un - Understand; Ap - Apply; Learning						
An -	Analysis; Ev - Evaluate; Cr - Create	Level	PO(3)	F30(S)			
	Compare conventional and electric vehicles and Explain the need		1,6,7,12	1			
1.	of EV in transportation industry highlighting the impact on	Un					
	global economy & environment.						
2.	Explain the architecture of EV and ICE.	Un	1,12	1			
2	Design the size of battery and selection of battery for EV	٨٣	1,7,12	1,3			
5.	applications.	Ар					
			2, 3, 4,				
4.	Test and demonstrate the understanding of EV assembling.	An	9, 10,	1,3			
			12				

Scheme of Continuous Internal Evaluation (CIE):

Quiz (4 numbers)	Test (1 Number)	Total
4 X 10 marks = 40 marks	60 marks	100 marks

Quiz:

1. Questions can be MCQ type, fill in the blanks, True/False etc

2. Quiz can be conducted during/after the classes.

Eligibility for Test:

1. Minimum of 90% attendance in the classes conducted.

2. Passing the Test is COMPULSORY inorder to secure the certificate.

Sch	Scheme of Test:				
1.	It will be conducted for 60 marks for a maximum of 2 hours duration.				
2.	Minimum marks required to pass in the Test: Score should be \geq 24 marks, however overall				
	score of Quiz + Test should be \geq 40% of Total marks to pass the certification course.				
3.	A. Computer based/ programming courses should have Project based evaluation in Test. Project				
	can done throughout the duration of the course & a presentation/demonstration can be kept at				
	the end for evaluation.				
	B. Theoretical courses can have Descriptive Questions in the Test.				
	C. Other courses which are lab based can have numerical, experiment based questions.				

CO-PO Manning (Planned)								CO-PSO Mapping							
										(Plannec	1)			
6	PO	РО	РО	PO	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓					✓	✓					✓	✓		
2	✓											✓	✓		
3	✓						✓					✓	✓		✓
4		✓	✓	✓					✓	✓		✓			
	Tick mark the CO, PO and PSO mapping														

Name & Signature of Faculty members offering the course

Certification course Syllabus Template 3D Printing

Total Contact Hours	Lecture = 15 Hours Total = 30 Hours	Practical =15 Hours	CIE Marks	100
Semester in which the course is offered	5 th semester			

Objectives of the Certification course

Enable students to understand the principle and have a hands-on experience on the working of 3D printers, 3D Scanner, extrusion of 3D printing filaments and ultrasonic welding machine employed to join 3D printed components.

Pre-requisites: Elementary knowledge of designing basic CAD models as well as conventional manufacturing processes.

3D Printing Technology (Additive Manufacturing)	Contact Hours = 8 Hours			
Introduction to 3D printing technology, Demonstration of the working of a FDM-3D printer, Hands on				
the working of an FDM-3D printer – Preparing a CAD model, S	STL file generation, Setting various			
parameters in the machine controller software, G-code generation, Setting up the 3D printer, Printing				
the model, Mini project.				

3D Scanning (Reverse Engineering)	Contact Hours = 6 Hours				
Post-processing, Slicing, repairing a CAD model using NETFAB	B software, Pricing a 3D product,				
Introduction to 3D Scanning technology, Demonstration of the working of the 3D scanner, Hands on a					
3D Scanner – Acquisition, Alignment, Mesh generation, Post processing, Simplification.					

Extrusion Process for 3D printing	Contact Hours = 6 Hours			
Introduction to Extrusion process, Demonstration of the work	ing of the Single Screw extrusion			
machine, Hands on the extrusion process – heating up the extruder, rotation of the screw, pellet				
addition, extrusion, cooling, winding up the extruded filament.				

Joining/welding of 3D printed parts	Contact Hours = 6 Hours			
Introduction to the joining processes in 3D printing, demonstration of Adhesive bonding, Friction Stir				
Welding, Friction Stir Spot Welding, Spin Friction Welding, Microwave Welding, Hands on Ultrasonic				
Welding of 3D printed parts.				

Interactions and industrial visits	Contact Hours = 4 Hours					
An interactive session with 3D printing professionals and hobb	oyists, a visit to a local 3D Printer					
manufacturing vendor.						

	Reference materials			
Books	Books:			
1.	Ian Gibson, David Rosen, Bent Stucker, Additive Manufacturing Technologies, 3D printing, Rapid Prototyping, and Direct Digital Manufacturing, Springer, 2015, 2nd Edition, 2015.			
2.	Ramesh S., Rapid Prototyping, Ane books Pvt. Ltd., 2016.			

Course delivery methods			Assessment methods		
1.	Chalk and Talk	1.	Quiz		
2.	PPT and Videos	2.	Test- Project /lab based		
3.	Practical/programming sessions	3.	Presentation		
4.	Demonstrations				

	Course Outcome (COs)			
At 1	the end of the course, the student will be able to (Highlight the actio r	verb repre	senting th	ne learning
	level.)			
Leai	rning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning		
An -	Analysis; Ev - Evaluate; Cr - Create	Level	PO(S)	P30(S)
1	Understand the basic working principles and working of a 3D	11	1	1
L.	Printer.	LI	L L	Ŧ
2	Apply the knowledge of rapid prototyping to reverse engineer a	13	1.2	1 2
2.	component.	LJ	1,2	1,2
2	Understand the working principle of a screw extruder machine	11	1	1
5.	for drawing a filament.		1	T
	Apply the knowledge to produce a product using 3D printing			
4.	technique and become a successful 3D printer system operator,	L3	12	1
	senior 3D printer system operator or a prototyping engineer.			

Quiz (4 numbers)	Test (1 Number)	Total
4 X 10 marks = 40 marks	60 marks	100 marks

Quiz:

1. Questions can be MCQ type, fill in the blanks, True/False etc

2. Quiz can be conducted during/after the classes.

Eligibility for Test:

1. Minimum of 90% attendance in the classes conducted.

2. Passing the Test is COMPULSORY inorder to secure the certificate.

Scł	Scheme of Test:			
1.	It will be conducted for 60 marks for a maximum of 2 hours duration.			
2.	Minimum marks required to pass in the Test: Score should be ≥ 24 marks, however overall score			
	of Quiz + Test should be \geq 40% of Total marks to pass the certification course.			

3. A. Computer based/ programming courses should have Project based evaluation in Test. Project can done throughout the duration of the course & a presentation/demonstration can be kept at the end for evaluation.

B. Theoretical courses can have Descriptive Questions in the Test.

C. Other courses which are lab based can have numerical, experiment-based questions.

	CO-PO Mapping (Planned)						CO-PSO Mapping (Planned)								
со	PO								PSO	PSO	PSO				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓												✓		
2	~	✓											✓	✓	
3	~												✓		
4												✓	✓		
			Ti	ick mai	k the	со, ро	and P	SO ma	pping						

Dr. Vivek Tiwary, Dr. Arunkumar P., Dr. Vinayak Malik

Name & Signature of Faculty members offering the course

Certification course Syllabus Template Robotics

Total Contact Hours	Lecture = 15 Hours Practical = 15 Hours Total = Hours	CIE Marks	100
Semester in which the	UG: 5 th , 6 th , 7 th		
course is offered	PG: 1 st , 2 nd , 3 rd		

Objectives of the Certification course

- 1. To understand the basic principles and history of robotics and define key terms and concepts related to robotics.
- 2. To learn the fundamentals of electronics and common electronic components used in robotics.
- 3. To develop basic programming skills for controlling robotic systems.
- 4. To understand how to design and assemble simple robotic structures.
- 5. To learn how to interface and integrate sensors into a robotic system.
- 6. To develop problem-solving skills through practical applications.

Pre-requisites : C programing, Matrices and Kinematics of Machines

Topic – I	Contact Hours = 1	0 Hours
Introduction to robotics and demonstration of different rol	pot elements and t	their function.
Introduction to robot kinematics and control.		

Topic – 2	Contact Hours = 10 Hours			
Introduction and demonstration to the sensors and actuat	ors used in the industry robots.			
Basic robot programming concepts including 3D transf	ormations and kinematics for			
controlling robot manipulators. (Visit to industry)				

Topic – 3	Contact Hours = 10 Hours			
Demonstration of different robots like SCARA, AMRs etc. and the working of various sensors				
in the industry. Building simple robots for application	ons like medical, Household,			
Entertainment, Space, Underwater, Defense, Disaster management etc. (Hands c				
experience)				

	Reference materials
1.	Pratihar.D.K, "Fundamentals of Robotics", Narosa Publishing House, India, 2019
2.	Groover Mikell. P, "Industrial Robotics -Technology Programming and Applications", McGraw
	Hill, 2014
3.	Fu. K.S, Gonzalez. R.C, Lee. C.S.G "Robotics –Control, Sensing, Vision, and Intelligence",
	McGraw Hill, 2015
4.	Siegwart, R Nourbakhsh, and Scaramuzza, "Introduction to Autonomous Mobile Robots", MIT
	Press, USA, 2011.

1.	Links of E-resources
	Robotics: Advanced Concepts and Analysis, IISc Bangalore
	https://nptel.ac.in/courses/112108093
2.	https://archive.nptel.ac.in/courses/112/108/112108093/

Course delivery methods			Assessment methods			
1.	Chalk and Talk	1.	Quiz			
2.	PPT and Videos	2.	Test- Project /lab based			
2	Practical/programming sessions at		Dresentation			
3.	industry	5.				
4.	Demonstrations/hands on					

Course	Outcome	(COs)
--------	---------	-------

At t	At the end of the course, the student will be able to (Highlight the action verb representing the learning level.)						
Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)			
An -	Analysis; Ev - Evaluate; Cr - Create	Level	F O(3)	F 50(3)			
1.	Explain the foundational understanding of robotics.	2	1	1			
2.	Interpret various sensors and actuators commonly used in robotics, including their functionalities and applications.	3	1,4	1			
3.	Demonstrate proficiency in basic robot programming, including 3D transformations and kinematics necessary for controlling robot manipulators.	3	1	1			
4.	Design and construct simple robots tailored for specific applications.	4	1,4,9, 12	1			

Quiz (4 numbers)	Test (1 Number)	Total	
4 X 10 marks = 40 marks	60 marks	100 marks	

1. Questions can be MCQ type, fill in the blanks, True/False etc

2. Quiz can be conducted during/after the classes.

Eligibility for Test:

- 1. Minimum of 90% attendance in the classes conducted.
- 2. Passing the Test is COMPULSORY in order to secure the certificate.

Sch	Scheme of Test:					
1.	It will be conducted for 60 marks for a maximum of 2 hours duration.					
2.	Minimum marks required to pass in the Test: Score should be \geq 24 marks, however overall score					
	of Quiz + Test should be \ge 40% of Total marks to pass the certification course.					
3.	A. Computer based/ programming courses should have Project based evaluation in Test. Project					
	can done throughout the duration of the course & a presentation/demonstration can be kept at					
	the end for evaluation.					

B. Theoretical courses can have Descriptive Questions in the Test.

C. Other courses which are lab based can have numerical, experiment based questions.

	CO BO Manning (Blanned)									CO-PSO Mapping					
	CO-PO Mapping (Planned)								(Planned	I)				
0	РО	РО	РО	РО	РО	PO	PO	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓												✓		
2	✓			✓									✓		
3	✓												✓		
4	✓			✓					✓			✓	✓		
	Tick mark the CO, PO and PSO mapping														

Name and signature of Faculty members offering the course

HOD

Dr. H. B. Kulkarni Prof. A. A. Deshpande

Certification course on CNC Technology

Total Contact Hours	Lecture = 10 Hours Hours Total = 30 Hours	Practical = 20	CIE Marks	100
Semester in which the course is offered	5 th Semester			

Objectives of the Certification course

- 1. To understand various concepts related to CNC Technology
- 2. To have practical purview of manual part programming at industry
- 3. To execute the manual part program on CNC machine at industry

Pre-requisites: Basics of metal machining

Topic – IContact Hours = 10 HoursIntroduction to CNC technology : CNC machines & controls. History & development of CNCtechnology. Conventional Vs. non-conventional machine tool. Numerical control on CNC machinetools. CNC Control and types of CNC control. Basic safety. CNC programming basics. Introduction tomanual NC programming. Manual NC programming for lathe & milling machines. ApplicationNumerical Control, Advantages, & Disadvantages.

Topic – 2	Contact Hours = 08 Hours
Introduction to CNC programming: Basic understanding of G	and M codes on the machine.
Introduction and demonstration of line programs. Procedures A	Associated with part programming,
Cutting process parameter selection, Process planning issues a	and path planning, G & M Codes,
Interpolations, Canned Cycles and Subprograms, Tool compensat	ions. Exposure to FANUC Controls
Machining of programmed exercise on CNC lathe & milling machin	es

Topic – 3	Contact Hours = 12 Hours
Programming oversise: Everyte program and inspect simple geom	actrical forms of standard parts

Programming exercise: Execute program and inspect simple geometrical forms of standard parts.

- 1. Facing, plain turning, step turning and taper turning
- 2. Facing, step turning and circular interpolation
- 3. Face milling and end milling
- 4. Facing and Drilling

	Reference materials					
1.	Mechatronics and Machine Tools, HMT Limited, McGraw Hill Higher Education, ISBN-13 : 978-					
	0071346344,1998					
2.	https://nptel.ac.in/courses/112105211					
3.	https://nptel.ac.in/courses/112105306					

Course delivery methods			Assessment methods		
1.	PPT and Videos		Quiz		
2.	Practical/programming sessions at industry	2.	Test- Project /lab based		
3.	Demonstrations	3.	Presentation		
4.	Chalk and Talk				

	Course Outcome (COs)							
At t	At the end of the course, the student will be able to (Highlight the action verb representing the learning							
	level.)							
Leai	Learning Levels: Re - Remember; Un - Understand; Ap - Apply; Learning Levels: Re - Remember; Un - Understand; Ap - Apply;							
An -	Analysis; Ev - Evaluate; Cr - Create	Level	FO(3)	F 30(3)				
1.	Explain the concept of CNC programming on various machines.	L2	1	1				
2	Apply G and M codes to run the CNC program and subprogram	12	1,2,12	1				
Ζ.	for various machine applications	LJ						
3.	Execute a full program on CNC turning	L3	1,2,5,12	1				
4.	Execute a full program on CNC mill	L3	1,2,5,12	1				

Quiz (4 numbers)	Test (1 Number)	Total
4 X 10 marks = 40 marks	60 marks	100 marks

Quiz:

- 1. Questions can be MCQ type, fill in the blanks, True/False etc
- 2. Quiz can be conducted during/after the classes.

Eligibility for Test:

- 1. Minimum of 90% attendance in the classes conducted.
- 2. Passing the **Test is COMPULSORY** in order **to secure the certificate.**

Scheme of Test:

1.	It will be conducted for 60 marks for a maximum of 2 hours duration.
2.	Minimum marks required to pass in the Test: Score should be \geq 24 marks, however overall score
	of Quiz + Test should be \ge 40% of Total marks to pass the certification course.
3.	A. Computer based/ programming courses should have Project based evaluation in Test. Project
	can done throughout the duration of the course & a presentation/demonstration can be kept at
	the end for evaluation.
	B. Theoretical courses can have Descriptive Questions in the Test.

C. Other courses which are lab based can have numerical, experiment-based questions.

CO-PO Mapping (Planned) CO-PSO Mapping
--

										(Planned	I)			
~~~	РО	РО	PO	РО	РО	PO	PO	PO	РО	РО	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	V												٧		
2	V	V										V	V		
3	V	V			V							V	V		
4	V	V			V							V	V		
	Tick mark the CO, PO and PSO mapping														

# Dr. Sachin C. Kulkarni & Prof.Roopa R.Navalli

Name & Signature of Faculty members offering the course

# Certification course Syllabus Template Mechatronics

Total Contact Hours	Lecture = 15 Hours Practical = 15 Hours Total = Hours	CIE Marks	100
Semester in which the	UG: 5 th , 6 th , 7 th		
course is offered	PG: 1 st , 2 nd , 3 rd		

# **Objectives of the Certification course**

- 1. To learn the fundamentals of Mechatronics and the concepts related to mechatronics
- 2. To understand how to drives and actuators are used in mechatronics.
- 3. To learn the fundamentals of smart materials and micromechatronics

Topic – IContact Hours = 10 HoursIntroduction: Definition of Mechanical Systems, Philosophy and approach; Systems and Design:<br/>Mechatronic approach, Integrated Product Design, Modeling, Analysis and Simulation, Man-<br/>Machine Interface.

Sensors and transducers: classification, Development in Transducer technology

Topic – 2	Contact Hours = 10	0 Hours				
Drives and Actuators: Hydraulic and Pneumatic drives, Ele	ectrical Actuators s	such as servo				
motor and Stepper motor, Drive circuits, open and closed loop control; Embedded Systems:						
Hardware Structure, Software Design and Communication, Programmable Logic Devices,						
Automatic Control and Real Time Control Systems						

Topic – 3	Contact Hours = 10 Hours				
Replacement Programmable Logic Controllers: Basic Structu	re, Types and Working Principle,				
Concept of Scan Cycle and Scan Time, IO's and its Types, Selection Criteria and Applications					
Programming Techniques: Ladder diagram -Concept of Con	tacts and Coil, Latching/ Holding				
Circuit, Memory Bits, Timers and Counter.					

	Reference materials					
1.	Mechatronics System Design, Devdas Shetty & Richard A. Kolk, PWS Publishing Company					
	(Inomson Learning Inc.).					
2.	Mechatronics: A Multidisciplinary Approach, William Bolton, Pearson Education					
3.	A Textbook of Mechatronics, R.K. Rajput, S. Chand & Company Private Limited					
4.	Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering,					
	William Bolton, Prentice Hall.					
1.	Links of E-resources					
	https://nptel.ac.in/courses/112107298					
2.	https://nptel.ac.in/courses/112103174					

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	Quiz	
2.	PPT and Videos	2.	Test- Project /lab based	
3.	Practical/programming sessions at	2	Procentation	
	industry	5.		
4.	Demonstrations/hands on			

# Course Outcome (COs)

At t	At the end of the course, the student will be able to (Highlight the <b>action verb</b> representing the learning level.)							
Lear An -	ning Levels: Re - Remember; Un - Understand; Ap - Apply; Analysis; Ev - Evaluate; Cr - Create	Learning Level	PO(s)	PSO(s)				
1.	Understand the concepts of Integrated Product Design, Modeling, Analysis and Simulation, Man-Machine Interface.	2	1	1				
2.	Understand the concepts of Programmable Logic Devices, Automatic Control and Real Time Control Systems.	2	1	1				
3.	Apply the concepts of PLC for various mechatronic applications.	2	1	1				

## Scheme of Continuous Internal Evaluation (CIE):

Quiz (4 numbers)	Test (1 Number)	Total	
4 X 10 marks = 40 marks	60 marks	100 marks	

# Quiz:

- 1. Questions can be MCQ type, fill in the blanks, True/False etc
- 2. Quiz can be conducted during/after the classes.

# **Eligibility for Test:**

- 1. Minimum of 90% attendance in the classes conducted.
- 2. Passing the **Test is COMPULSORY** in order **to secure the certificate.**

#### Scheme of Test:

1.	It will be conducted for 60 marks for a maximum of 2 hours duration.
2.	Minimum marks required to pass in the Test: Score should be ≥ 24 marks, however overall score
	of Quiz + Test should be $\ge$ 40% of Total marks to pass the certification course.
3.	A. Computer based/ programming courses should have Project based evaluation in Test. Project
	can done throughout the duration of the course & a presentation/demonstration can be kept at
	the end for evaluation.
	B. Theoretical courses can have Descriptive Questions in the Test.
	C. Other courses which are lab based can have numerical, experiment based questions.

				C	0-P0 I	Mappin	ıg (Plar	nned)					CO-P (	SO Map Planned	oping I)
со	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO

	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓												✓		
2	<b>√</b>			✓									✓		
3	<b>√</b>												✓		
4	<b>√</b>			✓					✓			✓	✓		
			Ti	ick mai	rk the (	CO, PO	and P	SO ma	pping						

Name and signature of Faculty members offering the course

# **Composite Materials, Processing and Testing**

Total Contact Hours	Lecture = 20 Hours Total = 30 Hours	Practical = 10 Hours	CIE Marks	100
Semester in which the course is offered	5 th / 6 th			

## **Objectives of the Certification course**

- 1) Train students on composite materials definition, advantages and classification.
- 2) Equip students with knowledge on composite strengthening addition of components and their production routes.
- 3) Familiarize students about the processing and applications of composite structures.

**Pre-requisites :** Material Science, crystalline structure and properties of materials.

iopic – I	Contact Hours = 08 Hours
-----------	--------------------------

# Introduction to Composites:

Matrix Materials: Polymers, Metals, Ceramic

Reinforcements: Glass Fibers, Boron Fibers, Carbon Fibers, Organic Fibers, Ceramic Fibers Interfaces: Wettability, Crystallographic Nature of Interface, Types of Bonding at the Interface Polymer Matrix Composites (PMC), Metal Matrix Composites (MMC), Ceramic Matrix Composites (CMC).

Topic – 2	Contact Hours = 08 Hours

**Processing and properties of Composites:** Hand layup processing of PMC, Vacuum Bagging for PMC, Liquid-State Processes and Solid State Processes in MMC, Cold Pressing and Sintering in CMC, Hot Pressing and reaction bonding process.

Topic – 3	Contact Hours = 14 Hours

Practical/ Demonstration:

- 1) Preparation of PMC laminate using Hand layup technique.
- 2) Preparation of PMC laminate using Vacuum Bagging technique.
- 3) Making application oriented samples using composite materials with complex structures.
- 4) Testing of composites.

	Reference materials
1.	K.K.Chawla, Composite Materials, 3rd Edition, springer, 2012.
2.	Deborah D.L. Chung, Composite Materials Science and Applications, 2nd Edition, springer,
	2010.
3.	WD Callister, Jr., Adapted by R. Balasubramaniam, Materials Science and Engineering, John
	Wiley & Sons, NY, Indian edition, 2007.

## 4. <u>https://nptel.ac.in/courses/112104168</u>

Course delivery methods			Assessment methods			
1.	Chalk and Talk	1.	Quiz			
2.	PPT and Videos	2.	Test- Project /lab based			
3.	Practical/programming sessions	3.	Presentation			
4.	Demonstrations/ Industry visit					

	Course Outcome (COs)						
At t	At the end of the course, the student will be able to (Highlight the <b>action verb</b> representing the learning						
	level.)						
Lear	rning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning					
An -	Analysis; Ev - Evaluate; Cr - Create	Level	FO(3)	P30(5)			
	Identify and understand the basic mechanical behavior of						
1.	composite materials and make sound prediction on the likely	L2	1	1			
	behavior of new combinations of materials.						
2	Apply the choices made for using certain types of composites in	12	1, 3	1			
2.	certain applications with reference to composite properties.	LJ		T			
	Demonstrate a practical understanding of composite properties						
2	and fabrication techniques, and to be able to make realistic	1.4	1	1			
3.	suggestions for the evaluation of composite behavior, where	L4	T	T			
	appropriate.						

# Scheme of Continuous Internal Evaluation (CIE):

Quiz (4 numbers)	Test (1 Number)	Total
4 X 10 marks = 40 marks	60 marks	100 marks

# Quiz:

1. Questions can be MCQ type, fill in the blanks, True/False etc

2. Quiz can be conducted during/after the classes.

# **Eligibility for Test:**

- 1. Minimum of 90% attendance in the classes conducted.
- 2. Passing the Test is COMPULSORY inorder to secure the certificate.

# Scheme of Test:

1.	It will be conducted for 60 marks for a maximum of 2 hours duration.
2.	Minimum marks required to pass in the Test: Score should be $\geq$ 24 marks, however overall
	score of Quiz + Test should be $\geq$ 40% of Total marks to pass the certification course.
3.	A. Computer based/ programming courses should have Project based evaluation in Test. Project
	can done throughout the duration of the course & a presentation/demonstration can be kept at
	the end for evaluation.
	B. Theoretical courses can have Descriptive Questions in the Test.

C. Other courses which are lab based can have numerical, experiment based questions.

	CO-PO Mapping (Planned)						CO-PSO Mapping (Planned)								
~~~	РО	РО	РО	PO	РО	PO	PO PO	PO	РО	РО	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	V														
2	V		V												
3	3 V														
	Tick mark the CO, PO and PSO mapping														

Dr. T. T. Hawal / M. A. Kori

Unmanned Aerial Systems

Total Contact Hours	L = 20 Hrs; T = 0 Hrs; P = 10 Hrs Total = 40 Hrs	CIE Marks	100
Semester in which the course is offered	V to VII Semester		

	Course learning objectives				
1.	Learn about the various types of Drones and its applications.				
2.	Understand about the various components of drone design.				
3.	understand different types of sensors used in drone technology				
4.	Classify different microcontrollers and flight controllers.				

Pre-requisites : Engineering Mechanics , Engineering Mathematics

Unit – I: Introduction	Contact Hours = 10 Hours			
Introduction, Types of Drones, Components of UAVs-Types of motors used for Drones –Several type				
of Speed Controllers, Flight Control Board, Radio Transmitter and receiver, Battery propellers, Power				
distribution board, Additional Equipment.				
Practical: Selecting and assembling drone components such as a	motors, batteries, flight controllers,			

Practical: Selecting and assembling drone components such as motors, batteries, flight controllers, Basic wiring and soldering techniques.

Unit – II: Multi rotor Aerodynamics and Flight Mechanics	Contact Hours = 10 Hours			
Lift and Thrust Pitch and roll, yaw, Translational Lift, Climbing, Hovering and Descent. Quad copter				
modeling representation-Frames -kinematic modeling -Euler	angles, Quaternions and dynamic			
modeling.				
Case study: Quad copter Modeling with MATLAB/SIMULINK; Optim	nization of the Hubsan X4 and Build			
the X4Wii				

Unit – III: Drone Control Systems	Contact Hours = 10 Hours			
Choosing a Flight control System-MultiWii, Dronecode, APM/ArduPilot, PX4/Pixhawk, DJI/Naza, KK2				
and CC3D/Open Pilot. Sensors dedicated to flight control -	-IMU,INS,GPS, Magnetometer and			
barometer, Ground control systems sense and avoid technology.				
Case study: SIL and HIL Simulations With QGCS.				

	Books				
	Reference Books:				
1.	Yasmina Bestaoui Sebbane, "A First Course in Aerial robotics and Drones ", PHI, `1st edition,				
	2022, ISBN- 0367631385.				
2.	David Mcgriffy, Make: Drones: Teach an Arduino to Fly ,1st edition,2016,ISBN-13:978-				

	1680451715.
3.	E. Tooley, Practical Drones: Building, Programming, and Applications, Apress, 2021.
4.	S. K. Kopparthy, Drone Technology: Theory and Practice, Springer, 2020.
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	https://www.udemy.com/course/make_a_drone/: Make an Open Source Drone by Dr.Peter.

Course delivery methods		Assessment methods		
1.	Chalk and Talk	1.	Quiz	
2.	PPT and Videos	2.	Test- Project /lab based	
3.	Practical/programming sessions	3.	Presentation	
4.	Demonstrations			

Course Outcome (COs)

At the end of the course, the student will be able to (Highlight the **action verb** representing the learning level.)

Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(s)	PSO(s)	
An -	Analysis; Ev - Evaluate; Cr - Create	Level	FO(3)		
1	Explain the fundamental concepts and Regulations of Drone	lln	1,2,9,10	1	
1.	Technology, basic equations of Multi rotor dynamics.	011			
n	Derive and explain various Drone Performance Parameters for	۸n	1, 2,5	1	
Ζ.	various Applications.	Ар			
3.	Explain various types of Flight Control Systems to determine the	٨٣	1, 2,3,11	1	
	suitable flight control system for the application.	Αр			

Scheme of Continuous Internal Evaluation (CIE):

Quiz (4 numbers)	Test (1 Number)	Total
4 X 10 marks = 40 marks	60 marks	100 marks

n	i	17	٠
ч	u	2	٠

1. Questions can be MCQ type, fill in the blanks, True/False etc

2. Quiz can be conducted during/after the classes.

Eligibility for Test:

1. Minimum of 90% attendance in the classes conducted.

2. Passing the Test is COMPULSORY in order to secure the certificate.

Sch	Scheme of Test:				
1.	It will be conducted for 60 marks for a maximum of 2 hours duration.				
2.	Minimum marks required to pass in the Test: Score should be \geq 24 marks, however overall score				
	of Quiz + Test should be \ge 40% of Total marks to pass the certification course.				
3.	A. Computer based/ programming courses should have Project based evaluation in Test. Project				
	can done throughout the duration of the course & a presentation/demonstration can be kept at				
	the end for evaluation.				

B. Theoretical courses can have Descriptive Questions in the Test.

C. Other courses which are lab based can have numerical, experiment based questions.

CO-PO Mapping (Planned)					CO-PSO										
							Mapp	oing(Pla	nned)						
~~~	РО	РО	РО	PO	РО	PO	PO	PO	РО	PO1	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	V	V							V	V			٧		
2	V	V			V								٧		
3	3 V V V V						V								
				Plea	se Tick	at ap	oropria	te plac	e		-				

Name & Sign of faculty members involved in designing the syllabus	HOD
Mr. Anil Kumar Nakkala (Asst.Prof)	Prof.P M Banakar

# Certification course Syllabus Wind Tunnel Testing

Total Contact Hours	Lecture = 10 Total = 30	Practical = 20	CIE Marks	100
Semester in which the course is offered	6			

## **Objectives of the Certification course**

The course should enable the students to:

1. To interpret the basic concepts of measurement of forces and moments on models during the wind tunnel testing.

2. To understand the application of various types of wind tunnels.

3. To learn the basic measurement procedure involving wind tunnel testing

Pre-requisites : Fluid Mechanics, Aerodynamics

WIND TUNNELS	Contact Hours = 10	
Wind Tunnel, layouts and nomenclature, Types of Wind Tunnels -	continuous and intermittent -	
closed circuit and open circuit - closed jet and open jet test section	n – application.	
Special purpose tunnels - Smoke Tunnels – Water Tunnels – Spin tunnel, automobile wind tunnel and		
environmental wind tunnel Important parameters of flow similarit	y. types of flow similarities for	
compressible and incompressible flows Model.		

FLOW VISUALIZATION TECHNIQUES	Contact Hours = 10	
Path – Streak – Stream and Timelines; Techniques: Smoke, Tuft, Streaks, Surface oil flow.		
Velocity Measurements: Pivot Tube – Static and Total. Calibration of test section: Test section flow		
calibration and Boundary Layers.		

MEASUREMENTS OF FORCES AND MOMENTS	Contact Hours = 10
Forces, moments and Reference Frames – Balances – Internal and	External - Requirements and
Specifications – Fundamentals of Model Installations. Boundary correction. Pressure	
measurements: Manometers – U-Tube, Inclined and Precession. B	ourdon Gauge and Pressure
Transducer – Strain Gauge, Semi conductor – Absolute and Differe	ntial.

	Reference materials
1.	1. Rae, W.H. and Pope, A. —Low Speed Wind Tunnel Testing  , John Wiley Publication, 1999
	2. Pope, A., and Goin, L., —High Speed wind Tunnel Testing  , John Wiley Publication , 1999
	3. Pope, J B Barlow —low speed wind tunnel testing — 3 edition j.w publication
2.	1. E L Houghton and PW Carpenter, "Aerodynamics for Engineering students", Fourth
	edition,Edward

Arnold publications, 1993. 2. L.M Miline Thomson, —Theoretical Aerodynamics||, 1996 McGraw-Hill,New Delhi

Course delivery methods			Assessment methods		
1.	Chalk and Talk	1.	Quiz		
2.	PPT and Videos	2.	Test- Project /lab based		
3.	Practical/programming sessions	3.	Presentation		
4.	Demonstrations				

## Course Outcome (COs)

At t	At the end of the course, the student will be able to (Highlight the <b>action verb</b> representing the learning					
	level.)					
Lea	rning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning	PO(c)	PSO(c)		
An -	Analysis; Ev - Evaluate; Cr - Create	Level	FO(3)	F 30(3)		
1	Ability to understand basics of aerodynamics and to identify	4	1,9,12	1		
1.	the type of wind tunnel					
2	Ability to develop and understand flow visualization	Λ	1,2,9,12	1,2		
Ζ.	techniques over model	4				
	Ability to understand measurement and balancing of loads on		1,2,5,9,12	1,2		
3.	model and to understand the different types of equipment's	4				
	for measuring pressure and velocity.					

## Scheme of Continuous Internal Evaluation (CIE):

Quiz (4 numbers)	Test (1 Number)	Total
4 X 10 marks = 40 marks	60 marks	100 marks

Quiz:

1. Questions can be MCQ type, fill in the blanks, True/False etc

2. Quiz can be conducted during/after the classes.

Eligibility for Test:

1. Minimum of 90% attendance in the classes conducted.

2. Passing the Test is COMPULSORY inorder to secure the certificate.

Sch	Scheme of Test:			
1.	It will be conducted for 60 marks fora maximum of 2 hours duration.			
2.	Minimum marks required to pass in the Test: Score should be ≥ 24 marks, however overall score			
	of Quiz + Test should be $\ge$ 40% of Total marks to pass the certification course.			
3.	A. Computer based/ programming courses should have Project based evaluation in Test. Project			
	can done throughout the duration of the course & a presentation/demonstration can be kept at			
	the end for evaluation.			
	B. Theoretical courses can have Descriptive Questions in the Test.			
	C. Other courses which are lab based can have numerical, experiment based questions.			

	CO-PO Mapping						CO-PSO Mapping								
60	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3								2			1	1		
2	3	1							2			1	1	2	
3	3	2			2				2			2	1	2	
	Tick mark the CO, PO and PSO mapping														

# Name & Signature of Faculty members offering the course (Dharmendra A Ponnaswami)

# Certification course Syllabus Template Certification Course Title

Total Contact Hours	Lecture = 20 Hours P Hours Total = Hours	Practical = 10	CIE Marks	100
Semester in which the course is offered	5th , 6th , 7th sem UG stud	lents		

## **Objectives of the Certification course**

- 1. To introduce the concepts of Urban Planning and familiarize students with the Planning principles demonstrated through various civilizations.
- 2. To introduce the planning strategies and surveys used in planning of urban areas and preparation of the plans
- 3. To illustrate the urban infrastructure facilities.
- 4. To understand and apply the principles of RS, GIS and GPS in urban planning

## **Pre-requisites : Basic Surveying**

Ulater of Using Cattlements	$C_{a} = 07  \text{Herm}$
History of Human Settlements	Contact Hours = 07 Hours

Introduction to Human Settlements: Origins, evolution and growth of settlements. History of City Planning: Introduction to planning principles of cities of ancient civilizations. Study of planning of ancient Indian cities and Indus Valley Civilization.

Land use patterns Contact Hours = 07 Hours	Land use patterns	Contact Hours = 07	Hours
--------------------------------------------	-------------------	--------------------	-------

Land use and activity pattern, Density of population, population distribution. Central Business District, Neighbourhoods, urban nodes, fringe areas and suburbs. Models of land use planning like Concentric zone model, Sector theory model, Multiple nuclei model, neighbourhood planning and garden city concepts. Study and analysis of a residential layout in an urban area.

Infrastructure Planning:	Contact Hours = 03	Hours

Water Supply: Water– sources of water, treatment and storage, transportation and distribution, quality, networks, distribution losses, water harvesting, recycling and reuse. Sanitation and Solid waste: Sanitation – points of generation, collection, treatment, disposal, norms and standards, grey water disposal.

Electricity – Sources of electricity, distribution networks, demand assessment, norms and standards, planning provisions, and management issues.

Social Infrastructure – Education, Health, Civic

Transportation Systems - Role of transport, types of transport systems, Transportation surveys and studies.

Contact Hours = 03 Hours	
	Contact Hours = 03 Hours

Remote sensing: Elements, Satellite image interpretation, Multispectral bands concepts, Classification of satellite images, Land use and land cover classification.

GIS: Spatial and Attribute Data, Data Structures - Raster and Vector data structures, GIS Software, and formats, Geo-database. Digitization, georeferencing, spatial and non-spatial data.

Applications of GIS, Remote Sensing and GPS in Urban Infrastructure Planning, urban sprawl, Change detection studies.

Practical aspects of Urban planning Conta	ntact Hours = 10	Hours
-------------------------------------------	------------------	-------

Topographic sheet analysis, Georeferencing of maps, Digitization of map components in GIS, Planning and data base preparation, Classification of satellite data, Preparation of land use land cover maps, Demonstration of urban design layers and components.

	Reference materials
1.	Chapin III F. Stuart, Kaiser Edward J. and Godschalk David R., Urban Land Use Planning,
	University of Illinois Press, Illinois, 1995 and onwards.
2.	Dutt, Binode Behari, Town Planning in Ancient India, Gyan Books Pvt. Ltd. ,
-	
3.	Thomas Lillesand, Ralph W. Kiefer, and Jonathan W. Chipman. "Remote Sensing and Image
	Interpretation" Publisher: Wiley.
4.	S. K. Garg , Water Supply Engineering, (18th ed.), Khanna Publishers
5.	UDPFI Guidelines - Vol I - Urban Development Plan Formulation and Implementation Guidelines.
6.	Municipal solid waste management manual Part I & II. CPHEEO, India
7.	Hutchinson, B.G., Principles of Urban Transport Systems Planning, McGraw Hill, London, 1974.

Course delivery methods		Assessment methods		
1.	Chalk and Talk	1.	Quiz	
2.	PPT and Videos	2.	Test- Project /lab based	
3.	Practical/programming sessions	3.	Presentation	
4.	Demonstrations			

Course Outcome (COs)					
At the end of the course, the student will be able to (Highlight the <b>action verb</b> representing the learning					
level.)					
Learning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning				
An - Analysis; Ev - Evaluate; Cr - Create	Level	PO(S)	P30(S)		

1.	<b>Apply</b> Basic principles of urban planning and Make use the planning strategies in their design.	Ар	6	3
2.	Make use of surveys, analyze and design a layout for a given area.		6	3
3.	To understand the planning principles of various civilizations.	Ар	6	3
4.	Determine the necessity of infrastructure facilities for urban	۸n	6	2
	areas.	Ар	0	5
5	Apply RS and GIS technologies in urban and infrastructure	۸n	5	1
э.	planning			

Quiz (4 numbers)	Test (1 Number)	Total
4 X 10 marks = 40 marks	60 marks	100 marks

## Quiz:

1. Questions can be MCQ type, fill in the blanks, True/False etc

2. Quiz can be conducted during/after the classes.

# **Eligibility for Test:**

1. Minimum of 90% attendance in the classes conducted.

2. Passing the Test is COMPULSORY inorder to secure the certificate.

# Scheme of Test:

- 1. It will be conducted for 60 marks for a maximum of 2 hours duration.
- 2. Minimum marks required to pass in the Test: Score should be  $\ge 24$  marks, however overall score of Quiz + Test should be  $\ge 40\%$  of Total marks to pass the certification course.
- 3. A. Computer based/ programming courses should have Project based evaluation in Test. Project can done throughout the duration of the course & a presentation/demonstration can be kept at the end for evaluation.
  - B. Theoretical courses can have Descriptive Questions in the Test.
  - C. Other courses which are lab based can have numerical, experiment based questions.

	CO-PO Mapping (Planned)									CO-PSO Mapping (Planned)					
	PO	PO	РО	РО	РО	РО	РО	РО	PO	РО	РО	РО	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1						$\checkmark$									$\checkmark$
2						$\checkmark$									$\checkmark$
3						$\checkmark$									$\checkmark$
4						$\checkmark$									$\checkmark$
5.					$\checkmark$									$\checkmark$	
	Tick mark the CO, PO and PSO mapping														

Name & Signature of Faculty members offering the course Prof. Shashank C. Bangi & Prof. Prof. Rashmi R. Pai



# Certification course Syllabus Template Green Building

Total Contact Hours	Lecture = 20 Hours Total = 30 Hours	CIE Marks	100	
Semester in which the course is offered	5 th , 6 th , 7 th sem UG s	students		

# **Objectives of the Certification course**

- 1. To study the green buildings towards sustainable development and its rating systems
- 2. To understand the need for sustainable building through traditional wisdom of design and construction.
- 3. To understand various materials used in construction of green buildings

# Pre-requisites : Environmental studies

then applying them in design.

Topic – I: Introduction	Contact Hours = 10 Hours			
Theory: Green builings and sustainable development: Ty	pical features and benefits of			
green buildings toward sustainable living. Different aspects of sustainability like efficient				
use and control of Water, Energy, Earth, Waste and Mate	erials.			

**Practical:** The students have to design a residence applying the concepts of green building and sustainability.

Topic – 2: Green building rating systems and materials.	Contact Hours = 10 Hours
Theory: Green building rating systems: GRIHA, IGBC	and LEED to give overview of
criteria as per these rating systems.	
Study of eco-friendly and sustainable building materials a	nd construction technologies
Practical: The students will be divided in groups, each gr	oup studying the different
literature case studies to understand the application of gree	en building design concepts and

Topic – 3: Green building and sustainable concepts	Contact Hours = 10 Hours
Theory: Sustainable Concepts in Traditional Architectu	ure in different climatic zones in
Rural and Urban Context.	
<b>Practical:</b> The explorations of the studio to be produced drawings at the end of the course.	in the form of sketches and

	Reference materials						
1.	Yatin Pandya, Sustainable Built Environment A Panorama, Footprints, E.A.R.T.H., (Environment.						
	Architecture. Research. Technology. Housing), Ahmedabad.						
2.	Mili Majumdar, Energy Efficient Buildings in India, Tata Energy Research Institute (TERI) and						
	Ministry of Non-conventional Energy Sources, Govt. of India, 1997						
3.	Charles J. Kibert, Sustainable Construction – Green Building Design and Delivery, John Wiley &						
	Sons, New York, 2008.						

	Course delivery methods	Assessment methods				
1.	Chalk and Talk	1.	Quiz			
2.	PPT and Videos	2.	Test- Project /lab based			
3.	Practical/programming sessions	3.	Presentation			
4.	Demonstrations					

	Course Outcome (COs)							
At t	At the end of the course, the student will be able to (Highlight the action verb representing the learning							
	level.)							
Lear	ning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning						
An -	Analysis; Ev - Evaluate; Cr - Create	Level	PO(3)	P30(5)				
1.	Understand the issues of Sustainability	L1	PO7	1				
2	Explain the concepts of traditional and contemporary approaches	12	PO7	2				
Z.	towards sustainable architecture	LZ						
3.	Apply and design sustainable techniques for a given project	L3	PO3	2				

Quiz (4 numbers)	Test (1 Number)	Total		
4 X 10 marks = 40 marks	60 marks	100 marks		

Quiz:

1. Questions can be MCQ type, fill in the blanks, True/False etc

2. Quiz can be conducted during/after the classes.

# Eligibility for Test:

- 1. Minimum of 90% attendance in the classes conducted.
- 2. Passing the Test is COMPULSORY inorder to secure the certificate.

Sch	Scheme of Test:						
1.	It will be conducted for 60 marks for a maximum of 2 hours duration.						
2.	Minimum marks required to pass in the Test: Score should be $\geq$ 24 marks, however overall score						
	of Quiz + Test should be $\geq$ 40% of Total marks to pass the certification course.						
3.	A. Computer based/ programming courses should have Project based evaluation in Test. Project						
	can done throughout the duration of the course & a presentation/demonstration can be kept at						
	the end for evaluation.						
	B. Theoretical courses can have Descriptive Questions in the Test.						

C. Other courses which are lab based can have numerical, experiment based questions.

	CO-PO Mapping (Planned)									CO-P (	CO-PSO Mapping (Planned)				
~~~	РО	РО	РО	PO	РО	PO	PO	РО	РО	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1							V						٧		
2							V							V	
3			V											V	
	Tick mark the CO, PO and PSO mapping														

Name & Signature of Faculty members offering the course

Certification Course in Nanotechnology

Total Contact Hours	Lecture = 15 Hours Practical = 15 hours Total = 30 Hours	CIE Marks	100
Semester in which the course is offered	3 rd to 8 th Semesters during weekends		

Objectives of the Certification course

1. To provide a comprehensive overview of synthesis and characterization of nanoparticles, nanocomposites and hierarchical materials with nanoscale features.

2. To provide the engineering students with necessary background for understanding various nanomaterials characterization techniques

3. To develop an understanding of the basis of the choice of material for device applications

Pre-requisites : NIL

Topic – I Introduction to Nanomaterials	Contact Hours = 10 Hours
Theory/Practical/demonstration	
Theory: (3 hrs) Nanotechnology, Frontier of future-an overview,	Length Scales, Variation of physical
properties from bulk to thin films to nanomaterials, Confinemen	t of electron in 0D, 1D, 2D and 3D
systems. Synthesis of Nanomaterials: Bottom-Up approach: (Chemical Routes for Synthesis of
nanomaterials-Sol-gel, Precipitation, Solution Combustion synthes	sis. Top-Down approach- Ball milling
technique, Sputtering, Laser Ablation, SILAR techniques	
Practicals: (7 hrs)	
1) Preparation of silver nanoparticles and characterization of partic	cle size by optical spectroscopy
2) Preparation of ZnO nanoparticles by combustion technique	
3) Preparation of Al ₂ O ₃ nanoparticles by precipitation method	
1) Proparation of Cilica papaparticles by sol gal mothed	

4) Preparation of Silica nanoparticles by sol-gel method

5) Hydrothermal synthesis of metal oxide nanoparticles

Topic – 2

Contact Hours = 10 Hours

Theory/Practical/demonstration

Theory: Basic principles and instrumentations of Electron Microscopy –Transmission Electron Microscope, Scanning Electron Microscope, Scanning Probes- Scanning Tunneling microscope, Atomic Force Microscope –different imaging modes, Basic principles of working of X-ray diffraction, derivation of Debye-Scherrer equation, numericals on Debye Scherrer equation, Optical Spectroscopy-Instrumentation and application of IR, UV/VIS (Band gap measurement) Solar cells: First generation, Second generation and third generation solar cells: Construction and working of Dye sensitized and Quantum dot sensitized solar cells. Batteries: Lithium ion battery- working, Requirements of anodic and cathodic materials, classification based on ion storage mechanisms, limitations of graphite anodes, Advances in Cathodic materials, Anodic materials, Separators

Topic -	- 3	Contact Hours = 10 Hours
Theory	/Practical/demonstration	
Theory	: (2hrs) Fuel Cells: Introduction, construction, wo	rking of fuel cells and nanotechnology in
hydrog	en storage and proton exchange membranes. S	Switching glasses, Semiconductor devices
includi	ng LEDs and Photonic crystals (1D, 2D and 3D) and tl	heir applications, Display devices.
Practic	als: (8 Hrs)	
1)	Nanotechnology in Civil Engineering (Photocatalysi	s)
2)	Nanotechnology in Mechanical Engineering (Nano	fluids preparation)
3)	Thermal Conductivity measurement of Nanofluids	
4)	Nanotechnology in Electrical and Electronics (Work	king of Electrochemical Sensors)
5)	Working of Supercapacitors	

Reference materials

1.	Text Books:
	1. Nano Materials – A.K. Bandyopadhyay/ New Age Publishers
	2. Nanocrystals: Synthesis, Properties and Applications – C.N.R. Rao, P. John Thomas and G. U.
	Kulkarni, Springer Series in Materials Science
	3. Nano Essentials- T. Pradeep/TMH
	Reference Books:
	1. Introduction to Nanotechnology, C. P. Poole and F. J. Owens, Wiley, 2003.
	2. Understanding Nanotechnology, Scientific American 2002.
	Nanotechnology, M. Wildon, K. Kannagara, G. Smith, M. Simmons and B. Raguse, CRC Press
	Boca Raton 2002.
2.	Links of E-resources

	Course delivery methods		Assessment methods
1.	Chalk and Talk	1.	Quiz
2.	PPT and Videos	2.	Test- Project /lab based
3.	Practical/programming sessions	3.	Presentation
4.	Demonstrations		

	Course Outcome (COs)						
At	the end of the course, the student will be able to (Highlight the action v	erb represei	nting the le	earning			
	level.)						
Lear	Learning Levels: Re - Remember; Un - Understand; Ap - Apply; An Learning Do(a)						
- An	alysis; Ev - Evaluate; Cr - Create	Level	PO(S)	P30(S)			
1.	Demonstrate the synthesis of nanoparticles by various techniques.	L2	1	NA			
2.	Explain working of basic instruments used in characterization of nanoparticles.	L2	1, 2	NA			
3.	Classify the nanomaterials based on the dimensions and applications	L3	2, 5, 12	NA			
4.	Assess the suitability of nanomaterials for various device applications	L4	2, 5	NA			

Scheme of Continuous Internal Evaluation (CIE):

•	1	
Quiz (4 numbers)	Test (1 Number)	Total

4 X 10 marks = 40 marks	60 marks	100 marks	
4 X 10 marks – 40 marks	00 11101 K3	100 11101 K3	

Quiz:

1. Questions can be MCQ type, fill in the blanks, True/False etc

2. Quiz can be conducted during/after the classes.

Eligibility for Test:

1. Minimum of 90% attendance in the classes conducted.

2. Passing the **Test is COMPULSORY** inorder **to secure the certificate.**

Scheme of Test:

1. It will be conducted for 60 marks for a maximum of 2 hours duration.

- 2. Minimum marks required to pass in the Test: Score should be \ge 24 marks, however overall score of Quiz + Test should be \ge 40% of Total marks to pass the certification course.
- 3. A. Computer based/ programming courses should have Project based evaluation in Test. Project can done throughout the duration of the course & a presentation/demonstration can be kept at the end for evaluation.

B. Theoretical courses can have Descriptive Questions in the Test.

C. Other courses which are lab based can have numerical, experiment based questions.

	CO-PO Mapping (Planned)									CO-PSO Mapping (Planned)					
~~~	РО	РО	РО	РО	РО	PO	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	~														
2	~	1													
3		1			1							1			
4		1			•										
	Tick mark the CO, PO and PSO mapping														

SI No	Skill & competence enhanced after undergoing	Applicable Industry Sectors &	Job roles students can	
	the course	domains	take up after	
			undergoing the course	
1	Synthesis of Nanoparticles	Battery and sensors industries	R & D Scientist	
2	Characterization of Nanoparticles	Analytical Instrumentations	Analyst	
3	Development of Solar cells and super	Energy industries	R & D Scientist	
	capacitors			

Name & Signature of Faculty members offering the course

## **Certification Course: Astrophysics**

Total Contact Hours	Lecture = 30 Hours Total = 30 Hours	Practical = 0 Hours	CIE Marks	100
Semester in which the course is offered	5th			

## **Objectives of the Certification course**

- 1. To learn about observational techniques and instruments.
- 2. To learn about the birth, evolution and death of stars.
- 3. To learn about star clusters, galaxies and cosmology.

# Pre-requisites :

Topic – I Basics of observations	Contact Hours = 10 Hours			
The coordinate systems, observational instruments and techniques, photometric concepts,				
radiation mechanism				

Topic – 2 stars	Contact Hours = 10 Hours
Stellar spectrum stellar structure and evolution binary stars co	mnact stars

Stellar spectrum, stellar structure and evolution, binary stars, compact stars.

Topic – 3 Beyond stars	Contact Hours =	10 Hours
Star cluster, interstellar medium, galaxies, cosmology.		

	Reference materials					
1.	H Karttunen et. al, Fundamental Astronomy, Springer, 6 th edition/2017					
2.	https://ocw.mit.edu/courses/8-282j-introduction-to-astronomy-spring-2006/					

	Course delivery methods	Assessment methods		
1.	Chalk and Talk	1.	Quiz	
2.	PPT and Videos	2.	Test- Project /lab based	
3.	Practical/programming sessions	3.	Presentation	
4.	Demonstrations			

Course Outcome (COs)					
At the end of the course, the student will be able to (Highlight the action verb representing the learning					
level.)					
Learning Levels: Re - Remember; Un - Understand; Ap - Apply; Learning					
An - Analysis; Ev - Evaluate; Cr - Create	Level	PO(S)	P30(S)		

1.	Understand the basics of observations in astronomy	Un	1	
2.	Describe evolution of a star	Un	1	
3.	Understand principles of large- scale structure and cosmology	Un	1	

Quiz (4 numbers)	Test (1 Number)	Total	
4 X 10 marks = 40 marks	60 marks	100 marks	

Quiz:

1. Questions can be MCQ type, fill in the blanks, True/False etc

2. Quiz can be conducted during/after the classes.

## **Eligibility for Test:**

1. Minimum of 90% attendance in the classes conducted.

2. Passing the Test is COMPULSORY inorder to secure the certificate.

## Scheme of Test:

- 1. It will be conducted for 60 marks for a maximum of 2 hours duration.
- 2. Minimum marks required to pass in the Test: Score should be  $\ge$  24 marks, however overall score of Quiz + Test should be  $\ge$  40% of Total marks to pass the certification course.
- 3. A. Computer based/ programming courses should have Project based evaluation in Test. Project can done throughout the duration of the course & a presentation/demonstration can be kept at the end for evaluation.
  - B. Theoretical courses can have Descriptive Questions in the Test.
  - C. Other courses which are lab based can have numerical, experiment based questions.

	CO-PO Mapping (Planned)								CO-PSO Mapping (Planned)		oping I)				
~~~	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓														
2	✓														
3	✓														
4															
	Tick mark the CO, PO and PSO mapping														

Name & Signature of Faculty members offering the course

Certification course Syllabus Template Financial Management

Total Contact Hours	Lecture = Hours Total = Hours	Practical = Hours	CIE Marks	100
Semester in which the course is offered	5 th Sem			

Objectives of the Certification course

- 1. The course is designed to inculcate knowledge about investment process and Financial Markets
- 2. The course is designed to impart the knowledge and thorough understanding of Investment process and knowledge about financial markets
- 3. The course helps students to develop a thorough, critical understanding of the basic concepts of income tax such as residential status, tax incidence

Pre-requisites: Knowledge of fundamentals of finance, Economics and personal finance

Topic – I	Contact Hours = 10 Hours

Theory:

Introduction to Financial Management: Introduction to Financial Management, Objectives of Financial management- Profit maximization and wealth maximization, Role of a finance manager, Financial management and other functional areas. Sources of financing: shares, debentures, Lease financing, Hybrid financing, Venture capital, Primary market & Secondary market

Practical/demonstration: Analyzing the present value and future value of cashflows for company's decision making

Topic – 2

Contact Hours = 10 Hours

Theory/Practical/demonstration

Time Value of Money & Cost of Capital: Present value & future value of single cash flow, Annuity and perpetuity. Simple Interest & Compound interest, Cost of Capital: Cost of equity, preference and debenture capital, Cost of retained earnings.

Practical/demonstration: Simple Interest & Compound interest

Topic – 3	Contact Hours =	10 Hours

Theory/Practical/demonstration

Investment and Securities Market: Investment and Speculation, features of a good Investment, Investment Process, Sources of investment information, Introduction to taxation, Deductions available under sec. 80C to 80U. Financial planning: meaning, process and role of

		Reference materials
1.	1.	Taxman's Students Guide to Income Tax, Basic Personal Taxation. Taxmann Publications
		Private Limited; Assessment Year 2022-23 edition (24 November 2022); Taxmann
		Publications Private Limited, 59/32, New Rohtak Road, New Delhi
	2.	Punithavathy Pandian, Security Analysis and Portfolio Management, Vikas Publications,
		(2005)
	3.	Prasanna Chandra, Financial Management,8thEd, TMH
	4.	I.M .Pandey, Financial Management, 10thEd, Vikas Publishing House
2.	1.	Debt & Money Markets: Concepts, Instruments, https://www.edx.org/course/money-
		debtmarketsconcepts-instruments-risks-and-derivatives
	2.	Personal Finance, Part 1: Investing in Yourself, https://www.edx.org/course/personal-
		financepart-1-investing-wellesleyx-pfinan101x0
	3.	https://swayam.gov.in/courses/277-financial-management

	Course delivery methods	Assessment methods			
1.	Chalk and Talk	1.	Quiz		
2.	PPT and Videos	2.	Test- Project /lab based		
3.	Practical/programming sessions	3.	Presentation		
4.	Demonstrations				

Course Outcome (COs)									
At the end of the course, the student will be able to (Highlight the action verb representing the learning									
level.)									
Leai	rning Levels: Re - Remember; Un - Understand; Ap - Apply;	Learning							
An -	Analysis; Ev - Evaluate; Cr - Create	Level	FO(3)	F30(S)					
1.	To Describe the effects of decision making of finance	2	1,2	1					
	manager on shareholders wealth maximization	2							
	To Analyze the role of time value of money and its use for		2,6	2					
2.	valuing and will be able to calculate cost of capital for the	2,3,4							
	organization								
3.	Identify various investment avenues available in the securities		2	3					
	market for Investment, and to understand and analyse the	3							
	various Tax saving options								

Quiz (4 numbers)	Test (1 Number)	Total		
4 X 10 marks = 40 marks	60 marks	100 marks		

Quiz:

1. Questions can be MCQ type, fill in the blanks, True/False etc

2. Quiz can be conducted during/after the classes.

Eligibility for Test:

1. Minimum of 90% attendance in the classes conducted.

2. Passing the Test is COMPULSORY inorder to secure the certificate.

Scheme of Test:

1.	It will be conducted for 60 marks for a maximum of 2 hours duration.						
2.	Minimum marks required to pass in the Test: Score should be \geq 24 marks, however overall						
	score of Quiz + Test should be \ge 40% of Total marks to pass the certification course.						
3.	A. Computer based/ programming courses should have Project based evaluation in Test. Project						
	can done throughout the duration of the course & a presentation/demonstration can be kept at						
	the end for evaluation.						
	B. Theoretical courses can have Descriptive Questions in the Test.						
	C. Other courses which are lab based can have numerical, experiment-based questions.						

CO-PO Mapping (Planned)									CO-PSO Mapping (Planned)						
со	РО	РО	РО	РО	РО	PO	PO	РО	РО	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	✓												✓		
2		✓				✓								✓	
3		✓													✓
	Tick mark the CO, PO and PSO mapping														

Name & Signature of Faculty members offering the course